
Chapter 21 
 



 
 

 
 
1. Eq. 21-1 gives Coulomb’s Law, F k q q

r
= 1 2

2 , which we solve for the distance: 
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2. (a) With a understood to mean the magnitude of acceleration, Newton’s second and 
third laws lead to 
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(b) The magnitude of the (only) force on particle 1 is 
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Inserting the values for m1 and a1 (see part (a)) we obtain |q| = 7.1 × 10–11 C. 



 
3. The magnitude of the mutual force of attraction at r = 0.120 m is 
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4. The fact that the spheres are identical allows us to conclude that when two spheres are 
in contact, they share equal charge. Therefore, when a charged sphere (q) touches an 
uncharged one, they will (fairly quickly) each attain half that charge (q/2). We start with 
spheres 1 and 2 each having charge q and experiencing a mutual repulsive force 

2 2/F kq r= . When the neutral sphere 3 touches sphere 1, sphere 1’s charge decreases to 
q/2. Then sphere 3 (now carrying charge q/2) is brought into contact with sphere 2, a total 
amount of q/2 + q becomes shared equally between them. Therefore, the charge of sphere 
3 is 3q/4 in the final situation. The repulsive force between spheres 1 and 2 is finally 
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where r is the distance between the charges. We want the value of q that maximizes the 
function f(q) = q(Q – q). Setting the derivative /dF dq equal to zero leads to Q – 2q = 0, 
or q = Q/2. Thus, q/Q = 0.500. 

 
5. The magnitude of the force of either of the charges on the other is given by 
 



 
6. The unit Ampere is discussed in §21-4. Using i for current, the charge transferred is 
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7. We assume the spheres are far apart. Then the charge distribution on each of them is 
spherically symmetric and Coulomb’s law can be used. Let q1 and q2 be the original 
charges. We choose the coordinate system so the force on q2 is positive if it is repelled by 
q1. Then, the force on q2 is 
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where r = 0.500 m. The negative sign indicates that the spheres attract each other. After 
the wire is connected, the spheres, being identical, acquire the same charge. Since charge 
is conserved, the total charge is the same as it was originally. This means the charge on 
each sphere is (q1 + q2)/2. The force is now one of repulsion and is given by 
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We solve the two force equations simultaneously for q1 and q2. The first gives the product 
 

q q r F
k

a
1 2

2 2

9
120500 0108

8 99 10
300 10= − = −

× ⋅
= − × −. .

.
. ,

m N
N m C

C2 2
2b g b g  

 
and the second gives the sum 
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where we have taken the positive root (which amounts to assuming q1 + q2 ≥ 0). Thus, the 
product result provides the relation 
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which we substitute into the sum result, producing 
 

q
q1

12

1

6300 10 2 00 10−
×

= ×
−

−. .C C.
2

 

 
Multiplying by q1 and rearranging, we obtain a quadratic equation 
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The solutions are 
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If the positive sign is used, q1 = 3.00 × 10–6 C, and if the negative sign is used, 

6
1 1.00 10  Cq −= − × .  

 
(a) Using q2 = (–3.00 × 10–12)/q1 with q1 = 3.00 × 10–6 C, we get 6

2 1.00 10  Cq −= − × .  
 
(b) If we instead work with the q1 = –1.00 × 10–6 C root, then we find 6

2 3.00 10  Cq −= × .  
 
Note that since the spheres are identical, the solutions are essentially the same: one sphere 
originally had charge –1.00 × 10–6 C and the other had charge +3.00 × 10–6 C.  
 
What if we had not made the assumption, above, that q1 + q2 ≥ 0? If the signs of the 
charges were reversed (so q1 + q2 < 0), then the forces remain the same, so a charge of 
+1.00 × 10–6 C on one sphere and a charge of –3.00 × 10–6 C on the other also satisfies 
the conditions of the problem. 
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which (if we demand F2y = 0) leads to / 1/ 2 2Q q = −  . The result is inconsistent with 
that obtained in part (a). Thus, we are unable to construct an equilibrium configuration 
with this geometry, where the only forces present are given by Eq. 21-1. 

 
8. For ease of presentation (of the computations below) we assume Q > 0 and q < 0 
(although the final result does not depend on this particular choice).  
 
(a) The x-component of the force experienced by q1 = Q is 
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which (upon requiring F1x = 0) leads to / | | 2 2Q q = , or / 2 2 2.83.Q q = − = −  
 
(b) The y-component of the net force on q2 = q is 
 



 
9. The force experienced by q3 is 
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(a) Therefore, the x-component of the resultant force on q3 is 
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(b) Similarly, the y-component of the net force on q3 is 
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10. (a) The individual force magnitudes (acting on Q) are, by Eq. 21-1, 
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which leads to |q1| = 9.0 |q2|. Since Q is located between q1 and q2, we conclude q1 and q2 
are like-sign. Consequently, q1/q2 = 9.0. 
 
(b) Now we have 
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which yields |q1| = 25 |q2|. Now, Q is not located between q1 and q2, one of them must 
push and the other must pull. Thus, they are unlike-sign, so q1/q2 = –25. 
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We note that each term exhibits the proper sign (positive for rightward, negative for 
leftward) for all possible signs of the charges. For example, the first term (the force 
exerted on q3 by q1) is negative if they are unlike charges, indicating that q3 is being 
pulled toward q1, and it is positive if they are like charges (so q3 would be repelled from 
q1). Setting the net force equal to zero L23= L12 and canceling k, q3 and L12 leads to 
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11. With rightwards positive, the net force on q3 is 
 



 
12. As a result of the first action, both sphere W and sphere A possess charge 12 qA , where 
qA is the initial charge of sphere A.  As a result of the second action, sphere W has charge 
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As a result of the final action, sphere W now has charge equal to 
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Setting this final expression equal to +18e as required by the problem leads (after a 
couple of algebra steps) to the answer: qA = +16e. 



 
13. (a) Eq. 21-1 gives 
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(b) On the right, a force diagram is shown as well as our choice of y 
axis (the dashed line). 
 
The y axis is meant to bisect the line between q2 and q3 in order to 
make use of the symmetry in the problem (equilateral triangle of 
side length d, equal-magnitude charges q1 = q2 = q3 = q). We see 
that the resultant force is along this symmetry axis, and we obtain 
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14. (a) According to the graph, when q3 is very close to q1 (at which point we can 
consider the force exerted by particle 1 on 3 to dominate) there is a (large) force in the 
positive x direction.  This is a repulsive force, then, so we conclude q1 has the same sign 
as q3.  Thus, q3 is a positive-valued charge. 
 
(b) Since the graph crosses zero and particle 3 is between the others, q1 must have the 
same sign as q2, which means it is also positive-valued.  We note that it crosses zero at r  
= 0.020 m (which is a distance d = 0.060 m from q2).  Using Coulomb’s law at that point, 
we have 
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or q2/q1 = 9.0. 



 
15. (a) There is no equilibrium position for q3 between the two fixed charges, because it is 
being pulled by one and pushed by the other (since q1 and q2 have different signs); in this 
region this means the two force arrows on q3 are in the same direction and cannot cancel.  
It should also be clear that off-axis (with the axis defined as that which passes through the 
two fixed charges) there are no equilibrium positions. On the semi-infinite region of the 
axis which is nearest q2 and furthest from q1 an equilibrium position for q3 cannot be 
found because |q1| < |q2| and the magnitude of force exerted by q2 is everywhere (in that 
region) stronger than that exerted by q1 on q3. Thus, we must look in the semi-infinite 
region of the axis which is nearest q1 and furthest from q2, where the net force on q3 has 
magnitude 
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with L = 10 cm and 0L  is assumed to be positive. We set this equal to zero, as required by 
the problem, and cancel k and q3. Thus, we obtain 
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which yields (after taking the square root) 
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for the distance between q3 and q1. That is, 3q  should be placed at 14 cmx = −  along the 
x-axis. 
 
(b) As stated above, y = 0.  



 
16. Since the forces involved are proportional to q, we see that the essential difference 
between the two situations is Fa ∝ qB + qC  (when those two charges are on the same side) 
versus Fb ∝ −qB + qC  (when they are on opposite sides).  Setting up ratios, we have 
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After noting that the ratio on the left hand side is very close to – 7, then, after a couple of 
algebra steps, we are led to 

7 1 8 1.333.
7 1 6

C

B

q
q

+
= = =

−
 



  

 
17. (a) The distance between q1 and q2 is 
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The magnitude of the force exerted by q1 on q2 is 
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(b) The vector F21   is directed towards q1 and makes an angle θ with the +x axis, where 
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(c) Let the third charge be located at (x3, y3), a distance r from q2. We note that q1, q2 and 
q3 must be collinear; otherwise, an equilibrium position for any one of them would be 
impossible to find. Furthermore, we cannot place q3 on the same side of q2 where we also 
find q1, since in that region both forces (exerted on q2 by q3 and q1) would be in the same 
direction (since q2 is attracted to both of them). Thus, in terms of the angle found in part 
(a), we have x3 = x2 – r cosθ and y3 = y2 – r sinθ (which means y3 > y2 since θ is negative). 
The magnitude of force exerted on q2 by q3 is 2

23 2 3| |F k q q r= , which must equal that of 
the force exerted on it by q1 (found in part (a)). Therefore, 
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Consequently, x3 = x2 – r cosθ = –2.0 cm – (6.45 cm) cos(–10°) = –8.4 cm, 
 
(d) and y3 =  y2 – r sinθ = 1.5 cm – (6.45 cm) sin(–10°) = 2.7 cm. 
 



18. (a) For the net force to be in the +x direction, the y components of the individual 
forces must cancel. The angle of the force exerted by the q1 = 40 µC charge on 

3 20q Cµ=  is 45°, and the angle of force exerted on q3 by Q is at –θ where 
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Therefore, cancellation of y components requires 
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from which we obtain |Q| = 83 µC. Charge Q is “pulling” on q3, so (since q3 > 0) we 
conclude Q = –83 µC. 
 
(b) Now, we require that the x components cancel, and we note that in this case, the angle 
of force on q3 exerted by Q is +θ (it is repulsive, and Q is positive-valued). Therefore, 
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from which we obtain Q = 55.2 µC 55 Cµ≈ . 
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The signs are chosen so that a negative force value would cause q to move leftward. We 
require Fq = 0 and solve for q3: 
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where x = L/3 is used. Note that we may easily verify that the force on 4.00q also 
vanishes: 
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19. (a) If the system of three charges is to be in equilibrium, the force on each charge 
must be zero. The third charge q3 must lie between the other two or else the forces acting 
on it due to the other charges would be in the same direction and q3 could not be in 
equilibrium. Suppose q3 is at a distance x from q, and L – x from 4.00q. The force acting 
on it is then given by 
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where the positive direction is rightward. We require F3 = 0 and solve for x. Canceling 
common factors yields 1/x2 = 4/(L – x)2 and taking the square root yields 1/x = 2/(L – x). 
The solution is x = L/3. With L = 9.00 cm, we have x = 3.00 cm. 
 
(b) Similarly, the y coordinate of q3 is y = 0.  
  
(c) The force on q is 



 
20. (a) We note that cos(30º) = 12 3 , so that the dashed line distance in the figure is 

2 / 3r d= .  We net force on q1 due to the two charges q3 and q4 (with |q3| = |q4| = 1.60 × 
10−19 C) on the y axis has magnitude 
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This must be set equal to the magnitude of the force exerted on q1 by q2 = 8.00 × 10−19 C 
= 5.00 |q3| in order that its net force be zero: 
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Given d = 2.00 cm, this then leads to D = 1.92 cm. 
 
(b) As the angle decreases, its cosine increases, resulting in a larger contribution from the 
charges on the y axis.  To offset this, the force exerted by q2 must be made stronger, so 
that it must be brought closer to q1 (keep in mind that Coulomb’s law is inversely 
proportional to distance-squared).  Thus, D must be decreased. 



We note that, due to the symmetry in the problem, there is no y component to the net 
force on the third particle.  Thus, F represents the magnitude of force exerted by q1 or q2 
on q3. Let e = +1.60 × 10−19 C, then q1 = q2 = +2e and q3 = 4.0e and we have 
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(a) To find where the force is at an extremum, we can set the derivative of this expression 
equal to zero and solve for x, but it is good in any case to graph the function for a fuller 
understanding of its behavior – and as a quick way to see whether an extremum point is a 
maximum or a miminum.  In this way, we find that the value coming from the derivative 
procedure is a maximum (and will be presented in part (b)) and that the minimum is 
found at the lower limit of the interval.  Thus, the net force is found to be zero at x = 0, 
which is the smallest value of the net force in the interval 5.0 m ≥ x ≥  0. 
 
(b) The maximum is found to be at x = d/ 2  or roughly 12 cm. 
 
(c) The value of the net force at x = 0 is Fnet  = 0. 
 
(d) The value of the net force at x = d/ 2  is Fnet  = 4.9 × 10−26 N. 

 
21. If θ is the angle between the force and the x-axis, then  
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Of course, this could also be figured as illustrated in part (a), looking at the maximum 
force ratio by itself and solving, or looking at the minimum force ratio (¾) at θ = 180º 
and solving for ξ. 

 
22. We note that the problem is examining the force on charge A, so that the respective 
distances (involved in the Coulomb force expressions) between B and A, and between C 
and A, do not change as particle B is moved along its circular path.  We focus on the 
endpoints (θ = 0º and 180º) of each graph, since they represent cases where the forces (on 
A) due to B and C are either parallel or antiparallel (yielding maximum or minimum force 
magnitudes, respectively).  We note, too, that since Coulomb’s law is inversely 
proportional to r² then the (if, say, the charges were all the same) force due to C would be 
one-fourth as big as that due to B (since C is twice as far away from A).  The charges, it 
turns out, are not the same, so there is also a factor of the charge ratio ξ (the charge of C 
divided by the charge of B), as well as the aforementioned ¼ factor.   That is, the force 
exerted by C is, by Coulomb’s law equal to ±¼ξ multiplied by the force exerted by B. 
 
(a) The maximum force is 2F0 and occurs when θ = 180º  (B is to the left of A, while C is 
the right of A).  We choose the minus sign and write  
 

2 F0 = (1 − ¼ξ) F0    ⇒        ξ = – 4 . 
 
One way to think of the minus sign choice is cos(180º) = –1.  This is certainly consistent 
with the minimum force ratio (zero) at θ = 0º since that would also imply 
 

0 = 1 + ¼ξ    ⇒      ξ = – 4 . 
 
(b) The ratio of maximum to minimum forces is 1.25/0.75 = 5/3 in this case, which 
implies 
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Thus, with ρ = b/r, we have 

q dq b r dr b r r
r

r
= = = −zz 4 2

1

2

2
2

1
2π π c h.  

 
With b = 3.0 µC/m2, r2 = 0.06 m and r1 = 0.04 m, we obtain q = 0.038 µC = 3.8 × 10−8 C. 



 
24. The magnitude of the force is 
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25. (a) The magnitude of the force between the (positive) ions is given by 
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where q is the charge on either of them and r is the distance between them. We solve for 
the charge: 
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(b) Let n be the number of electrons missing from each ion. Then, ne = q, or 
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×
= = =

×
 



  

 
26. Keeping in mind that an Ampere is a Coulomb per second (1 A = 1 C/s), and that a 
minute is 60 seconds, the charge (in absolute value) that passes through the chest is 
 

| q |  = ( 0.300 C/s ) ( 120 s ) = 36.0 C . 
 
This charge consists of n electrons (each of which has an absolute value of charge equal 
to e).  Thus, 

n = 
| q |

e   =  
36.0 C

1.60 x 10-19 C  =  2.25 × 1020 . 



      

 
27. Eq. 21-11 (in absolute value) gives 
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28. (a) Eq. 21-1 gives 
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(b) If n is the number of excess electrons (of charge –e each) on each drop then 
 

n q
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− ×

×
=

−

−

100 10
160 10

625
16

19

.
.

.C
C

 



 
29. The unit Ampere is discussed in §21-4. The proton flux is given as 1500 protons per 
square meter per second, where each proton provides a charge of q = +e. The current 
through the spherical area 4π R2 = 4π (6.37 × 106 m)2 = 5.1 × 1014 m2 would be 
 

i = ×
⋅
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30. Since the graph crosses zero, q1 must be positive-valued: q1 = +8.00e.  We note that it 
crosses zero at r  = 0.40 m.  Now the asymptotic value of the force yields the magnitude 
and sign of q2: 
 

    
q1 q2

4πεo r2  = F    ⇒     q2 =  ⎝
⎛

⎠
⎞1.5 x 10-25

 k q1
 r2  =  2.086 × 10−18 C  =  13e .  



 
31. The volume of 250 cm3 corresponds to a mass of 250 g since the density of water is 
1.0 g/cm3. This mass corresponds to 250/18 = 14 moles since the molar mass of water is 
18. There are ten protons (each with charge q = +e) in each molecule of H2O, so 
 

( ) ( ) ( )23 19 714 14 6.02 10 10 1.60 10 C 1.3 10 C.AQ N q −= = × × = ×  



 
with the values of the charges (stated in the problem) plugged in.  Finding the value of x 
which minimizes this expression leads to x = ¼ L.  Thus, x = 2.00 cm. 
 
(b) Substituting x = ¼ L back into the expression for the net force magnitude and using 
the standard value for e leads to Fnet = 9.21 × 10−24 N. 

 
32. (a) Let x be the distance between particle 1 and particle 3.  Thus, the distance between 
particle 3 and particle 2 is L – x. Both particles exert leftward forces on q3 (so long as it is 
on the line between them), so the magnitude of the net force on q3 is 
 

Fnet =  |F  1 3 
→   

 |  +  |F  2 3 
→   

 |  =  
|q1 q3|

4πεo x2  + 
|q2 q3|

4πεo (L− x)2   =  
e2

 πεo 
 
⎝⎜
⎛

⎠⎟
⎞1

 x2 + 
27

(L −  x)2  



 
33. (a) We note that tan(30°) = 1/ 3 .  In the initial (highly symmetrical) configuration, 
the net force on the central bead is in the –y direction and has magnitude 3F where F is 
the Coulomb’s law force of one bead on another at distance d = 10 cm.  This is due to the 
fact that the forces exerted on the central bead (in the initial situation) by the beads on the 
x axis cancel each other; also, the force exerted “downward” by bead 4 on the central 
bead is four times larger than the “upward” force exerted by bead 2.  This net force along 
the y axis does not change as bead 1 is now moved, though there is now a nonzero x-
component Fx .  The components are now related by 
 

                                 tan(30°)  =  
Fx
 Fy

   ⇒     
1
3
    =   

Fx
3F  

 
which implies Fx = 3 F.  Now, bead 3 exerts a “leftward” force of magnitude F on the 
central bead, while bead 1 exerts a “rightward” force of magnitude F′.  Therefore, 
 

F′ − F = 3 F.      ⇒      F′  =  ( 3  + 1) F . 
 
The fact that Coulomb’s law depends inversely on distance-squared then implies 
 

r2 =   
d2

3 + 1
   ⇒     r =   

d
3 + 1

  = 10 cm 10 cm
1.653 1

= =
+

6.05 cm 

 
where r is the distance between bead 1 and the central bead.  This corresponds to 

6.05 cm .x = −  
 
(b) To regain the condition of high symmetry (in particular, the cancellation of x-
components) bead 3 must be moved closer to the central bead so that it, too, is the 
distance r (as calculated in part(a)) away from it. 



From symmetry, we see that there is no net force in the vertical direction on q2 = –e 
sitting at a distance R to the left of the coordinate origin.  We note that the net x force 
caused by q3 and q4 on the y axis will have a magnitude equal to 
 

 
3

2 2 2
0 0 0

2 cos 2 cos2 cos
4 4 ( / cos ) 4

qe qe qe
r R R

θ θθ
πε πε θ πε

= =  . 

 
Consequently, to achieve a zero net force along the x axis, the above expression must 
equal the magnitude of the repulsive force exerted on q2 by q1 = –e. Thus, 
 

3 2

2 2 3
0 0

2 cos
4 4 2cos
qe e eq

R R
θ

πε πε θ
= ⇒ = . 

 
Below we plot q/e as a function of the angle (in degrees):  
 

 
 
The graph suggests that q/e < 5 for θ < 60º, roughly.  We can be more precise by solving 
the above equation.  The requirement  that q ≤ 5e  leads to  
 

3 1/3

15 cos
2cos (10)

e e θ
θ

≤ ⇒ ≤  

 
which yields θ  ≤ 62.34º.  The problem asks for “physically possible values,” and it is 
reasonable to suppose that only positive-integer-multiple values of e are allowed for q.  If 
we let q = ne, for n = 1 … 5, then θN will be found by taking the inverse cosine of the 
cube root of (1/2n).   

  

 
34. Let d be the vertical distance from the coordinate origin to q3 = −q and q4 = −q on the 
+y axis, where the symbol q is assumed to be a positive value.  Similarly, d is the 
(positive) distance from the origin q4 = − on the −y axis.  If we take each angle θ in the 
figure to be positive, then we have tanθ = d/R and cosθ = R/r (where r is the dashed line 
distance shown in the figure).  The problem asks us to consider θ to be a variable in the 
sense that, once the charges on the x axis are fixed in place (which determines R), d can 
then be arranged to some multiple of R, since d = R tanθ.   The aim of this exploration is 
to show that if q is bounded then θ (and thus d) is also bounded. 
  



 
(a) The smallest value of angle is θ1 = 37.5º (or 0.654 rad). 
 
(b) The second smallest value of angle is θ2 = 50.95º (or 0.889 rad). 
 
(c) The third smallest value of angle is θ3 = 56.6º (or 0.988 rad). 
 



  

35. (a) Every cesium ion at a corner of the cube exerts a force of the same magnitude on 
the chlorine ion at the cube center. Each force is a force of attraction and is directed 
toward the cesium ion that exerts it, along the body diagonal of the cube. We can pair 
every cesium ion with another, diametrically positioned at the opposite corner of the cube. 
Since the two ions in such a pair exert forces that have the same magnitude but are 
oppositely directed, the two forces sum to zero and, since every cesium ion can be paired 
in this way, the total force on the chlorine ion is zero. 
 
(b) Rather than remove a cesium ion, we superpose charge –e at the position of one 
cesium ion. This neutralizes the ion, and as far as the electrical force on the chlorine ion 
is concerned, it is equivalent to removing the ion. The forces of the eight cesium ions at 
the cube corners sum to zero, so the only force on the chlorine ion is the force of the 
added charge. 
 
The length of a body diagonal of a cube is 3a , where a is the length of a cube edge. 
Thus, the distance from the center of the cube to a corner is d a= 3 2d i . The force has 

magnitude 

F k e
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Since both the added charge and the chlorine ion are negative, the force is one of 
repulsion. The chlorine ion is pushed away from the site of the missing cesium ion. 



 
36. (a) Since the proton is positively charged, the emitted particle must be a positron       
(as opposed to the negatively charged electron) in accordance with the law of charge 
conservation. 
 
(b) In this case, the initial state had zero charge (the neutron is neutral), so the sum of 
charges in the final state must be zero.  Since there is a proton in the final state, there 
should also be an electron (as opposed to a positron) so that Σq = 0. 



 
(c) 15N has 7 protons, 7 electrons, and 15 – 7 = 8 neutrons; 1H has 1 proton, 1 electron, 
and 0 neutrons; and 4He has 2 protons, 2 electrons, and 4 – 2 = 2 neutrons; so X has 7 + 
1 – 2 = 6 protons, 6 electrons, and 8 + 0 – 2 = 6 neutrons. It must be carbon with a molar 
mass of 6 + 6 = 12: 12C. 

 
37. None of the reactions given include a beta decay, so the number of protons, the 
number of neutrons, and the number of electrons are each conserved. Atomic numbers 
(numbers of protons and numbers of electrons) and molar masses (combined numbers of 
protons and neutrons) can be found in Appendix F of the text. 
 
(a) 1H has 1 proton, 1 electron, and 0 neutrons and 9Be has 4 protons, 4 electrons, and 9 – 
4 = 5 neutrons, so X has 1 + 4 = 5 protons, 1 + 4 = 5 electrons, and 0 + 5 – 1 = 4 neutrons. 
One of the neutrons is freed in the reaction. X must be boron with a molar mass of 5 + 4 
= 9 g/mol: 9B. 
 
(b) 12C has 6 protons, 6 electrons, and 12 – 6 = 6 neutrons and 1H has 1 proton, 1 electron, 
and 0 neutrons, so X has 6 + 1 = 7 protons, 6 + 1 = 7 electrons, and 6 + 0 = 6 neutrons. It 
must be nitrogen with a molar mass of 7 + 6 = 13 g/mol: 13N. 



 
38. Let 12F  denotes the force on q1 exerted by q2 and 12F be its magnitude. 
 
(a) We consider the net force on q1. 12F  points in the +x direction since q1 is attracted to 

q2. 13F and 14F  both point in the –x direction since q1 is repelled by q3 and q4. Thus, using 
d = 0.0200 m, the net force is 
 

( )( )
( )

2
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2 | | (2 )( ) (2 )(4 ) 11
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−

−
= − − = − − =
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= = ×
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or 25

1
ˆ(3.52 10  N)i.F −= ×  

 
(b) We now consider the net force on q2.  We note that 21 12F F= −  points in the –x 

direction, and 23F and 24F  both point in the +x direction. The net force is 
 

 23 24 21 2 2 2
0 0 0

4 | | | | 2 | | 0
4 (2 ) 4 4

e e e e e eF F F
d d dπε πε πε

− − −
+ − = + − =  



 
39. If θ is the angle between the force and the x axis, then  
 

cosθ  =  
d2

d1
2 + d2

2  . 

 
Thus, using Coulomb’s law for F, we have 
 

  Fx =  F cosθ   =  
q1 q2

4πεo (d1
2 + d2

2) 
d2

d1
2 + d2

2  = 1.31 × 10−22 N . 



 
With q = 4.00 × 10−6 C, m = 0.000800 kg, v = 50.0 m/s, this leads to  
 

2 4 2
50

9 2 2 6

4 (0.200 m)(8.00 10 kg)(50.0 m/s) 1.11 10 C
(8.99 10 N m C )(4.00 10 C)

rmvQ
q

πε −
−

−

×
= − = − = − ×

× ⋅ ×
 . 

 
40. For the Coulomb force to be sufficient for circular motion at that distance (where r = 
0.200 m and the acceleration needed for circular motion is a = v2/r) the following 
equality is required: 

 
2

2
04

Qq mv
r rπε

= − . 



 
41. The charge dq within a thin section of the rod (of thickness dx) is ρ A dx where 

4 24.00 10 mA −= ×  and ρ is the charge per unit volume. The number of (excess) electrons 
in the rod (of length L = 2.00 m) is n = q/(–e) where e is given in Eq. 21-12. 
 
(a) In the case where ρ = – 4.00 × 10–6 C/m3, we have 
 

10

0

| | 2.00 10
Lq A ALn dx

e e e
ρ ρ

= = = = ×
− − ∫ . 

 
(b) With ρ = bx2 (b = –2.00 × 10–6 C/m5) we obtain 
 

3
2 10

0

| | 1.33 10 .
3

Lb A b A Ln x dx
e e

= = = ×
− ∫  



 
42. Let q1 be the charge of one part and q2 that of the other part; thus, q1 + q2 = Q = 6.0 µC. 
The repulsive force between them is given by Coulomb’s law: 
 

1 2 1 1
2 2

0 0

( )
4 4

q q q Q qF
r rπε πε

−
= =  . 

 
If we maximize this expression by taking the derivative with respect to q1 and setting 
equal to zero, we find q1 = Q/2 , which might have been anticipated (based on symmetry 
arguments).  This implies q2 =  Q/2 also. With r = 0.0030 m and Q = 6.0 × 10−6 C, we find 
 

( )( )
( )

29 2 2 62
3
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43. There are two protons (each with charge q = +e) in each molecule, so 
 

Q N qA= = × × = × =−6 02 10 2 160 10 19 1023 19 5. . .c hb gc hC C 0.19 MC. 



/ 2x L−  from the bearing. This torque is also negative. The charge Q on the right exerts 
an upward force of magnitude (1/4πε0) (2qQ/h2), at a distance L/2 from the bearing. This 
torque is positive. The equation for rotational equilibrium is 
 

2 2
0 0

1 1 2 0.
4 2 2 4 2

qQ L L qQ LW x
h hε ε

− ⎛ ⎞− − + =⎜ ⎟ π⎝ ⎠π
 

The solution for x is 

x L qQ
h W

= +
F
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I
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1 1
4 0

2πε
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(b) If FN is the magnitude of the upward force exerted by the bearing, then Newton’s 
second law (with zero acceleration) gives 
 

2 2
0 0

1 1 2 0.
4 4 N

qQ qQW F
h hπε πε

− − − =  

 
We solve for h so that FN = 0. The result is 
 

h qQ
W

=
1

4
3

0πε
.  

  

 
44. (a) Since the rod is in equilibrium, the net force acting on it is zero, and the net torque 
about any point is also zero. We write an expression for the net torque about the bearing, 
equate it to zero, and solve for x. The charge Q on the left exerts an upward force of 
magnitude (1/4πε0) (qQ/h2), at a distance L/2 from the bearing. We take the torque to be 
negative. The attached weight exerts a downward force of magnitude W, at a distance 



 
45. Coulomb’s law gives 
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(c) We also obtain 
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46. (a) Since qA = –2.00 nC and qC = +8.00 nC Eq. 21-4 leads to 
  

9 2 2 9 9
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(b) After making contact with each other, both A and B have a charge of 
 

( )2.00 4.00
nC 3.00 nC.

2 2
A Bq q ⎛ ⎞− + −+

= = −⎜ ⎟
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When B is grounded its charge is zero. After making contact with C, which has a charge 
of +8.00 nC, B acquires a charge of [0 + (–8.00 nC)]/2 = –4.00 nC, which charge C has as 
well. Finally, we have QA = –3.00 nC and QB = QC = –4.00 nC. Therefore, 
 



 
47. (a) Using Coulomb’s law, we obtain 
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(b) If r = 1000 m, then 
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48. In experiment 1, sphere C first touches sphere A, and they divided  up their total 
charge (Q/2 plus Q) equally between them. Thus, sphere A and sphere C each acquired 
charge 3Q/4. Then, sphere C touches B and those spheres split up their total charge (3Q/4 
plus –Q/4) so that B ends up with charge equal to Q/4. The force of repulsion between A 
and B is therefore 

1 2

(3 / 4)( / 4)Q QF k
d

=  

 
at the end of experiment 1. Now, in experiment 2, sphere C first touches B which leaves 
each of them with charge Q/8. When C next touches A, sphere A is left with charge 9Q/16. 
Consequently, the force of repulsion between A and B is 
 

2 2

(9 /16)( / 8)Q QF k
d

=  

 
at the end of experiment 2. The ratio is 
 

2

1

(9 /16)(1/ 8) 0.375.
(3 / 4)(1/ 4)

F
F

= =  



q q
e

p e−
= 0 0000010.  

 
then the actual difference would be q qp e− = × −16 10 25. .C  Amplified by a factor of 29 × 
3 × 1022 as indicated in the problem, this amounts to a deviation from perfect neutrality of 
 

∆q = × × × =−29 3 10 16 10 01422 25c hc h. .C C  
 
in a copper penny. Two such pennies, at r = 1.0 m, would therefore experience a very 
large force. Eq. 21-1 gives 

F k
q

r
= = ×

∆b g2
2
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49. If the relative difference between the proton and electron charges (in absolute value) 
were 



 
50. Letting kq2/r2 = mg, we get 
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algebraically solve for the half-height points (this involves the use of the quadratic 
formula). The results are 
 

1 2
1 1 1 11 0.15   and   1 0.85.
2 22 2
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Thus, the smaller value of α is 1 0.15α = , 
 
(c) and the larger value of α is 2 0.85α = . 

51. The two charges are q = αQ (where α is a pure number presumably less than 1 and 
greater than zero) and Q – q = (1 – α)Q. Thus, Eq. 21-4 gives 
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The graph below, of F versus α, has been scaled so that the maximum is 1. In actuality, 
the maximum value of the force is Fmax = Q2/16πε0 d 2. 
 

 
 

(a) It is clear that α =
1
2

 = 0.5 gives the maximum value of F. 

 
(b) Seeking the half-height points on the graph is difficult without grid lines or some of 
the special tracing features found in a variety of modern calculators. It is not difficult to 



 
52. (a) Eq. 21-11 (in absolute value) gives 
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(b) Since you have the excess electrons (and electrons are lighter and more mobile than 
protons) then the electrons “leap” from you to the faucet instead of protons moving from 
the faucet to you (in the process of neutralizing your body). 
 
(c) Unlike charges attract, and the faucet (which is grounded and is able to gain or lose 
any number of electrons due to its contact with Earth’s large reservoir of mobile charges) 
becomes positively charged, especially in the region closest to your (negatively charged) 
hand, just before the spark. 
 
(d) The cat is positively charged (before the spark), and by the reasoning given in part (b) 
the flow of charge (electrons) is from the faucet to the cat. 
 
(e) If we think of the nose as a conducting sphere, then the side of the sphere closest to 
the fur is of one sign (of charge) and the side furthest from the fur is of the opposite sign 
(which, additionally, is oppositely charged from your bare hand which had stroked the 
cat’s fur). The charges in your hand and those of the furthest side of the “sphere” 
therefore attract each other, and when close enough, manage to neutralize (due to the 
“jump” made by the electrons) in a painful spark. 



 
According to Appendix C of the text, M = 5.98 × 1024 kg, and m = 7.36 × 1022 kg, so 
(using 4πε0 = 1/k) the charge is 
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(b) The distance r cancels because both the electric and gravitational forces are 
proportional to 1/r2. 
 
(c) The charge on a hydrogen ion is e = 1.60 × 10–19 C, so there must be 
 

13
32

19

5.7 10 C 3.6 10 ions.
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Each ion has a mass of im = 1.67 × 10–27 kg, so the total mass needed is 
 

( )( )32 27 53.6 10 1.67 10 kg 6.0 10 kg.im nm −= = × × = ×  

  

 
53. (a) The magnitudes of the gravitational and electrical forces must be the same: 
 

1
4 0

2

2 2πε
q
r

G mM
r

=  

 
where q is the charge on either body, r is the center-to-center separation of Earth and 
Moon, G is the universal gravitational constant, M is the mass of Earth, and m is the mass 
of the Moon. We solve for q: 
 

q GmM= 4 0πε .  



by Eq. 21-4. When these two expressions are used in the equation mg tanθ = Fe, we 
obtain 

1/32 2
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(b) We solve x3 = 2kq2L/mg for the charge (using Eq. 21-5): 
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Thus, the magnitude is 8| | 2.4 10 C.q −= ×  

 
54. (a) A force diagram for one of the balls is shown on the right. 
The force of gravity mg  acts downward, the electrical force Fe  of 
the other ball acts to the left, and the tension in the thread acts along 
the thread, at the angle θ to the vertical. The ball is in equilibrium, 
so its acceleration is zero. The y component of Newton’s second 
law yields T cosθ – mg = 0 and the x component yields T sinθ – Fe 
= 0. We solve the first equation for T and obtain T = mg/cosθ. We 
substitute the result into the second to obtain mg tanθ – Fe = 0. 
 
Examination of the geometry of Figure 21-42 leads to 
 

tan .θ =
−

x

L x
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If L is much larger than x (which is the case if θ is very small), we may neglect x/2 in the 
denominator and write tanθ ≈ x/2L. This is equivalent to approximating tanθ by sinθ. The 
magnitude of the electrical force of one ball on the other is 
 

F q
xe =

2

0
24πε

 

 



 
55. (a) If one of them is discharged, there would no electrostatic repulsion between the 
two balls and they would both come to the position θ = 0, making contact with each other.  
 
(b) A redistribution of the remaining charge would then occur, with each of the balls 
getting q/2. Then they would again be separated due to electrostatic repulsion, which 
results in the new equilibrium separation 
 

( ) ( )
1/32 1/3 1/3

0

2 1 1 5.0 cm 3.1 cm.
2 4 4
q L

x x
mgε

⎡ ⎤ ⎛ ⎞ ⎛ ⎞′ = = = =⎢ ⎥ ⎜ ⎟ ⎜ ⎟π ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
 



 
56. Regarding the forces on q3 exerted by q1 and q2, one must “push” and the other must 
“pull” in order that the net force is zero; hence, q1 and q2 have opposite signs. For 
individual forces to cancel, their magnitudes must be equal: 
 

( ) ( )
1 3 2 3

2 2
12 23 23

| || | | || |q q q qk k
L L L

=
+

. 

 

With 23 122.00 ,L L=  the above expression simplifies to | | | | .q q1 2

9 4
=  Therefore,  

1 29 / 4q q= − , or 1 2/ 2.25.q q = −  



  

 
57. The mass of an electron is m = 9.11 × 10–31 kg, so the number of electrons in a 
collection with total mass M = 75.0 kg is 
 

31
31

75.0kg 8.23 10 electrons.
9.11 10 kg

Mn
m −= = = ×

×
 

 
The total charge of the collection is 
 

( )( )31 19 138.23 10 1.60 10 C 1.32 10 C.q ne −= − = − × × = − ×  



 
58. We note that, as result of the fact that the Coulomb force is inversely proportional to 
r2, a particle of charge Q which is distance d from the origin will exert a force on some 
charge qo at the origin of equal strength as a particle of charge 4Q at distance 2d would 
exert on qo.  Therefore, q6 = +8e on the –y axis could be replaced with a +2e closer to the 
origin (at half the distance); this would add to the q5 = +2e already there and produce +4e 
below the origin which exactly cancels the force due to q2 = +4e above the origin.   
 
Similarly, q4 = +4e to the far right could be replaced by a +e at half the distance, which 
would add to q3 = +e already there to produce a +2e at distance d to the right of the 
central charge q7. The horizontal force due to this +2e is cancelled exactly by that of q1 = 
+2e on the –x axis, so that the net force on q7 is zero. 



 
59. (a) Charge Q1 = +80 × 10–9 C is on the y axis at y = 0.003 m, and charge 

9
2 80 10 CQ −= + ×  is on the y axis at y = –0.003 m. The force on particle 3 (which has a 

charge of q = +18 × 10–9 C) is due to the vector sum of the repulsive forces from Q1 and 
Q2. In symbols, 3 1 3 2 3 ,F F F+ = where 
 

3 1 3 2
31 3 22 2

3 1 3 2

| || | , | | .q q q qF k F k
r r

= =  

 
Using the Pythagorean theorem, we have r31 = r32 = 0.005 m. In magnitude-angle 
notation (particularly convenient if one uses a vector-capable calculator in polar mode), 
the indicated vector addition becomes 
 

( ) ( ) ( )3 0.518 37 0.518 37 0.829 0 .F = ∠ − ° + ∠ ° = ∠ °  
 
Therefore, the net force is 3

ˆ(0.829 N)iF = . 
 
(b) Switching the sign of Q2 amounts to reversing the direction of its force on q. 
Consequently, we have 
 

( ) ( ) ( )3 0.518 37 0.518 143 0.621 90 .F = ∠ − ° + ∠− ° = ∠− °  
 
Therefore, the net force is 3

ˆ(0.621 N)jF = − . 



  

4 60 10 180 2 30 10 90 102 10 145 616 10 15224 24 24 24. . . .× ∠ ° + × ∠ − ° + × ∠ − ° = × ∠ − °− − − −c h c h c h c h
 
(a) Therefore, the net force has magnitude 6.16 × 10–24 N. 
 
(b) The direction of the net force is at an angle of –152° (or 208° measured 
counterclockwise from the +x axis). 

 
60. The individual force magnitudes are found using Eq. 21-1, with SI units (so 

0.02 ma = ) and k as in Eq. 21-5. We use magnitude-angle notation (convenient if one 
uses a vector-capable calculator in polar mode), listing the forces due to +4.00q, +2.00q, 
and  –2.00q charges: 
 



 
61. The magnitude of the net force on the q = 42 × 10–6 C charge is 
 

k q q k q q1
2

2
20 28 0 44.

| |
.

+  

 
where q1 = 30 × 10–9 C and |q2| = 40 × 10–9 C. This yields 0.22 N. Using Newton’s 
second law, we obtain 
 

m F
a

= =
×

= × −0 22
10

2 2 103
6. .N

100 m s
kg.2  



 
62. For the net force on q1 = +Q to vanish, the x force component due to q2 = q must 
exactly cancel the force of attraction caused by q4 =  –2Q.  Consequently, 
 

 
2

2 2 2
0 0 0

| 2 | cos 45
4 4 ( 2 ) 4 2

Qq Q Q Q
a a aπε πε πε

= ° =  

 
or q = Q/ 2 . This implies that / 1/ 2 0.707.q Q = =  



where q3 is now understood to be in µC. Thus, we obtain q3 = –45 µC. 

 
63. We are looking for a charge q which, when placed at the origin, experiences Fnet = 0,  
where 

F F F Fnet = + +1 2 3 .  
 
The magnitude of these individual forces are given by Coulomb’s law, Eq. 21-1, and 
without loss of generality we assume q > 0. The charges q1 (+6 µC), q2 (–4 µC), and q3 
(unknown), are located on the +x axis, so that we know F1  points towards –x, F2  points 
towards +x, and F3  points towards –x if q3 > 0 and points towards +x if q3 < 0. Therefore, 
with r1 = 8 m, r2 = 16 m and r3 = 24 m, we have 
 

0 1

1
2

2

2
2

3

3
2= − + −k q q

r
k q q

r
k q q

r
| | .  

Simplifying, this becomes 

0 6
8

4
16 242 2

3
2= − + −

q  

 



Taking the (positive) square root and solving, we obtain x = 0.683 m. If one takes the 
negative root and ‘solves’, one finds the location where the net force would be zero if q1 
and q2 were of like sign (which is not the case here). 
 
(d) From the above, we see that y = 0. 

 
64. Charge q1 = –80 × 10–6 C is at the origin, and charge q2 = +40 × 10–6 C is at x = 0.20 
m. The force on q3 = +20 × 10–6 C is due to the attractive and repulsive forces from q1 
and q2, respectively. In symbols, F F F3 3 1 3 2 net = + , where 

 
3 1 3 2

31 322 2
31 3 2

| | , | | .q q q qF k F k
r r

= =  

 
(a) In this case r31 = 0.40 m and r32 = 0.20 m, with 31F  directed towards –x and 32F  
directed in the +x direction. Using the value of k in Eq. 21-5, we obtain  
 

3 1 3 2 1 2
3 net 31 32 32 2 2 2

31 3 2 31 3 2

6 6
9 2 2 6

2 2

| | | |ˆ ˆ ˆ ˆi | | i i i

80 10 C 40 10 C ˆ(8.99 10 N m C )(20 10 C) i
(0.40m) (0.20m)

ˆ(89.9 N)i .

q q q q q qF F F k k kq
r r r r

− −
−

⎛ ⎞ ⎛ ⎞
= − + = − + = − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎛ ⎞− × + ×

= × ⋅ × +⎜ ⎟
⎝ ⎠

=

 

 
(b) In this case r31 = 0.80 m and r32 = 0.60 m, with 31F  directed towards –x and F3 2  
towards +x. Now we obtain  
 

3 1 3 2 1 2
3 net 31 32 32 2 2 2

31 3 2 31 3 2

6 6
9 2 2 6

2 2

| | | |ˆ ˆ ˆ ˆi | | i i i

80 10 C 40 10 C ˆ(8.99 10 N m C )(20 10 C) i
(0.80m) (0.60m)

ˆ(2.50 N)i .

q q q q q qF F F k k kq
r r r r

− −
−

⎛ ⎞ ⎛ ⎞
= − + = − + = − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎛ ⎞− × + ×

= × ⋅ × +⎜ ⎟
⎝ ⎠

= −

 

 
(c) Between the locations treated in parts (a) and (b), there must be one where F3 0net = . 

Writing r31 = x and r32 = x – 0.20 m, we equate F3 1  and F3 2 , and after canceling 
common factors, arrive at 

( )
1 2

22

| | .
0.20 m

q q
x x

=
−

 

This can be further simplified to 
2

2
2

1

( 0.20 m) 1 .
| | 2
qx

x q
−

= =  

 



 
65. We are concerned with the charges in the nucleus (not the “orbiting” electrons, if 
there are any). The nucleus of Helium has 2 protons and that of Thorium has 90. 
 
(a) Eq. 21-1 gives 
 

( )9 2 2 19 192
2

2 15 2

8.99 10 N m C (2(1.60 10 C))(90(1.60 10 C))
5.1 10 N.

(9.0 10 m)
qF k
r

− −

−

× ⋅ × ×
= = = ×

×
 

 
(b) Estimating the helium nucleus mass as that of 4 protons (actually, that of 2 protons 
and 2 neutrons, but the neutrons have approximately the same mass), Newton’s second 
law leads to 

a F
m

= =
×
×

= ×
−

51 10
4 167 10

7 7 10
2

27
28.

.
. .N

kg
m s2

c h  



 
66. Let the two charges be q1 and q2. Then q1 + q2 = Q = 5.0 × 10–5 C. We use Eq. 21-1: 
 

( )
( )

9 2 2
1 2

2

8.99 10 N m C
1.0N .

2.0m

q q× ⋅
=  

 
We substitute q2 = Q – q1 and solve for q1 using the quadratic formula. The two roots 
obtained are the values of q1 and q2, since it does not matter which is which. We get 

51.2 10  C−×  and 3.8 × 10–5 C. Thus, the charge on the sphere with the smaller charge is 
51.2 10  C−× . 



 
67. When sphere C touches sphere A, they divide up their total charge (Q/2 plus Q) 
equally between them. Thus, sphere A now has charge 3Q/4, and the magnitude of the 
force of attraction between A and B becomes 
 

19
2

(3 / 4)( / 4) 4.68 10 N.Q QF k
d

−= = ×  



  

 
68. With F = meg, Eq. 21-1 leads to 
 

( ) ( )
( ) ( )

29 2 2 192
2

231

8.99 10 N m C 1.60 10 C

9.11 10 kg 9.8m se

key
m g

−

−

× ⋅ ×
= =

×
 

 
which leads to y =  ± 5.1 m. We choose 5.1 my = − since the second electron must be 
below the first one, so that the repulsive force (acting on the first) is in the direction 
opposite to the pull of Earth’s gravity. 
 



69. (a) If a (negative) charged particle is placed a distance x to the right of the +2q 
particle, then its attraction to the +2q particle will be exactly balanced by its repulsion 
from the –5q particle is we require 

 2 2

5 2
( )L x x

=
+

 

 
which is obtained by equating the Coulomb force magnitudes and then canceling 
common factors.  Cross-multiplying and taking the square root, we obtain 
 

 2
5

x
L x

=
+

 

 
which can be rearranged to produce 

 1.72 
2 / 5 1

Lx L= ≈
−

 

 
(b) The y coordinate of particle 3 is y = 0. 



 
70. The net charge carried by John whose mass is m is roughly 
 

( )

( )
23 19

5

0.0001

(90kg)(6.02 10 molecules mol)(18 electron proton pairs molecule) (1.6 10 C)0.0001
0.018 kg mol

8.7 10 C,

AmN Zeq
M

−

=

× ×
=

= ×
 
and the net charge carried by Mary is half of that. So the electrostatic force between them 
is estimated to be 
 

( ) ( )
( )

5 2
9 2 2 18

22

2 (8.7 10 C)8.99 10 N m C 4 10 N.
2 30m

q q
F k

d
×

≈ = × ⋅ ≈ ×  

 
Thus, the order of magnitude of the electrostatic force is 1810  N . 
 
 



Chapter 22 
 



 

 

 

 

 

1. (a) We note that the electric field points leftward at both points. Using
f f
F q E= 0 , and 

orienting our x axis rightward (so î  points right in the figure), we find 

 

( )19 18N ˆ ˆ1.6 10 C 40 i ( 6.4 10 N) i
C

F − −⎛ ⎞= + × − = − ×⎜ ⎟
⎝ ⎠

f
 

 

which means the magnitude of the force on the proton is 6.4 × 10
–18

 N and its direction 
ˆ( i)−  is leftward. 

 

(b) As the discussion in §22-2 makes clear, the field strength is proportional to the 

“crowdedness” of the field lines. It is seen that the lines are twice as crowded at A than at 

B, so we conclude that EA = 2EB. Thus, EB = 20 N/C. 
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2. We note that the symbol q2 is used in the problem statement to mean the absolute value 

of the negative charge which resides on the larger shell. The following sketch is for 

1 2q q= . 

 
 

The following two sketches are for the cases q1 > q2 (left figure) and q1 < q2 (right figure). 

 

 
 



3. Since the magnitude of the electric field produced by a point charge q is given by 
2

0| | / 4E q rπε= , where r is the distance from the charge to the point where the field has 

magnitude E, the magnitude of the charge is 

 

( ) ( )2

2 11

0 9 2 2

0.50m 2.0 N C
4 5.6 10 C.

8.99 10 N m C
q r Eε −= π = = ×

× ⋅
 



 

4. We find the charge magnitude |q| from E = |q|/4πε0r
2
: 

 

( )( )2

2 10

0 9 2 2

1.00 N C 1.00m
4 1.11 10 C.

8.99 10 N m C
q Er −= π = = ×

× ⋅
ε  



 

5. Since the charge is uniformly distributed throughout a sphere, the electric field at the 

surface is exactly the same as it would be if the charge were all at the center. That is, the 

magnitude of the field is 

E
q

R
=

4 0

2πε
 

 

where q is the magnitude of the total charge and R is the sphere radius.  

 

(a) The magnitude of the total charge is Ze, so 

 

E
Ze

R
= =

× ⋅ ×

×
= ×

−

−4

8 99 10 94 160 10

6 64 10
3 07 10
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2
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(b) The field is normal to the surface and since the charge is positive, it points outward 

from the surface. 



 

6. With x1 = 6.00 cm and x2 = 21.00 cm, the point midway between the two charges is 

located at x = 13.5 cm. The values of the charge are q1 = –q2 = – 2.00 × 10
–7

 C, and the 

magnitudes and directions of the individual fields are given by: 

 

( )

( )

9 2 2 7
51

1 22

0 1

9 2 2 7
52

2 22

0 2

| | (8.99 10 N m C )| 2.00 10 C|ˆ ˆ ˆi i (3.196 10 N C)i
4 ( ) 0.135 m 0.060 m

(8.99 10 N m C )(2.00 10 C)ˆ ˆ ˆi i (3.196 10 N C)i
4 ( ) 0.135 m 0.210 m

q
E

x x

q
E

x x

πε

πε

−

−

× ⋅ − ×
= − = − = − ×

− −

× ⋅ ×
= − = − = − ×

− −

f

f
 

 

Thus, the net electric field is  

 

 5

net 1 2
ˆ(6.39 10 N C)iE E E= + = − ×

f f f
 



  

 

Let x be the coordinate of P, the point where the field vanishes. Then, the total electric 

field at P is given by 

( )
2 1

22

0 2 1

| | | |1

4 ( )

q q
E

x x x xπε

⎛ ⎞
= −⎜ ⎟

⎜ ⎟− −⎝ ⎠
. 

 

If the field is to vanish, then 

 

( ) ( )

2

2 1 2 2

2 22

2 11 1

| | | | | | ( )
  .

( ) | |

q q q x x

x x qx x x x

−
= ⇒ =

− − −
 

 

Taking the square root of both sides, noting that |q2|/|q1| = 4, we obtain 

 

 
70 cm

2.0
20 cm

x

x

−
= ±

−
. 

 

Choosing –2.0 for consistency, the value of x is found to be x = −30 cm.   

 

7. At points between the charges, the individual electric fields are in the same direction 

and do not cancel. Since charge q2= − 4.00 q1 located at x2 = 70 cm has a greater 

magnitude than q1 = 2.1 ×10
−8 

C located at x1 = 20 cm, a point of zero field must be closer 

to q1 than to q2. It must be to the left of q1.  



Thus, we obtain 2.72
1 2 5

L
x L= ≈

−
.  

 

(b) A sketch of the field lines is shown in the figure below: 

 

 

 

8. (a) The individual magnitudes 
f
E1  and 

f
E2  are figured from Eq. 22-3, where the 

absolute value signs for q2 are unnecessary since this charge is positive. Whether we add 

the magnitudes or subtract them depends on if 
f
E1  is in the same, or opposite, direction as f

E2 . At points left of q1 (on the –x axis) the fields point in opposite directions, but there is 

no possibility of cancellation (zero net field) since 
f
E1  is everywhere bigger than 

f
E2  in 

this region. In the region between the charges (0 < x < L) both fields point leftward and 

there is no possibility of cancellation. At points to the right of q2 (where x > L), 
f
E1  points 

leftward and 
f
E2  points rightward so the net field in this range is 

 

( )net 2 1
ˆ| | | | iE E E= −

f f f
. 

 

Although |q1| > q2 there is the possibility of 
f
Enet = 0  since these points are closer to q2 

than to q1. Thus, we look for the zero net field point in the x > L region: 

 

( )
1 2

1 2 22

0 0

| |1 1
| | | |       

4 4

q q
E E

x x Lπε πε
= ⇒ =

−

f f
 

which leads to 

2

1

2
.

| | 5

qx L

x q

−
= =  

 



 

9. The x component of the electric field at the center of the square is given by  

 

( )

31 2 4

2 2 2 2
0

1 2 3 42

0

| || | | | | |1
cos 45

4 ( / 2) ( / 2) ( / 2) ( / 2)

1 1 1
| | | | | | | |

4 / 2 2

0.

x

qq q q
E

a a a a

q q q q
a

ε

ε

⎡ ⎤
= + − − °⎢ ⎥

⎣ ⎦

= + − −

=

π

π
 

 

Similarly, the y component of the electric field is  

 

( )

( )

31 2 4

2 2 2 2
0

1 2 3 42

0

9 2 2 8

5

2

| || | | | | |1
cos 45

4 ( / 2) ( / 2) ( / 2) ( / 2)

1 1 1
| | | | | | | |

4 / 2 2

8.99 10  N m / C (2.0 10  C) 1
1.02 10  N/C.

(0.050 m) / 2 2

y

qq q q
E

a a a a

q q q q
a

πε

πε
−

⎡ ⎤
= − + + − °⎢ ⎥

⎣ ⎦

= − + + −

× ⋅ ×
= = ×

 

 

Thus, the electric field at the center of the square is 5ˆ ˆj (1.02 10  N/C)j.yE E= = ×
f

 



  

| | | |
f f
E E1 2= ), and the net field (if there is any) should be along the y axis, with magnitude 

equal to 

f
E

q

d
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d
net j j= −

F
HG

I
KJ

= −F
HG

I
KJ

1

4 2

1

4

12

4

3

0

4

2

3

2

0

2 2π πε εb g
" "  

 

which is seen to be zero. A rough sketch of the field lines is shown below: 

 

 

 

10. We place the origin of our coordinate system at point P and orient our y axis in the 

direction of the q4 = –12q charge (passing through the q3 = +3q charge). The x axis is 

perpendicular to the y axis, and thus passes through the identical q1 = q2 = +5q charges. 

The individual magnitudes | |, | |, | |,
f f f
E E E1 2 3  and | |

f
E4  are figured from Eq. 22-3, where the 

absolute value signs for q1, q2, and q3 are unnecessary since those charges are positive 

(assuming q > 0). We note that the contribution from q1 cancels that of q2 (that is, 



 

11. (a) The vertical components of the individual fields (due to the two charges) cancel, 

by symmetry. Using d = 3.00 m and y = 4.00 m, the horizontal components (both pointing 

to the –x direction) add to give a magnitude of  

 
9 2 2 19

,net 2 2 3/ 2 2 2 3/ 2

0

10

2 | | 2(8.99 10 N m C )(3.20 10  C)(3.00 m)

4 ( ) [(3.00 m) (4.00 m) ]

1.38 10 N/C .

x

q d
E

d yπε

−

−

× ⋅ ×
= =

+ +

= ×

 . 

 

(b) The net electric field points in the –x direction, or 180° counterclockwise from the +x 

axis. 



(a) If we differentiate Enet with respect to x and set equal to zero (in order to find where it 

is maximum), we obtain (after some simplification) that location:      

 

x = ⎝
⎜
⎛

⎠
⎟
⎞2

3
 
3

2  +  
1

3
 
3

4  +  
1

3
L  = 1.70(20 cm) = 34 cm. 

 

We note that the result for part (a) does not depend on the particular value of ξ. 

 

(b) Now we are asked to set  ξ = 3e, where e = 1.60 ×10
−19 

C, and evaluate Enet at the 

value of x (converted to meters) found in part (a).  The result is 2.2 ×  10
−8 

N/C . 

 

12. For it to be possible for the net field to vanish at some x > 0, the two individual fields 

(caused by q1 and q2) must point in opposite directions for x > 0.  Given their locations in 

the figure, we conclude they are therefore oppositely charged.  Further, since the net field 

points more strongly leftward for the small positive x (where it is very close to q2) then 

we conclude that q2 is the negative-valued charge.  Thus, q1 is a positive-valued charge.  

We write each charge as a multiple of some positive number ξ (not determined at this 

point).  Since the problem states the absolute value of their ratio, and we have already 

inferred their signs, we have q1 = 4 ξ and q2 = −ξ.  Using Eq. 22-3 for the individual fields, 

we find 

Enet  = E1 + E2  =  
4 ξ

4πεo (L + x)
2  –  

ξ
4πεo x

2  

 

for points along the positive x axis.  Setting Enet = 0 at x = 20 cm (see graph) immediately 

leads to L = 20 cm.    

 



 

13. By symmetry we see the contributions from the two charges q1 = q2 = +e cancel each 

other, and we simply use Eq. 22-3 to compute magnitude of the field due to q3 = +2e.  

 

(a) The magnitude of the net electric field is 

 

net 2 22
0 0 0

19
9 2 2

6 2

1 2 1 2 1 4
| |

4 4 4( / 2)

4(1.60 10 C)
(8.99 10 N m C ) 160 N/C.

(6.00 10  m)

e e e
E

r aaπε πε πε
−

−

= = =

×
= × ⋅ =

×

f

 

 

(b) This field points at 45.0°, counterclockwise from the x axis.  



 

14. The field of each charge has magnitude 

 

( )

19
9 2 2 6

22 2

1.60 10 C
(8.99 10 N m C ) 3.6 10 N C.

(0.020 m)0.020m

kq e
E k

r

−
−×

= = = × ⋅ = ×  

 

The directions are indicated in standard format below. We use the magnitude-angle 

notation (convenient if one is using a vector-capable calculator in polar mode) and write 

(starting with the proton on the left and moving around clockwise) the contributions to f
Enet  as follows: 

 

E E E E E∠ − ° + ∠ ° + ∠ − ° + ∠ − ° + ∠ °20 130 100 150 0b g b g b g b g b g.  
 

This yields 393 10 76 46. .× ∠ − °−c h , with the N/C unit understood. 

 

(a) The result above shows that the magnitude of the net electric field is 
6

net| | 3.93 10  N/C.E −= ×
f

 

 

(b) Similarly, the direction of 
f
Enet  is –76.4° from the x axis.  

 



15. (a) The electron ec is a distance r = z = 0.020 m away. Thus, 

 
9 2 2 19

6

2 2

0

(8.99 10 N m C )(1.60 10 C)
3.60 10 N/C

4 (0.020 m)
C

e
E

rπε

−
−× ⋅ ×

= = = × . 

 

(b) The horizontal components of the individual fields (due to the two es charges) cancel, 

and the vertical components add to give 

 
9 2 2 19

s,net 2 2 3/ 2 2 2 3/ 2

0

6

2 2(8.99 10 N m C )(1.6 10  C)(0.020 m)

4 ( ) [(0.020 m) (0.020 m) ]

2.55 10 N/C .

ez
E

R zπε

−

−

× ⋅ ×
= =

+ +

= ×

 

 

(c) Calculation similar to that shown in part (a) now leads to a stronger field 
43.60 10  N/CcE −= ×  from the central charge. 

 

(d) The field due to the side charges may be obtained from calculation similar to that 

shown in part (b). The result is Es, net = 7.09 × 10
−7 

N/C. 

 

(e) Since Ec is inversely proportional to z
2
, this is a simple result of the fact that z is now 

much smaller than in part (a).  For the net effect due to the side charges, it is the 

“trigonometric factor” for the y component (here expressed as  z/ r  ) which shrinks 

almost linearly (as z decreases) for very small z, plus the fact that the x components 

cancel, which leads to the decreasing value of Es, net . 



  

 

16. The net field components along the x and y axes are 

 

1 2 2
net, net, 2 2 2

0 0 0

cos sin
, .

4 4 4
x y

q q q
E E

R R R

θ θ
πε πε πε

= − = −  

 

 The magnitude is the square root of the sum of the components-squared.  Setting the 

magnitude equal to E = 2.00 ×  10
5 
N/C, squaring and simplifying, we obtain 

 

 
2 2

2 1 1 1 2

2 2

0

2 cos

(4 )

q q q q
E

R

θ
πε

+ −
= . 

 

With R = 0.500 m, q1 = 2.00 ×  10
− 6 

C and  q2 = 6.00 ×  10
− 6 

C, we can solve this 

expression for cos θ  and then take the inverse cosine to find the angle: 

 
2 2 2 2 2

1 1 1 0

1 2

(4 )
cos

2

q q R E

q q

πεθ − ⎛ ⎞+ −
= ⎜ ⎟

⎝ ⎠
 . 

 There are two answers. 

 

(a) The positive value of angle is θ = 67.8°. 

 

(b) The positive value of angle is θ = − 67.8°. 

 



17. We make the assumption that bead 2 is in the lower half of the circle, partly because 

it would be awkward for bead 1 to “slide through” bead 2 if it were in the path of bead 1 

(which is the upper half of the circle) and partly to eliminate a second solution to the 

problem (which would have opposite angle and charge for bead 2).  We note that the net 

y component of the electric field evaluated at the origin is negative (points down) for all 

positions of bead 1, which implies (with our assumption in the previous sentence) that 

bead 2 is a negative charge.  

 

(a) When bead 1 is on the +y axis, there is no x component of the net electric field, which 

implies bead 2 is on the –y axis, so its angle is –90°. 

 

(b) Since the downward component of the net field, when bead 1 is on the +y axis, is of 

largest magnitude, then bead 1 must be a positive charge (so that its field is in the same 

direction as that of bead 2, in that situation).  Comparing the values of Ey at 0° and at 90° 

we see that the absolute values of the charges on beads 1 and 2 must be in the ratio of 5 to 

4.  This checks with the 180° value from the Ex graph, which further confirms our belief 

that bead 1 is positively charged.  In fact, the 180° value from the Ex graph allows us to 

solve for its charge (using Eq. 22-3): 

 

      q1 = 4πεor²E = 4π( 8.854 × 10
−12 C2

N m2 )(0.60 m)
2 
(5.0 × 10

4  N

C
 ) = 2.0 × 10

− 6 
C . 

 

(c) Similarly, the 0° value from the Ey graph allows us to solve for the charge of bead 2: 

 

 q2 = 4πεor²E = 4π( 8.854 × 10
−12 C2

N m2 )(0.60 m)
2 
(– 4.0 × 10

4 N

C
 ) = –1.6 × 10

− 6 
C . 



 

18. According to the problem statement, Eact  is Eq. 22-5 (with z = 5d)  

 

 act 2 2 2

0 0 0

160

4 (4.5 ) 4 (5.5 ) 9801 4

q q q
E

d d dπε πε πε
= − = ⋅  

 

 and Eapprox is 

approx 3 2

0 0

2 2

4 (5 ) 125 4

qd q
E

d dπε πε
= = ⋅ . 

    

The ratio is   
Eapprox

 Eact
  = 0.9801  ≈  0.98. 
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θ
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⎡ ⎤
= = =⎢ ⎥

+ ⎡ ⎤⎢ ⎥ + +⎣ ⎦ ⎣ ⎦

f
 

 

For r d>> , we write [(d/2)
2
 + r

2
]
3/2

 ≈ r
3
 so the expression above reduces to 

 

net 3

0

1
| | .

4

qd
E

rπε
≈

f
 

 

(b) From the figure, it is clear that the net electric 

field at point P points in the −"j  direction, or 

−90° from the +x axis. 

 

 

19. (a) Consider the figure below. The magnitude of the net electric field at point P is 

 



20. Referring to Eq. 22-6, we use the binomial 

expansion (see Appendix E) but keeping higher order terms than are shown in Eq. 22-7: 

 

  E  =   
q

4πεo z
2 ⎝⎜

⎛
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⎞

⎝⎜
⎛

⎠⎟
⎞

1 + 
d

z
 + 

3

4 
d

2

z
2 + 

1

2 
d

3

z
3 + …  − ⎝⎜

⎛
⎠⎟
⎞

1 − 
d

z
 + 

3

4 
d

2

z
2 − 

1

2 
d

3

z
3 + …   

 

      =   
q d

2πεo z
3  +  

q d
3

4πεo z
5  + … 

 

Therefore, in the terminology of the problem, Enext = q d
3
/ 4πε0z

5
.   



 

21. Think of the quadrupole as composed of two dipoles, each with dipole moment of 

magnitude p = qd. The moments point in opposite directions and produce fields in 

opposite directions at points on the quadrupole axis. Consider the point P on the axis, a 

distance z to the right of the quadrupole center and take a rightward pointing field to be 

positive. Then, the field produced by the right dipole of the pair is qd/2πε0(z – d/2)
3
 and 

the field produced by the left dipole is –qd/2πε0(z + d/2)
3
. Use the binomial expansions 

  

 (z – d/2)
–3

 ≈ z
–3

 – 3z
–4

(–d/2)  
 

(z + d/2)
–3

 ≈ z
–3

 – 3z
–4

(d/2) 

 

to obtain 

E
qd

z

d

z z

d

z

qd

z
= + − +L

NM
O
QP =2

1 3

2

1 3

2

6

40

3 4 3 4

2

0

4π πε ε
.  

 

Let Q = 2qd 
2
. We have E

Q

z
=

3

4 0

4πε
.  



 

L = (0.0400 m)(0.698 rad) = 0.0279 m. 

 

With q = −300(1.602 ×  10
−19 

C), we obtain λ =  −1.72 ×  10
−15 

C/m. 

 

(b) We consider the same charge distributed over an area A = πr
2
 = π(0.0200 m)

2
 and 

obtain σ = q/A = −3.82 ×  10
−14 

C/m². 

 

(c) Now the area is four times larger than in the previous part (Asphere = 4πr
2
) and thus 

obtain an answer that is one-fourth as big:  

 

σ = q/Asphere = −9.56 ×  10
−15 

C/m². 

 

(d) Finally, we consider that same charge spread throughout a volume of V = 4π r
3
/3 and 

obtain the charge density ρ = /q V  = −1.43 ×  10
−12 

C/m
3
. 

 

22. (a) We use the usual notation for the linear charge density: λ = q/L.  The arc length is 

L = rθ  with θ is expressed in radians.  Thus,  



 

23. We use Eq. 22-3, assuming both charges are positive. At P, we have 

 

( )
1 2

left ring right ring 3/ 2 2 2 3/ 22 2
00

(2 )
  

4 [(2 ) ]4

q R q R
E E

R RR R
= ⇒ =

++ πεπε
 

 

Simplifying, we obtain 
3/ 2

1

2

2
2 0.506.

5

q

q

⎛ ⎞= ≈⎜ ⎟
⎝ ⎠
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r rπε π πε π

π

−

−

⎛ ⎞
= ° =⎜ ⎟⎜ ⎟

⎝ ⎠
× ⋅ ×

= =
×

 

 

(b) By symmetry, the net field points vertically downward in the ĵ− direction, or 90− °  

counterclockwise from the +x axis.   

 

24. Studying Sample Problem 22-3, we see that the field evaluated at the center of 

curvature due to a charged distribution on a circular arc is given by 

 

0

sin
4

E
r

θ

θ

λ θ
ε −

=
π

f
 

 

along the symmetry axis, with λ = q/rθ with θ in radians. In this problem, each charged 

quarter-circle produces a field of magnitude 

 
/ 4

2
/ 40 0

| | 1 1 2 2 | |
| | sin .

/ 2 4 4

q q
E

r r r

π

π
θ

ε πε π−
= =

f
π π

 

 

That produced by the positive quarter-circle points at – 45°, and that of the negative 

quarter-circle points at +45°.  

 

(a) The magnitude of the net field is 

 



 

25. From symmetry, we see that the net field at P is twice the field caused by the upper 

semicircular charge + = ⋅q Rλ π (and that it points downward). Adapting the steps leading 

to Eq. 22-21, we find 

 

( )
90

net 2 2
900 0

ˆ ˆ2 j sin j.
4

q
E

R R
θ

ε ε

°

− °

⎛ ⎞
= − = −⎜ ⎟π⎝ ⎠

f λ
π

 

 

(a) With R = 8.50 ×  10
− 2 

m and q = 1.50 ×  10
−8 

C, net| | 23.8 N/C.E =
f

 

 

(b) The net electric field netE
f

 points in the ĵ− direction, or 90− ° counterclockwise from 

the +x axis. 



 

26. We find the maximum by differentiating Eq. 22-16 and setting the result equal to zero. 

 

d

dz

qz

z R

q R z

z R4 4

2
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0

2 2
3 2

0

2 2

2 2
5 2

π πε ε+

F

H
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I

K
JJ =

−

+
=

c h c h/ /
 

 

which leads to z R= / 2 . With R = 2.40 cm, we have z = 1.70 cm. 



Let dx be an infinitesimal length of rod at x. The charge in this segment is dq dx= λ . The 

charge dq may be considered to be a point charge. The electric field it produces at point P 

has only an x component and this component is given by 
 

dE
dx

L a x
x =

+ −
1

4 0

2πε
λ

b g .  

 

The total electric field produced at P by the whole rod is the integral 

 

( )

( ) ( )

20
00 0 0

0 0

1 1 1

4 4 4

,
4 4

LL

x

dx
E

L a x a L aL a x

L q

a L a a L a

ε ε ε

ε ε

λ λ λ ⎛ ⎞= = = −⎜ ⎟π π + − π +⎝ ⎠+ −

λ 1
= = −

π + π +

∫
 

 

upon substituting q Lλ− = . With q = 4.23 × 10
−15

 C, L =0.0815 m and a = 0.120 m, we 

obtain 31.57 10  N/CxE −= − × , or  3| | 1.57 10  N/CxE −= × . 

 

(c) The negative sign in xE indicates that the field points in the –x direction, or −180° 

counterclockwise form the +x axis. 
 

(d) If a is much larger than L, the quantity L + a in the denominator can be approximated 

by a and the expression for the electric field becomes 
 

E
q

a
x = −

4 0

2πε
.  

 

Since 50 m  0.0815 m,a L= =4  the above approximation applies and we have 
81.52 10  N/CxE −= − × , or 8| | 1.52 10  N/CxE −= × . 

 

(e) For a particle of charge 154.23 10  C,q −− = − × the electric field at a distance a = 50 m 

away has a magnitude 8| | 1.52 10  N/CxE −= × . 

 

27. (a) The linear charge density is the charge per unit length of rod. Since the charge is 

uniformly distributed on the rod,   
 

15
144.23 10  C

5.19 10  C/m.
0.0815 m

q

L
λ

−
−− − ×

= = = − ×  

 

(b) We position the x axis along the rod with the origin at the left end of the rod, as shown 

in the diagram.  

 
 



 

28. We use Eq. 22-16, with “q” denoting the charge on the larger ring: 

 

 

3/ 2

2 2 3/ 2 2 2 3/ 2

0 0

13
0 4.19

4 ( ) 4 [ (3 ) ] 5

qz qz
q Q Q

z R z Rπε πε
⎛ ⎞+ = ⇒ = − = −⎜ ⎟+ + ⎝ ⎠

. 

 

Note: we set z = 2R in the above calculation. 



  

length for each arc is λ = q/L where each charge q is specified in the figure.  Following 

the steps that lead to Eq. 22-21 in Sample Problem 22-3, we find  

 

 31 2
net 2 2

0 1 0 2 0 3 0

(2sin 45 )(2sin 45 ) (2sin 45 )

4 4 4 2

Q
E

r r r R

λλ λ
πε πε πε π ε

°° °
= + + =  

 

which yields Enet = 1.62 × 10
6 
 N/C . 

 

(b) The direction is – 45º, measured counterclockwise from the +x axis. 

 

29. The smallest arc is of length  L1 = πr1 /2 = πR/2; the middle-sized arc has length 

2 2 / 2 (2 ) / 2L r R Rπ π π= = = ; and, the largest arc has L3 = π(3R)/2.  The charge per unit 



 

30. (a) It is clear from symmetry (also from Eq. 22-16) that the field vanishes at the 

center. 

 

(b) The result (E = 0) for points infinitely far away can be reasoned directly from Eq. 22-

16 (it goes as 1/z² as z → ∞) or by recalling the starting point of its derivation (Eq. 22-11, 

which makes it clearer that the field strength decreases as 1/r² at distant points). 

 

(c) Differentiating Eq. 22-16 and setting equal to zero (to obtain the location where it is 

maximum) leads to 

 

( ) ( )
2 2

3/ 2 5/ 2
2 2 2 2

00

2
0 0.707

4 24

d qz q R z R
z R

dz z R z Rπεπε

⎛ ⎞ −⎜ ⎟ = = ⇒ = + =
⎜ ⎟+ +⎝ ⎠

. 

 

(d) Plugging this value back into Eq. 22-16 with the values stated in the problem, we find 

Emax = 3.46 × 10
7 
N/C.  



2
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2

arc 0

/ 4

2 sin( / 2) / 4 2sin( / 2)

E Q R

E Q R

πε θ
θ πε θ θ
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With θ = π, we have 

 
particle

arc

1.57.
2

E

E

π
= ≈  

 

31. First, we need a formula for the field due to the arc.  We use the notation λ for the 

charge density, λ = Q/L.  Sample Problem 22-3 illustrates the simplest approach to 

circular arc field problems.  Following the steps leading to Eq. 22-21, we see that the 

general result (for arcs that subtend angle θ) is 

 

[ ]arc

0 0

2 sin( / 2)
sin( / 2) sin( / 2)

4 4
E

r r

λ λ θθ θ
πε πε

= − − = . 

 

Now, the arc length is L = rθ if θ  is expressed in radians. Thus, using R instead of r, we 

obtain 

arc 2

0 0 0

2( / )sin( / 2) 2( / )sin( / 2) 2 sin( / 2)

4 4 4

Q L Q R Q
E

r r R

θ θ θ θ
πε πε πε θ

= = = . 

 

The problem asks for the ratio  Eparticle / Earc  where Eparticle is given by Eq. 22-3: 

 



 

32. We assume q > 0. Using the notation λ = q/L we note that the (infinitesimal) charge 

on an element dx of the rod contains charge dq = λ dx. By symmetry, we conclude that all 

horizontal field components (due to the dq’s) cancel and we need only “sum” (integrate) 

the vertical components. Symmetry also allows us to integrate these contributions over 

only half the rod (0 ≤ x ≤ L/2) and then simply double the result. In that regard we note 

that sin θ = R/r where 2 2r x R= + .  

 

(a) Using Eq. 22-3 (with the 2 and sin θ factors just discussed) the magnitude is 
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where the integral may be evaluated by elementary means or looked up in Appendix E 

(item #19 in the list of integrals). With 127.81 10  Cq −= × , 0.145 mL = and R = 0.0600 m, 

we have | | 12.4 N/CE =
f

.  

 

(b) As noted above, the electric field E
f

 points in the +y direction, or 

90+ ° counterclockwise from the +x axis. 



  

 
 

The x and the y components are 
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and  

2

1
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4
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ε0

λ
= −

π
, 

 

respectively. We use θ as the variable of integration and substitute r = R/cos θ, 

tanx R θ= and dx =  (R/cos
2
 θ) dθ. The limits of integration are 0 and π/2 rad. Thus, 

 

0
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4 4 4
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π π π∫  
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0
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4 4 4

yE d
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π
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ε ε ε

π 2λ λ λ
= − = − = −

π π π∫  

 

We notice that Ex = Ey no matter what the value of R. Thus, 
f
E  makes an angle of 45° 

with the rod for all values of R. 

 

33. Consider an infinitesimal section of the rod of length dx, a distance x from the left end, 

as shown in the following diagram. It contains charge dq = λ dx and is a distance r from 

P. The magnitude of the field it produces at P is given by 
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34. From Eq. 22-26, we obtain 
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where R is the radius of the disk and σ is the surface charge density on the disk. See Eq. 

22-26. The magnitude of the field at the center of the disk (z = 0) is Ec = σ/2ε0. We want 

to solve for the value of z such that E/Ec = 1/2. This means 

 

2 2 2 2

1 1
1 .

2 2

z z

z R z R
− = ⇒ =

+ +
 

 

Squaring both sides, then multiplying them by z
2
 + R

2
, we obtain z

2
 = (z

2
/4) + (R

2
/4). 

Thus, z
2
 = R

2
/3, or z R= 3 . With R = 0.600 m, we have z = 0.346 m. 

 

35. At a point on the axis of a uniformly charged disk a distance z above the center of the 

disk, the magnitude of the electric field is 

 

E
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36. We write Eq. 22-26 as  

 
2 2 1/ 2

max

1
( )

E z

E z R
= −

+
 

 

and note that this ratio is 
1

2
  (according to the graph shown in the figure) when z = 4.0 cm.  

Solving this for R we obtain R = z 3  = 6.9 cm. 



 

37. We use Eq. 22-26, noting that the disk in figure (b) is effectively equivalent to the 

disk in figure (a) plus a concentric smaller disk (of radius R/2) with the opposite value of 

σ. That is,  

E(b) = E(a) – 
σ

2εo
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(2R)
2
 + R
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We find the relative difference and simplify: 

 

E(a) – E(b)

 E(a)
   = 

1 2 / 4 1/ 4 1 2 / 17 / 4 0.0299
0.283

0.10561 2 / 4 1 1 2 / 5

− + −
= = =

− + −
   

 

or approximately 28%. 



 

38. From dA = 2πr dr (which can be thought of as the differential of A = πr²) and dq = σ 

dA (from the definition of the surface charge density σ), we have 

 

dq = 
⎝⎜
⎛

⎠⎟
⎞Q

πR
2  2πr dr 

 

where we have used the fact that the disk is uniformly charged to set the surface charge 

density equal to the total charge (Q) divided by the total area (πR
2
).  We next set r = 

0.0050 m and make the approximation dr ≈ 30 × 10
− 6 

m. Thus we get dq ≈ 2.4 × 10
−16 

C. 



  

 

39. The magnitude of the force acting on the electron is F = eE, where E is the magnitude 

of the electric field at its location. The acceleration of the electron is given by Newton’s 

second law: 

a
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× ×
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40. Eq. 22-28 gives 
f f f f
E

F
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KJb g  

 

using Newton’s second law.  

 

(a) With east being the "i  direction, we have 
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which means the field has a magnitude of 0.0102 N/C  

 

(b) The result shows that the field E
f

 is directed in the –x direction, or westward. 



 

41. We combine Eq. 22-9 and Eq. 22-28 (in absolute values). 
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where we have used Eq. 21-5 for the constant k in the last step. Thus, we obtain 
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= = ×

×
. 

 

If the dipole is oriented such that 
f
p  is in the +z direction, then 

f
F  points in the –z 

direction. 



 
27 2

7

19

(6.64 10 kg)(9.8 m/s )
2.03 10 N C

2 2(1.6 10 C)

mg
E

e

−
−

−

×
= = = ×

×

f
. 

 

(b) Since the force of gravity is downward, then qE
f

 must point upward. Since q > 0 in 

this situation, this implies 
f
E  must itself point upward. 

 

42. (a) Vertical equilibrium of forces leads to the equality 

 

.
2

mg
q E mg E

e
= ⇒ =
f f

 

 

Substituting the values given in the problem, we obtain  



 

43. (a) The magnitude of the force on the particle is given by F = qE, where q is the 

magnitude of the charge carried by the particle and E is the magnitude of the electric field 

at the location of the particle. Thus, 

 

E
F

q
= =

×
×

= ×
−

−

30 10

2 0 10
15 10

6

9

3.

.
.

N

C
N C.  

 

The force points downward and the charge is negative, so the field points upward. 

 

(b) The magnitude of the electrostatic force on a proton is 

 

( ) ( )19 3 161.60 10 C 1.5 10 N C 2.4 10 N.elF eE − −= = × × = ×  

 

(c) A proton is positively charged, so the force is in the same direction as the field, 

upward. 

 

(d) The magnitude of the gravitational force on the proton is 

 

( ) ( )227 261.67 10 kg 9.8 m s 1.6 10 N.gF mg − −= = × = ×  

 

The force is downward. 

 

(e) The ratio of the forces is 

 
16

10

26

2.4 10 N
1.5 10 .

1.64 10 N

el

g

F

F

−

−

×
= = ×

×
 



 

44. (a) Fe = Ee = (3.0 × 10
6
 N/C)(1.6 × 10

–19
 C) = 4.8 × 10 

– 13
 N. 

 

(b) Fi = Eqion = Ee = (3.0 × 10
6
 N/C)(1.6 × 10

–19
 C) = 4.8 × 10 

– 13
 N. 



a =
× ×

×
= ×

−

−

160 10

167 10
192 10

19

27

12
.

.
. .

C 2.00 10 N C

kg
m s

4

2c hc h
 

 

(b) We assume the proton starts from rest and use the kinematic equation v v ax2

0

2 2= +  

(or else x at=
1

2

2  and v = at) to show that 

 

v ax= = × = ×2 2 192 10 0 0100 196 1012 5. . .m s m m s.
2d ib g  

 

45. (a) The magnitude of the force acting on the proton is F = eE, where E is the 

magnitude of the electric field. According to Newton’s second law, the acceleration of the 

proton is a = F/m = eE/m, where m is the mass of the proton. Thus, 

 



 

46. (a) The initial direction of motion is taken to be the +x direction (this is also the 

direction of 
f
E ). We use v v a xf i

2 2 2− = ∆  with vf = 0 and 
f f f
a F m eE me= = −  to solve for 

distance ∆x: 

 

∆x
v

a

m v

eE

i e i=
−

=
−
−

=
− × ×

− × ×
= ×

−

−
−

2 2 31

19

2

2 2

911 10

2 160 10
712 10

.

.
.

kg 5.00 10 m s

C 1.00 10 N C
m.

6
2

3

c hc h
c hc h  

 

(b) Eq. 2-17 leads to 

t
x

v

x

vi

= = =
×

×
= ×

−
−∆ ∆

avg

m

m s
s.

2 2 7 12 10

5 00 10
2 85 10

2

6

8
.

.
.

c h
 

 

(c) Using ∆v
2
 = 2a∆x with the new value of ∆x, we find 

 

( )

( )( )( )
( )( )

21 2
2

2 2 2 21
2

19 3 3

2
31 6

2 2

2 1.60 10 C 1.00 10 N C 8.00 10 m
      0.112.

9.11 10 kg 5.00 10 m s

e

i e i i i e i

m vK v a x eE x

K m v v v m v

− −

−

∆∆ ∆ ∆ − ∆
= = = =

− × × ×
= = −

× ×

 

 

Thus, the fraction of the initial kinetic energy lost in the region is 0.112 or 11.2%. 



  

 

47. When the drop is in equilibrium, the force of gravity is balanced by the force of the 

electric field: mg = −qE, where m is the mass of the drop, q is the charge on the drop, and 

E is the magnitude of the electric field. The mass of the drop is given by m = (4π/3)r
3ρ, 

where r is its radius and ρ is its mass density. Thus, 

 

( ) ( )( )
( )

3 3 26
3

19

5

4 1.64 10 m 851kg m 9.8m s4
8.0 10 C

3 3 1.92 10 N C

mg r g
q

E E

ρ
−

−
π ×π

= − = − = − = − ×
×

 

 

and q/e = (−8.0 × 10
–19

 C)/(1.60 × 10
–19

 C) = −5, or 5q e= − . 

 



48. We assume there are no forces or force-components along the x direction. We 

combine Eq. 22-28 with Newton’s second law, then use Eq. 4-21 to determine time t 

followed by Eq. 4-23 to determine the final velocity (with –g replaced by the ay of this 

problem); for these purposes, the velocity components given in the problem statement are 

re-labeled as v0x and v0y respectively. 

 

(a) We have / ( / )a qE m e m E= = −
f ff

 which leads to 

 
19

213

31

1.60 10 C N ˆ ˆ120 j (2.1 10 m s ) j.
9.11 10 kg C

a
−

−

⎛ ⎞× ⎛ ⎞= − = − ×⎜ ⎟ ⎜ ⎟× ⎝ ⎠⎝ ⎠

f
 

 

(b) Since vx = v0x in this problem (that is, ax = 0), we obtain 

 

  
m

1.5 10 m s
s

m s m s 1.3 10 s

5

2

t
x

v

v v a t

x

y y y

= =
×

= ×

= + = × + − × ×

−

−

∆

0

7

0

3 13 7

0 020
13 10

30 10 21 10

.
.

. .d ic h
 

 

which leads to vy = –2.8 × 10
6
 m/s. Therefore, the final velocity is 

 
5 6ˆ ˆ(1.5 10  m/s) i (2.8 10  m/s) j.v = × − ×

f
 

 



49. (a) We use ∆x = vavgt = vt/2: 

 

v
x

t
= =

×

×
= ×

−

−

2 2 2 0 10

15 10
2 7 10

2

8

6∆ .

.
.

m

s
m s.

c h
 

 

(b) We use ∆x at= 1
2

2  and E = F/e = ma/e: 

 

E
ma

e

xm

et
= = =

× ×

× ×
= ×

− −

− −

2 2 2 0 10

160 10
10 10

2

2 31

19 8

3∆ .

.
.

m 9.11 10 kg

C 1.5 10 s
N C.

2

c hc h
c hc h

 



    

This leads (using Eq. 4-23) to  

 
6 11 2 6

0 0

5

sin (2.00 10 m/s)sin40.0 (8.78 10 m/s )(1.96 10 s)

4.34 10 m/s .

yv v atθ −= − = × ° − × ×

= − ×
  

 

Since the x component of velocity does not change, then the final velocity is  

 

 v  
→

  = (1.53 × 10
6
 m/s) i

^
 − (4.34 × 10

5
 m/s) j

^
  . 

 

50. Due to the fact that the electron is negatively charged, then (as a consequence of Eq. 

22-28 and Newton’s second law) the field E  
→

  pointing in the +y direction (which we will 

call “upward”) leads to a downward acceleration.  This is exactly like a projectile motion 

problem as treated in Chapter 4 (but with g replaced with a = eE/m = 8.78 × 10
11 

m/s
2
).  

Thus, Eq. 4-21 gives 

 6

6

0 0

3.00 m
1.96 10 s

cos (2.00 10 m/s)cos40.0

x
t

v θ
−= = = ×

× °
. 



 

51. We take the positive direction to be to the right in the figure. The acceleration of the 

proton is ap = eE/mp and the acceleration of the electron is ae = –eE/me, where E is the 

magnitude of the electric field, mp is the mass of the proton, and me is the mass of the 

electron. We take the origin to be at the initial position of the proton. Then, the coordinate 

of the proton at time t is x a tp= 1
2

2  and the coordinate of the electron is x L a te= + 1
2

2 .  

They pass each other when their coordinates are the same, or 1
2

2 1
2

2a t L a tp e= + .  This 

means t
2
 = 2L/(ap – ae) and 

 

( ) ( )

( )
31

31 27

5

9.11 10 kg
0.050m

9.11 10 kg 1.67 10 kg

2.7 10 m.

p p e

p e e pp e

a eE m m
x L L L

a a m meE m eE m

−

− −

−

⎛ ⎞
= = = ⎜ ⎟⎜ ⎟− ++ ⎝ ⎠

⎛ ⎞×
= ⎜ ⎟× + ×⎝ ⎠
= ×

 



  

 

52. We are given σ = 4.00 × 10
−6 

C/m
2
 and various values of z (in the notation of Eq. 22-

26 which specifies the field E of the charged disk). Using this with F = eE (the magnitude 

of Eq. 22-28 applied to the electron) and F = ma, we obtain / /a F m eE m= = . 

 

(a) The magnitude of the acceleration at a distance R is  

 

a = 
e σ (2 − 2 )

4 m εo
 = 1.16 × 10

16
 m/s

2 
 . 

 

(b) At a distance R/100, a =  
e σ (10001 − 10001 )

20002 m εo
 = 3.94 × 10

16 
m/s

2 
 . 

  

(c) At a distance R/1000, a  =  
e σ (1000001 − 1000001 )

2000002 m εo
 = 3.97 × 10

16 
m/s

2 
 . 

 

(d) The field due to the disk becomes more uniform as the electron nears the center point.  

One way to view this is to consider the forces exerted on the electron by the charges near 

the edge of the disk; the net force on the electron caused by those charges will decrease 

due to the fact that their contributions come closer to canceling out as the electron 

approaches the middle of the disk. 

 



53. (a) Using Eq. 22-28, we find 

 f
F = × × + × −

= −

− −8 00 10 8 00 10 600

0 240 0 0480

5 5. " . "

. " . "
C 3.00 10 N C i C N C j

N i N j.

3c hc h c hb g
b g b g

 

 

Therefore, the force has magnitude equal to 

 

( ) ( )2 22 2 0.240N 0.0480N 0.245N.x yF F F= + = + − =  

 

(b) The angle the force F
f

makes with the +x axis is  

 

1 1 0.0480N
tan tan 11.3

0.240N

y

x

F

F
θ − −⎛ ⎞ ⎛ ⎞−

= = = − °⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

 

measured counterclockwise from the +x axis. 

 

(c) With m = 0.0100 kg, the (x, y) coordinates at t = 3.00 s can be found by combining 

Newton’s second law with the kinematics equations of Chapters 2–4. The x coordinate is 

 

( )( )
( )

22
2

0.240 N 3.00 s1
108m.

2 2 2 0.0100 kg

x
x

F t
x a t

m
= = = =  

 

(d) Similarly, the y coordinate is 

 

 
( )( )

( )

22

2
0.0480 N 3.00 s1

21.6m.
2 2 2 0.0100 kg

y

y

F t
y a t

m

−
= = = = −  



  

(b) The displacement is equal to the distance since the electron does not change its 

direction of motion.  The field is uniform, which implies the acceleration is constant.  

Thus, 

50 5.0 10 m.
2

v v
d t −+

= = ×  

 

54. (a) Due to the fact that the electron is negatively charged, then (as a consequence of 

Eq. 22-28 and Newton’s second law) the field E  
→

  pointing in the same direction as the 

velocity leads to deceleration.  Thus, with t = 1.5 × 10
− 9 

s, we find  

 
19

4 9

0 0 31

4

(1.6 10 C)(50 N/C)
| | 4.0 10 m/s (1.5 10 s)

9.11 10 kg

2.7 10 m/s .

eE
v v a t v t

m

−
−

−

×
= − = − = × − ×

×

= ×

 

 



 

55. We take the charge 45.0 pCQ =  of the bee to be concentrated as a particle at the 

center of the sphere. The magnitude of the induced charges on the sides of the grain is 

| | 1.000 pC.q =  

 

(a) The electrostatic force on the grain by the bee is  

 

2 2 2 2

( ) 1 1
| |

( / 2) ( / 2) ( / 2) ( / 2)

kQq kQ q
F kQ q

d D D D d D

⎡ ⎤−
= + = − −⎢ ⎥+ +⎣ ⎦

 

 

where 1.000 cmD = is the diameter of the sphere representing the honeybee, and 

40.0 md µ=  is the diameter of the grain. Substituting the values, we obtain 

 

( )9 2 2 12 12

3 2 3 2

10

1 1
8.99 10 N m C (45.0 10 C)(1.000 10 C)

(5.00 10  m) (5.04 10  m)

2.56 10 N .

F − −
− −

−

⎡ ⎤
= − × ⋅ × × −⎢ ⎥× ×⎣ ⎦
= − ×

 

The negative sign implies that the force between the bee and the grain is attractive. The 

magnitude of the force is 10| | 2.56 10 NF −= × . 

 

(b) Let | | 45.0 pCQ′ =  be the magnitude of the charge on the tip of the stigma. The force 

on the grain due to the stigma is  

 

2 2 2 2

| | | | ( ) 1 1
| || |

( ) ( ) ( ) ( )

k Q q k Q q
F k Q q

d D D D d D

′ ′ ⎡ ⎤−′ ′= + = − −⎢ ⎥′ ′ ′ ′+ +⎣ ⎦
 

 

where 1.000 mmD′ = is the distance between the grain and the tip of the stigma. 

Substituting the values given, we have 

 

( )9 2 2 12 12

3 2 3 2

8

1 1
8.99 10 N m C (45.0 10 C)(1.000 10 C)

(1.000 10  m) (1.040 10  m)

3.06 10 N .

F − −
− −

−

⎡ ⎤′ = − × ⋅ × × −⎢ ⎥× ×⎣ ⎦
= − ×

 

The negative sign implies that the force between the grain and the stigma is attractive. 

The magnitude of the force is 8| | 3.06 10 NF −′ = × . 

 

(c) Since | | | | ,F F′ >  the grain will move to the stigma. 



 

56. (a) Eq. 22-33 leads to τ = ° =pE sin 0 0. 

 

(b) With θ = °90 ,  the equation gives 

 

τ = = × × × = × ⋅− − −pE 2 16 10 85 1019 9 22. .C 0.78 10 m 3.4 10 N C N m.6c hc he jc h  

 

(c) Now the equation gives τ = ° =pE sin180 0.  



 

57. (a) The magnitude of the dipole moment is 

 

p qd= = × × = × ⋅− − −150 10 9 30 109 6 15. .C 6.20 10 m C m.c hc h  

 

(b) Following the solution to part (c) of Sample Problem 22-5, we find 

 

( ) ( ) ( )( )15 11180 0 2 2 9.30 10 C m 1100 N/C 2.05 10 J.U U pE − −° − = = × ⋅ = ×  



 

58. Using Eq. 22-35, considering θ as a variable, we note that it reaches its maximum 

value when θ  = −90°: τmax = pE.  Thus, with E = 40 N/C and τmax = 100 × 10
−28 

N·m 

(determined from the graph), we obtain the dipole moment: p = 2.5 × 10
−28 

C·m.   



 

59. Eq. 22-35 τ θ= − pE sinb g  captures the sense as well as the magnitude of the effect. 

That is, this is a restoring torque, trying to bring the tilted dipole back to its aligned 

equilibrium position. If the amplitude of the motion is small, we may replace sin θ with θ 

in radians. Thus, τ θ≈ − pE .  Since this exhibits a simple negative proportionality to the 

angle of rotation, the dipole oscillates in simple harmonic motion, like a torsional 

pendulum with torsion constant κ = pE.  The angular frequency ω is given by 

 

ω κ2 = =
I

pE

I
 

 

where I is the rotational inertia of the dipole. The frequency of oscillation is 

 

f
pE

I
= =

ω
2

1

2π π
.  



 

60. Examining the lowest value on the graph, we have (using Eq. 22-38)  

 

U = −  p  
→

 · E  
→

 = − 1.00 × 10
−28 

J. 

 

If E = 20 N/C, we find p = 5.0 × 10
−28 

C·m.  

 



61. Following the solution to part (c) of Sample Problem 22-5, we find 

 

( ) ( ) ( ) ( )( )0 0 0 0 0

25

23

cos cos 2 cos

2(3.02 10 C m)(46.0 N/C)cos64.0

1.22 10  J.

W U U pE pEθ θ θ θ θ
−

−

= + π − = − + π − =

= × ⋅ °

= ×

 



  

 

62. Our approach (based on Eq. 22-29) consists of several steps. The first is to find an 

approximate value of e by taking differences between all the given data. The smallest 

difference is between the fifth and sixth values:  

 

18.08 × 10 
–19

 C – 16.48 × 10 
– 19

 C = 1.60 × 10
–19

 C 

 

which we denote eapprox. The goal at this point is to assign integers n using this 

approximate value of e: 

 
19

1

approx

19

2

approx

19

3

approx

19

4

approx

19

5

approx

6.563 10 C
datum1 4.10 4

8.204 10 C
datum2 5.13 5

11.50 10 C
datum3 7.19 7

13.13 10 C
datum4 8.21 8

16.48 10 C
datum5 10.30 10

n
e

n
e

n
e

n
e

n
e

−

−

−

−

−

×
= ⇒ =

×
= ⇒ =

×
= ⇒ =

×
= ⇒ =

×
= ⇒ =

 

19

6

appeox

19

7

approx

19

8

approx

19

9

approx

18.08 10 C
datum6 11.30 11

19.71 10 C
datum7 12.32 12

22.89 10 C
datum8 14.31 14

26.13 10 C
datum9 16.33 16

n
e

n
e

n
e

n
e

−

−

−

−

×
= ⇒ =

×
= ⇒ =

×
= ⇒ =

×
= ⇒ =

 

Next, we construct a new data set (e1, e2, e3 …) by dividing the given data by the 

respective exact integers ni (for i = 1, 2, 3 …): 

 

e e e
n n n

1 2 3

19

1

19

2

19

3

6 563 10 8 204 10 1150 10
, ,

.
,

.
,

.… …b g = × × ×F
HG

I
KJ

− − −C C C
 

 

which gives (carrying a few more figures than are significant) 

 

164075 10 19 19 19. × × ×− − −C,  1.6408 10 C,  1.64286 10 C…c h  
 

as the new data set (our experimental values for e). We compute the average and standard 

deviation of this set, obtaining 

 

e e eexptal avg C= ± = ± × −∆ 1641 0 004 10 19. .b g  

 

which does not agree (to within one standard deviation) with the modern accepted value 

for e. The lower bound on this spread is eavg – ∆e = 1.637 × 10
–19

 C which is still about 

2% too high. 

 



63. First, we need a formula for the field due to the arc.  We use the notation λ for the 

charge density, λ = Q/L.  Sample Problem 22-3 illustrates the simplest approach to 

circular arc field problems.  Following the steps leading to Eq. 22-21, we see that the 

general result (for arcs that subtend angle θ) is 

 

[ ]arc

0 0

2 sin( / 2)
sin( / 2) sin( / 2)

4 4
E

r r

λ λ θθ θ
πε πε

= − − = . 

 

Now, the arc length is L = rθ with θ is expressed in radians.  Thus, using R instead of r, 

we obtain 

 

arc 2

0 0 0

2( / )sin( / 2) 2( / )sin( / 2) 2 sin( / 2)

4 4 4

Q L Q R Q
E

R R R

θ θ θ θ
πε πε πε θ

= = =  . 

 

Thus, the problem requires Earc = 
1

2
  Eparticle  where Eparticle is given by Eq. 22-3.  Hence, 

 

2 2

0 0

2 sin( / 2) 1
sin

4 2 4 2 4

Q Q

R R

θ θ θ
πε θ πε

= ⇒ =  

       

where we note, again, that the angle is in radians.  The approximate solution to this 

equation is θ = 3.791 rad ≈ 217°. 



 

64. Most of the individual fields, caused by diametrically opposite charges, will cancel, 

except for the pair that lie on the x axis passing through the center.  This pair of charges 

produces a field pointing to the right  

 

( )( )
( )

9 2 2 19

5

22 2

0 0

3 8.99 10 N m C 1.60 10 C3 3ˆ ˆ ˆi i i 1.08 10 N/C
4 4 0.020m

q e
E

d dπε πε

−
−

× ⋅ ×
= = = = ×
f

. 



  

(b) From symmetry, we see in this case that the net field component along the y axis is 

zero; the net field component along the x axis points rightward. With θ = 60°,   

 

net, 2

0

cos
2

4
x

Q
E

a

θ
πε

= . 

 

Since cos(60°) = 1/2, we can write this as Enet  = kQ/a
2
 (using the notation of Eq. 21-5).  

Thus, Enet ≈ 27 N/C. 

 

65. (a) From symmetry, we see the net field component along the x axis is zero; the net 

field component along the y axis points upward. With θ = 60°,   

 

 net, 2

0

sin
2

4
y

Q
E

a

θ
πε

=  . 

 

Since sin(60°) = 3 /2 , we can write this as Enet  = kQ 3 /a
2
 (using the notation of the 

constant k defined in Eq. 21-5).  Numerically, this gives roughly 47 N/C. 

 



 

66. The two closest charges produce fields at the midpoint which cancel each other out.  

Thus, the only significant contribution is from the furthest charge, which is a distance 

3 / 2r d=  away from that midpoint.  Plugging this into Eq. 22-3 immediately gives the 

result: 

2 22
0 00

4

4 3 44 ( 3 / 2)

Q Q Q
E

r ddπε πεπε
= = = . 



 

67. (a) Since the two charges in question are of the same sign, the point x = 2.0 mm 

should be located in between them (so that the field vectors point in the opposite 

direction). Let the coordinate of the second particle be x' (x' > 0). Then, the magnitude of 

the field due to the charge –q1 evaluated at x is given by E = q1/4πε0x
2
, while that due to 

the second charge –4q1 is E' = 4q1 /4πε0(x' – x)
2
. We set the net field equal to zero: 

 f
E E Enet   = ⇒ = ′0  

so that 

q

x

q

x x

1

0

2

1

0

2
4

4

4π πε ε
=

′ −b g .  

 

Thus, we obtain x' = 3x = 3(2.0 mm) = 6.0 mm. 

 

(b) In this case, with the second charge now positive, the electric field vectors produced 

by both charges are in the negative x direction, when evaluated at x = 2.0 mm. Therefore, 

the net field points in the negative x direction, or 180°, measured counterclockwise from 

the +x axis. 



 
 

 

( )
( )

192
9

net 22 2
6

0

2

1.6 10  CN m
2 cos 2 cos 2 8.99 10 cos 60

4 C 2.0 10  m

3.6 10  N C.

x e

e
E E E

d
θ θ

ε

−

−

×⎛ ⎞ ⎛ ⎞⋅
= = = = × °⎜ ⎟ ⎜ ⎟π ⎝ ⎠ ×⎝ ⎠

= ×

f

 

 

68. We denote the electron with subscript e and the proton with p. From the figure below 

we see that 
f f
E E

e

d
e p= =

4 0

2πε
 

 

where d = 2.0 × 10
–6

 m. We note that the components along the y axis cancel during the 

vector summation. With k = 1/4πε0 and 60θ = ° , the magnitude of the net electric field is 

obtained as follows: 



 

69. On the one hand, the conclusion (that Q = +1.00 µC) is clear from symmetry. If a 

more in-depth justification is desired, one should use Eq. 22-3 for the electric field 

magnitudes of the three charges (each at the same distance r a= 3 from C) and then 

find field components along suitably chosen axes, requiring each component-sum to be 

zero. If the y axis is vertical, then (assuming Q > 0) the component-sum along that axis 

leads to 2 22 sin 30 / /kq r kQ r° =  where q refers to either of the charges at the bottom 

corners. This yields Q = 2q sin 30° = q and thus to the conclusion mentioned above. 



 

70. (a) Let E = σ/2ε0 = 3 × 10
6
 N/C. With σ = |q|/A, this leads to 

 

( ) ( )
( )

2
2 62

2 2 7

0 9 2 2

2.5 10 m 3.0 10 N C
2 1.0 10 C ,

2 2 8.99 10 N m C

R E
q R R E

k
π σ πε

−
−

× ×
= = = = = ×

× ⋅
 

 

where  9 2 2

01/ 4 8.99 10 N m C .k πε= = × ⋅  

 

(b) Setting up a simple proportionality (with the areas), the number of atoms is estimated 

to be 

( )2
2

17

18 2

2.5 10 m
1.3 10 .

0.015 10 m
n

π −

−

×
= = ×

×
 

 

(c) The fraction is 

( ) ( )
7

6

17 19

1.0 10 C
5.0 10 .

1.3 10 1.6 10 C

q

Ne

−
−

−

×
= ≈ ×

× ×
 

 



  

71. (a) Using the density of water (ρ = 1000 kg/m
3
), the weight mg of the spherical drop 

(of radius r = 6.0 × 10
–7

 m) is 

 

W Vg= = ×F
HG

I
KJ = ×− −ρ 1000

4

3
6 0 10 9 8 887 103 7

3
2 15kg m m m s Nc h c h c hπ

. . . .  

 

(b) Vertical equilibrium of forces leads to mg = qE = neE, which we solve for n, the 

number of excess electrons: 

n
mg

eE
= =

×
×

=
−

−

887 10

462
120

15

19

.
.

N

1.60 10 C N Cc hb g  



 

72. Eq. 22-38 gives U p E pE= − ⋅ = −
f f

cosθ . We note that θi = 110° and θf = 70.0°. 

Therefore, 

( ) 21cos 70.0 cos110 3.28 10 J.U pE −∆ = − ° − ° = − ×  



 

73. Studying Sample Problem 22-3, we see that the field evaluated at the center of 

curvature due to a charged distribution on a circular arc is given by 

 

0

sin
4

E
r

θ

θ

λ θ
ε −

=
π

f
 

 

along the symmetry axis, where λ = =q q r` θ  with θ in radians. Here `  is the length of 

the arc, given as ` = 4 0. m . Therefore, θ = = =` r 4 0 2 0 2 0. . . rad . Thus, with q = 20 × 10
–

9
 C, we obtain 

1.0 rad

1.0 rad0

( / )
sin 38 N/C

4

q
E

r
θ

ε −
= =

π

f `
 . 



 

74. (a) We combine Eq. 22-28 (in absolute value) with Newton’s second law: 

 

a
q E

m
= =

×
×

F
HG

I
KJ ×F
HG

I
KJ = ×

−

−

| | .

.
. . .

160 10

9 11 10
140 10 2 46 10

19

31

6 17 2C

kg

N

C
m s  

 

(b) With v
c

= = ×
10

300 107. m s, we use Eq. 2-11 to find 

 
7

10o

17 2

3.00 10 m/s
1.22 10 s.

2.46 10 m/s

v v
t

a

−− ×
= = = ×

×
 

(c) Eq. 2-16 gives 

( )
( )

2
72 2

3o

17 2

3.00 10 m/s
1.83 10 m.

2 2 2.46 10 m/s

v v
x

a

−
×−

∆ = = = ×
×

 



 

75. We consider pairs of diametrically opposed charges. The net field due to just the 

charges in the one o’clock (–q) and seven o’clock (–7q) positions is clearly equivalent to 

that of a single –6q charge sitting at the seven o’clock position. Similarly, the net field 

due to just the charges in the six o’clock (–6q) and twelve o’clock (–12q) positions is the 

same as that due to a single –6q charge sitting at the twelve o’clock position. Continuing 

with this line of reasoning, we see that there are six equal-magnitude electric field vectors 

pointing at the seven o’clock, eight o’clock … twelve o’clock positions. Thus, the 

resultant field of all of these points, by symmetry, is directed toward the position midway 

between seven and twelve o’clock. Therefore, 
f
Eresultant  points towards the nine-thirty 

position. 



 

76. The electric field at a point on the axis of a uniformly charged ring, a distance z from 

the ring center, is given by 

E
qz

z R
=

+4 0

2 2
3 2

πε c h /
 

 

where q is the charge on the ring and R is the radius of the ring (see Eq. 22-16). For q 

positive, the field points upward at points above the ring and downward at points below 

the ring. We take the positive direction to be upward. Then, the force acting on an 

electron on the axis is 

F
eqz

z R
= −

+4 0

2 2
3 2

πε c h /
.  

 

For small amplitude oscillations z R<<  and z can be neglected in the denominator. Thus, 

 

F
eqz

R
= −

4 0

3πε
.  

 

The force is a restoring force: it pulls the electron toward the equilibrium point z = 0. 

Furthermore, the magnitude of the force is proportional to z, just as if the electron were 

attached to a spring with spring constant k = eq/4πε0R
3
. The electron moves in simple 

harmonic motion with an angular frequency given by 

 

ω
ε

= =
k

m

eq

mR4 0

3π
 

 

where m is the mass of the electron. 



  

4.4N
| | 0.029C

150 N C

F mg
q

E E
= = = = , 

or 0.029 C.q = −  

 

(b) The feasibility of this experiment may be studied by using Eq. 22-3 (using k for 

1/4πε0). We have 2| | /E k q r=  with 

3

sulfur sphere

4

3
r mρ ⎛ ⎞π =⎜ ⎟

⎝ ⎠
 

 

Since the mass of the sphere is 4.4/9.8 ≈ 0.45 kg and the density of sulfur is about  

2.1 × 10
3
 kg/m

3
 (see Appendix F), then we obtain 

 
1 3

sphere 11

2

sulfur

3
0.037 m 2 10 N C

4

m q
r E k

rρ
⎛ ⎞

= = ⇒ = ≈ ×⎜ ⎟π⎝ ⎠
 

 

which is much too large a field to maintain in air. 

 

77. (a) Since 
f
E  points down and we need an upward electric force (to cancel the 

downward pull of gravity), then we require the charge of the sphere to be negative. The 

magnitude of the charge is found by working with the absolute value of Eq. 22-28: 

 



 

78. The magnitude of the dipole moment is given by p = qd, where q is the positive 

charge in the dipole and d is the separation of the charges. For the dipole described in the 

problem, 

p = × × = × ⋅− − −160 10 4 30 10 688 1019 9 28. . . C  m  C mc hc h . 

 

The dipole moment is a vector that points from the negative toward the positive charge. 



 

79. From the second measurement (at (2.0, 0)) we see that the charge must be somewhere 

on the x axis. A line passing through (3.0, 3.0) with slope 1tan (3 4)−  will intersect the x 

axis at x = –1.0. Thus, the location of the particle is specified by the coordinates (in cm): 

(–1.0, 0). 

 

(a) The x coordinate is x = –1.0 cm. 

 

(b) Similarly, the y coordinate is y = 0. 

 

(c) Using k = 1 4 0πε ,  the field magnitude measured at (2.0, 0) (which is r = 0.030 m 

from the charge) is 
f
E k

q

r
= =

2
100 N C.  

Therefore,  
2 2

11

9 2 2

(100 N C)(0.030 m)
1.0 10 C.

8.99 10 N m C

E r
q

k

−= = = ×
× ⋅

f

 

 



80. We interpret the linear charge density, | | /Q Lλ = , to indicate a positive quantity (so 

we can relate it to the magnitude of the field).  Sample Problem 22-3 illustrates the 

simplest approach to circular arc field problems.  Following the steps leading to Eq. 22-

21, we see that the general result (for arcs that subtend angle θ) is 

 

[ ]arc

0 0

2 sin( / 2)
sin( / 2) sin( / 2)

4 4
E

r r

λ λ θθ θ
πε πε

= − − = . 

 

Now, the arc length is L = rθ with θ is expressed in radians.  Thus, using R instead of r, 

we obtain 

 

arc 2

0 0 0

2(| | / )sin( / 2) 2(| | / ) sin( / 2) 2 | | sin( / 2)

4 4 4

Q L Q R Q
E

R R R

θ θ θ θ
πε πε πε θ

= = =  . 

 

With 12| | 6.25 10  CQ −= × , 2.40 rad 137.5θ = = ° and 29.00 10  mR −= × , the magnitude of 

the electric field is 5.39 N/CE = . 



 

81. (a) From Eq. 22-38 (and the facts that " "i i = 1⋅  and " "j i = 0⋅ ), the potential energy is 

 

( )( ) ( )30

26

ˆ ˆ ˆ3.00i 4.00j 1.24 10 C m 4000 N C i

1.49 10 J.

U p E −

−

⎡ ⎤ ⎡ ⎤= − ⋅ = − + × ⋅ ⋅ ⎣ ⎦⎣ ⎦
= − ×

ff
 

 

(b) From Eq. 22-34 (and the facts that " "i i 0× =  and " " "j i = k× − ), the torque is 

 
f f f
τ = × = + × ⋅ ×

= − × ⋅

−

−

p E 300 124 10 4000

198 10

30

26

. " " . "

. "

i 4.00j C m N C i

N m k.

e jc h b g
c h

 

 

(c) The work done is 

 

W U p E p p Ei f= = − ⋅ = − ⋅

= + − − + × ⋅ ⋅

= ×

−

−

∆ ∆
f f f f f
d i d i

e j e j c h b g300 4 00 124 10 4000

347 10

30

26

. " " . " " . "

.

i 4.00j i 3.00j C m N C i

J.

 



  

 

Since  cos(60°) =1/2, we can write this as  

 

 
9 2 2 12 12

123 1
3 2 2

(8.99 10 N m C )(5.00 10 C)(2.00 10 C)
9.96 10 N.

(0.0950 m)

kq q
F

a

− −
−× ⋅ × ×

= = = ×  

 

82. (a) From symmetry, we see the net force component along the y axis is zero. 

 

(b) The net force component along the x axis points rightward. With θ = 60°,   

 

F3  =  3 1

2

0

cos
2

4

q q

a

θ
πε

. 



 

83. A small section of the distribution that has charge dq is λ dx, where λ = 9.0 × 10
–9

 

C/m. Its contribution to the field at xP = 4.0 m is 

 

dE
dq

x xP

f
=

−4 0

2πε b g  

 

pointing in the +x direction. Thus, we have 

 

( )
3.0m

20
0

î
4 P

dx
E

x xε
=

−∫
f λ

π
 

 

which becomes, using the substitution u = x – xP, 

 

f
E

du

u
= =

−
−

−
−

−
F
HG

I
KJ−

−zλ
π

λ
π4 4

1

10

1

4 00

24 0

1 0

0ε ε
 i

m m
i

m

m

.

. "
. .

"  

 

which yields 61 N/C in the +x direction. 



E
q

d
x =

+

F
H
GG

I
K
JJ2 10

2 2
3 2πε

α

αc h
.  

 

(b) The graph of E = Ex versus α is shown below. For the purposes of graphing, we set d 

= 1 m and q = 5.56 × 10
–11

 C. 

 

 
 

(c) From the graph, we estimate Emax occurs at about α = 0.71. More accurate 

computation shows that the maximum occurs at α = 1 2 .  

 

(d) The graph suggests that “half-height” points occur at α ≈ 0.2 and α ≈ 2.0. Further 

numerical exploration leads to the values: α = 0.2047 and α = 1.9864. 

 

84. Let q1 denote the charge at y = d and q2 denote the charge at y = –d. The individual 

magnitudes 
f
E1  and 

f
E2  are figured from Eq. 22-3, where the absolute value signs for q 

are unnecessary since these charges are both positive. The distance from q1 to a point on 

the x axis is the same as the distance from q2 to a point on the x axis: r x d= +2 2 . By 

symmetry, the y component of the net field along the x axis is zero. The x component of 

the net field, evaluated at points on the positive x axis, is 

 

E
q

x d

x

x d
x =
F
HG
I
KJ +
F
HG

I
KJ +

F
HG

I
KJ2

1

4 0

2 2 2 2πε
 

 

where the last factor is cosθ = x/r with θ being the angle for each individual field as 

measured from the x axis. 

 

(a) If we simplify the above expression, and plug in x = αd, we obtain 

 



  

( ) ( )
( )

( )
( )

9 12 9 12

1 2

2 22 2
2 2

0 1 0 2

8.99 10 1.00 10 C 8.99 10 | 2.00 10 C|| | ˆ ˆ ˆi i i
4 4 2.00 5.00 10 5.00 10

ˆ(6.29 N C)i .

C

q q
E

r rπε πε

− −

− −

× × × − ×⎡ ⎤
= − = −⎢ ⎥

× × ×⎣ ⎦

= −

f

 

 

(d) Although a sketch is not shown here, it would be somewhat similar to Fig. 22-5 in the 

textbook except that there would be twice as many field lines “coming into” the negative 

charge (which would destroy the simple up/down symmetry seen in Fig. 22-5).  

 

85. (a) For point A, we have (in SI units) 

 

( )
( ) ( )

( )
( ) ( )

( )
( )

1 2

2 2

0 1 0 2

9 12 9 12

2 2
2 2

î
4 4

8.99 10 1.00 10 C 8.99 10 | 2.00 10 C|
ˆ ˆi i

5.00 10 2 5.00 10

ˆ( 1.80 N C)i .

A

q q
E

r rπε πε
− −

− −

⎡ ⎤
= + −⎢ ⎥

⎣ ⎦

× × × − ×
= − +

× × ×

= −

f

 . 

 

(b) Similar considerations leads to  

 

( ) ( )
( )

( )
( )

9 12 9 12

1 2

2 22 2
2 2

0 1 0 2

8.99 10 1.00 10 C 8.99 10 | 2.00 10 C|| | ˆ ˆ ˆi i i
4 4 0.500 5.00 10 0.500 5.00 10

ˆ(43.2 N C)i .

B

q q
E

r rπε πε

− −

− −

× × × − ×⎡ ⎤
= + = +⎢ ⎥

× × × ×⎣ ⎦

=

f

 

 

(c) For point C, we have 

 



( )2 26 6 13 22 2

0 0

214

9

(4.24 10 m s) 4.24 10 m s 1.40 10 m ssin sin 2

3.51 10 m s

6.43 10 s.

v v ad
t

a

θ θ

−

× − × − ×− −
= =

×

= ×

 

 

The negative root was used because we want the earliest time for which y = d. The x 

coordinate is  

 

( )( )6 9 2

0 cos 6.00 10 m s 6.43 10 s cos45 2.72 10 m.x v t − −= = × × ° = ×θ  

 

This is less than L so the electron hits the upper plate at x = 2.72 cm. 

 

86. (a) The electric field is upward in the diagram and the charge is negative, so the force 

of the field on it is downward. The magnitude of the acceleration is a = eE/m, where E is 

the magnitude of the field and m is the mass of the electron. Its numerical value is 

 

a =
× ×

×
= ×

−

−

160 10

9 11 10
351 10

19

31

14
.

.
. .

C 2.00 10 N C

kg
m s

3

2c hc h
 

 

We put the origin of a coordinate system at the initial position of the electron. We take 

the x axis to be horizontal and positive to the right; take the y axis to be vertical and 

positive toward the top of the page. The kinematic equations are 

 

2

0 0 0

1
cos , sin , and sin .

2
yx v t y v t at v v atθ θ θ= = − = −  

 

First, we find the greatest y coordinate attained by the electron. If it is less than d, the 

electron does not hit the upper plate. If it is greater than d, it will hit the upper plate if the 

corresponding x coordinate is less than L. The greatest y coordinate occurs when vy = 0. 

This means v0 sin θ – at = 0 or t = (v0/a) sin θ and 

 

( )
( )

2
6 22 2 2 2 2 2

20 0 0
max 2 214

6.00 10 m s sin 45sin sin sin1 1
2.56 10 m.

2 2 2 3.51 10 m s

v v v
y a

a a a

θ θ θ −
× °

= − = = = ×
×

 

 

Since this is greater than d = 2.00 cm, the electron might hit the upper plate. 

 

(b) Now, we find the x coordinate of the position of the electron when y = d. Since 

 

v0

6 66 00 10 4 24 10sin m s sin45 m sθ = × ° = ×. .c h  

and 

2 2 351 10 0 0200 140 1014 13 2
ad = × = ×. . .m s m m s

2 2d ib g  

 

the solution to d v t at= −0
1
2

2sinθ  is 

 



 

87. (a) If we subtract each value from the next larger value in the table, we find a set of 

numbers which are suggestive of a basic unit of charge: 1.64 × 10
−19

, 3.3 × 10
−19

, 

1.63 × 10
−19

, 3.35 × 10
−19

, 1.6 × 10
−19

, 1.63 × 10
−19

, 3.18 × 10
−19

, 3.24 ×10
−19

, where the 

SI unit Coulomb is understood.  These values are either close to a common 
191.6 10 Ce −≈ ×  value or are double that.  Taking this, then, as a crude approximation to 

our experimental e we divide it into all the values in the original data set and round to the 

nearest integer, obtaining n = 4,5,7,8,10,11,12,14, and 16. 

 

(b) When we perform a least squares fit of the original data set versus these values for n 

we obtain the linear equation: 

 

                                                    q = 7.18 × 10
−21

 + 1.633 × 10
−19

n . 

 

If we dismiss the constant term as unphysical (representing, say, systematic errors in our 

measurements) then we obtain e = 1.63 × 10
−19 

when we set n = 1 in this equation. 



 

88. Since both charges are positive (and aligned along the z axis) we have 

 

f
E

q

z d

q

z d
net =

−
+

+

L
N
MM

O
Q
PP

1

4 2 20

2 2πε / /
.

b g b g
 

 

For z d>>  we have (z ± d/2)
–2

 ≈ z
–2

, so 

 
f
E

q

z

q

z

q

z
net ≈ +FHG

I
KJ =

1

4

2

40

2 2

0

2π πε ε
.  
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1. The vector area 
f
A  and the electric field 

f
E  are shown on the diagram below. The angle 

θ  between them is 180° – 35° = 145°, so the electric flux through the area is 

 

( ) ( )2
3 2 2cos 1800 N C 3.2 10  m cos145 1.5 10  N m C.E A EA θ − −Φ = ⋅ = = × ° = − × ⋅

ff
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(e) We now have to add the flux through all six faces. One can easily verify that the flux 

through the front face is zero, while that through the right face is the opposite of that 

through the left one, or +16 N·m
2
/C. Thus the net flux through the cube is  

 

Φ = (–72 + 24 – 16 + 0 + 0 + 16) N·m
2
/C = – 48 N·m

2
/C. 

 

2. We use Φ = z ⋅
f f
E dA  and note that the side length of the cube is (3.0 m–1.0 m) = 2.0 m. 

 

(a) On the top face of the cube y = 2.0 m and ( ) ĵdA dA=
f

. Therefore, we have 

( )( )2ˆ ˆ ˆ ˆ4i 3 2.0 2 j 4i 18jE = − + = −
f

. Thus the flux is 

 

( ) ( ) ( )( )2 2 2

top top top

ˆ ˆ ˆ4i 18j j 18 18 2.0 N m C 72 N m C.E dA dA dAΦ = ⋅ = − ⋅ = − = − ⋅ = − ⋅∫ ∫ ∫
ff

 

 

(b) On the bottom face of the cube y = 0 and  dA dA
f

= −b ge j"j . Therefore, we have 

 E = − + = −4 3 0 2 4 62" " " "i j i jc h . Thus, the flux is 

 

( ) ( )( ) ( )2 2 2

bottom bottom bottom

ˆ ˆ ˆ4i 6 j j 6 6 2.0 N m C 24  N m C.E dA dA dAΦ = ⋅ = − ⋅ − = = ⋅ = + ⋅∫ ∫ ∫
ff

 

 

(c) On the left face of the cube ( )( )îdA dA= −
f

. So 

 

( ) ( )( ) ( )2 2 2

left left bottom 

ˆ ˆ ˆˆ 4i j i 4 4 2.0 N m C 16 N m C.yE dA E dA dAΦ = ⋅ = + ⋅ − = − = − ⋅ = − ⋅∫ ∫ ∫
f

 

(d) On the back face of the cube ( )( )k̂dA dA= −
f

. But since E
f

 has no z component 

0E dA⋅ =
ff

. Thus, Φ = 0. 



 

3. We use Φ = ⋅
f f
E A , where 

f
A A= =" . "j m j

2
140b g . 

 

(a) ( ) ( )2ˆ ˆ6.00 N C i 1.40 m j 0.Φ = ⋅ =  

 

(b) ( ) ( )2 2ˆ ˆ2.00 N C j 1.40 m j 3.92 N m C.Φ = − ⋅ = − ⋅  

 

(c) ( ) ( ) ( )2ˆ ˆ ˆ3.00 N C i 400 N C k 1.40 m j 0⎡ ⎤Φ = − + ⋅ =⎣ ⎦ . 

 

(d) The total flux of a uniform field through a closed surface is always zero. 



 

4. There is no flux through the sides, so we have two “inward” contributions to the flux, 

one from the top (of magnitude (34)(3.0)
2
) and one from the bottom (of magnitude 

(20)(3.0)
2
). With “inward” flux being negative, the result is Φ = – 486 N⋅m2

/C. Gauss’ 

law then leads to  

 
12 2 2 2 9

enc 0 (8.85 10 C /N m )( 486 N m C) 4.3 10 C.q ε − −= Φ = × ⋅ − ⋅ = − ×  



 

5. We use Gauss’ law: 0 qε Φ = , where Φ  is the total flux through the cube surface and q 

is the net charge inside the cube. Thus, 

 
6

5 2

12 2 2

0

1.8 10  C
2.0 10  N m C.

8.85 10  C N m

q

ε

−

−

×
Φ = = = × ⋅

× ⋅
 



 

6. The flux through the flat surface encircled by the rim is given by 2 .a EΦ = π  Thus, the 

flux through the netting is 

 
2 3 4 2(0.11 m) (3.0 10  N/C) 1.1 10  N m /Ca Eπ π2 − −′Φ = −Φ = − = − × = − × ⋅ . 



 

7. To exploit the symmetry of the situation, we imagine a closed Gaussian surface in the 

shape of a cube, of edge length d, with a proton of charge 191.6 10  Cq −= + ×  situated at 

the inside center of the cube. The cube has six faces, and we expect an equal amount of 

flux through each face. The total amount of flux is Φnet = q/ε0, and we conclude that the 

flux through the square is one-sixth of that. Thus,  
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9 2

12 2 2

0

1.6 10  C
3.01 10  N m C.

6 6(8.85 10  C N m )

q

ε

−
−

−

×
Φ = = = × ⋅

× ⋅
 



  

 

8. We note that only the smaller shell contributes a (non-zero) field at the designated 

point, since the point is inside the radius of the large sphere (and E = 0 inside of a 

spherical charge), and the field points towards the x− direction. Thus, with R = 0.020 m 

(the radius of the smaller shell), L = 0.10 m and x = 0.020 m, we obtain 

 

 

( )

2 2

2 2

2 2 2

0 0 0

2 6 2
4

12 2 2 2

4ˆ ˆ ˆ ˆ( j) j j j
4 4 ( ) ( )

(0.020 m) (4.0 10 C/m ) ˆ ˆj 2.8 10 N/C j .
(8.85 10 C /N m )(0.10 m 0.020 m)

R Rq
E E

r L x L x

π σ σ
πε πε ε

−

−

= − = − = − = −
− −

×
= − = − ×

× ⋅ −

f

 



 

9. Let A be the area of one face of the cube, Eu be the magnitude of the electric field at the 

upper face, and El  be the magnitude of the field at the lower face. Since the field is 

downward, the flux through the upper face is negative and the flux through the lower face 

is positive. The flux through the other faces is zero, so the total flux through the cube 

surface is ( ).uA E EΦ = −`  The net charge inside the cube is given by Gauss’ law: 

 
12 2 2 2

0 0

6

( ) (8.85 10  C / N m )(100 m) (100 N/C 60.0 N/C)

  3.54 10  C 3.54 C.

uq A E Eε ε

µ

−

−

= Φ = − = × ⋅ −

= × =
`

 



 

10. (a) The total surface area bounding the bathroom is 

 

( ) ( ) ( ) 22 2.5 3.0 2 3.0 2.0 2 2.0 2.5 37 m .A = × + × + × =  

 

The absolute value of the total electric flux, with the assumptions stated in the problem, is  

 
2 3 2| | | | | | (600 N/C)(37 m ) 22 10  N m / C.E A E AΦ = ⋅ = = = × ⋅∑

ff f
 

 

By Gauss’ law, we conclude that the enclosed charge (in absolute value) is 
7

enc 0| | | | 2.0 10  C.q ε −= Φ = ×  Therefore, with volume V = 15 m
3
, and recognizing that we 

are dealing with negative charges, the charge density is  

 
7

8 3enc

3

| | 2.0 10  C
1.3 10  C/m .

15 m

q

V
ρ

−
−×

= = = ×  

 

(b) We find (|qenc|/e)/V = (2.0 × 10
–7 

C/1.6 × 10
–19 

C)/15 m
3
 = 8.2 × 10

10
 excess electrons 

per cubic meter. 



 

( ) ( ) ( ) ( ) ( )( )( )2 2

=0 1.40

ˆ ˆ ˆ ˆ3.00 j j 3.00 j A j 3.00 1.40 1.40 8.23 N m C.
y y

y A y
=

Φ = ⋅ − + ⋅ = = ⋅  

 

(b) The charge is given by 

 

( )( )12 2 2 2 11

enc 0 8.85 10 C / N m 8.23 N m C 7.29 10  Cq ε − −= Φ = × ⋅ ⋅ = × . 

 

(c) The electric field can be re-written as 0
ˆ3.00 jE y E= +

f f
, where 0

ˆ ˆ4.00i 6.00jE = − +
f

 is a 

constant field which does not contribute to the net flux through the cube. Thus Φ  is still 

8.23 N⋅m2
/C. 

 

(d) The charge is again given by 

 

( )( )12 2 2 2 11

enc 0 8.85 10 C / N m 8.23 N m C 7.29 10  Cq ε − −= Φ = × ⋅ ⋅ = × . 

 

11. (a) Let A = (1.40 m)
2
. Then 



 

12. Eq. 23-6 (Gauss’ law) gives εοΦ = qenc .   

 

(a) Thus, the value 5 22.0 10 N m /CΦ = × ⋅  for small r leads to  

 
12 2 2 5 2 6 6

central 0 (8.85 10 C /N m )(2.0 10 N m /C) 1.77 10 C 1.8 10 Cq ε − − −= Φ = × ⋅ × ⋅ = × ≈ × . 
 

(b) The next value that Φ takes is 5 24.0 10 N m /CΦ = − × ⋅ , which implies 
6

enc 3.54 10 C.q −= − ×  But we have already accounted for some of that charge in part (a), so 

the result for part (b) is  

qA = qenc – qcentral = – 5.3 × 10
−6 

C. 

 

(c) Finally, the large r value for Φ is 5 26.0 10 N m /CΦ = × ⋅ , which implies 
6

total enc 5.31 10 C.q −= ×  Considering what we have already found, then the result is 

total enc central 8.9 .Aq q q Cµ− − = +  



 

13. The total flux through any surface that completely surrounds the point charge is q/ε0.  

 

(a) If we stack identical cubes side by side and directly on top of each other, we will find 

that eight cubes meet at any corner. Thus, one-eighth of the field lines emanating from 

the point charge pass through a cube with a corner at the charge, and the total flux 

through the surface of such a cube is q/8ε0. Now the field lines are radial, so at each of 

the three cube faces that meet at the charge, the lines are parallel to the face and the flux 

through the face is zero.  

 

(b) The fluxes through each of the other three faces are the same, so the flux through each 

of them is one-third of the total. That is, the flux through each of these faces is (1/3)(q/8ε0) 

= q/24ε0. Thus, the multiple is 1/24 = 0.0417. 

 



  

14. None of the constant terms will result in a nonzero contribution to the flux (see Eq. 

23-4 and Eq. 23-7), so we focus on the x dependent term only. In Si units, we have 

      

Enon-constant =  3x i
^
  . 

 

The face of the cube located at x = 0 (in the yz plane) has area A = 4 m
2
 (and it “faces” the 

+i
^
 direction) and has a “contribution” to the flux equal to   Enon-constant A = (3)(0)(4) = 0. 

The face of the cube located at x = −2 m has the same area A (and this one “faces” the –i
^
  

direction) and a contribution to the flux:   

 

−Enon-constant A = −(3)( −2)(4) = 24 N·m/C
2
. 

 

Thus, the net flux is Φ = 0 + 24 = 24 N·m/C
2
.  According to Gauss’ law, we therefore 

have qenc = εο Φ = 2.13 × 10
−10 

C.  



 

15. None of the constant terms will result in a nonzero contribution to the flux (see Eq. 

23-4 and Eq. 23-7), so we focus on the x dependent term only: 

      

Enon-constant =  (−4.00y
2 
)

 
 i
^
  (in SI units) . 

 

The face of the cube located at y = 4.00 has area A = 4.00 m
2
 (and it “faces” the +j

^
  

direction) and has a “contribution” to the flux equal to   

 

Enon-constant A = (−4)(4
2
)(4) = –256 N·m/C

2
. 

 

The face of the cube located at y = 2.00 m has the same area A (however, this one “faces” 

the –j
^
 direction) and a contribution to the flux:   

 

−Enon-constant A = − (−4)(2
2
)(4) = 64 N·m/C

2
. 

 

Thus, the net flux is Φ = (−256 + 64) N·m/C
2
 = −192 N·m/C

2
.  According to Gauss’s law, 

we therefore have   

 
12 2 2 2 9

enc 0 (8.85 10 C /N m )( 192 N m C) 1.70 10 C.q ε − −= Φ = × ⋅ − ⋅ = − ×  



 
[ ] [ ]2 2

1 1

2 2

1 1

1 3

2 1
0 1

1 3

0 1

( ) ( ) 10 2(4) 10 2(1)

6 6(1)(2) 12.

y z

yz x x
y z

y z

y z

E x x E x x dydz dy dz

dy dz

= =

= =

= =

= =

Φ = = − = = + − −

= = =

∫∫ ∫ ∫

∫ ∫
 

 

Similarly, the net flux through the two faces parallel to the xz plane is 

 
2 2

1 1

4 3

2 1
1 1

( ) ( ) [ 3 ( 3)] 0
x z

xz y y
x z

E y y E y y dxdz dy dz
= =

= =
⎡ ⎤Φ = = − = = − − − =⎣ ⎦∫∫ ∫ ∫ , 

 

and the net flux through the two faces parallel to the xy plane is 

 

 [ ] ( )2 2

1 1

4 1

2 1
1 0

( ) ( ) 3 2 (3)(1) 6 .
x y

xy z z
x y

E z z E z z dxdy dx dy b b b b
= =

= =
Φ = = − = = − = =∫∫ ∫ ∫  

 

Applying Gauss’ law, we obtain 

 

 enc 0 0 0 0( ) (6.00 0 12.0) 24.0xy xz yzq bε ε ε ε= Φ = Φ + Φ + Φ = + + =  

 

which implies that b = 2.00 N/C m⋅ . 

 

16. The total electric flux through the cube is E dAΦ = ⋅∫
ff

¶ . The net flux through the two 

faces parallel to the yz plane is  

 



 

17. (a) The area of a sphere may be written 4πR
2
= πD

2
. Thus, 

 

( )

6
7 2

22

2.4 10  C
4.5 10  C/m .

1.3 m

q

D
σ

−
−×

= = = ×
π π

 

(b) Eq. 23-11 gives 
7 2

4

12 2 2

0

4.5 10  C/m
5.1 10  N/C.

8.85 10  C / N m
E

σ
ε

−

−

×
= = = ×

× ⋅
 

 



18. Eq. 23-6 (Gauss’ law) gives εοΦ = qenc.   

 

(a) The value 5 29.0 10 N m /CΦ = − × ⋅   for small r leads to qcentral = – 7.97 × 10
−6 

C  or 

roughly – 8.0 µC.   

 

(b) The next (non-zero) value that Φ takes is 5 24.0 10 N m /CΦ = + × ⋅ , which implies 
6

enc 3.54 10 C.q −= ×   But we have already accounted for some of that charge in part (a), so 

the result is  

qA = qenc – qcentral = 11.5 × 10
−6 

C 12 Cµ≈ . 

 

(c) Finally, the large r value for Φ is 5 22.0 10 N m /C,Φ = − × ⋅  which implies 
6

total enc 1.77 10 C.q −= − ×  Considering what we have already found, then the result is   

 
qtotal enc  – qA  −  qcentral  =  –5.3 µC. 



 

19. (a) The charge on the surface of the sphere is the product of the surface charge 

density σ and the surface area of the sphere (which is 24 ,rπ  where r is the radius). Thus, 

 

( )
2

2 6 2 5 m
4 4 8.1 10  C/m 3.7 10  C.

2
q r σ − −1.2⎛ ⎞= π = π × = ×⎜ ⎟

⎝ ⎠
 

 

(b) We choose a Gaussian surface in the form of a sphere, concentric with the conducting 

sphere and with a slightly larger radius. The flux is given by Gauss’s law: 

 
5

6 2

12 2 2

0

3.66 10  C
4.1 10 N m / C .

8.85 10  C / N m

q

ε

−

−

×
Φ = = = × ⋅

× ⋅
 



 

20. Using Eq. 23-11, the surface charge density is 

 

( )( )5 12 2 2 6 2

0 2.3 10  N C 8.85 10 C / N m 2.0 10  C/m .Eσ ε − −= = × × ⋅ = ×  



 

21. (a) Consider a Gaussian surface that is completely within the conductor and surrounds 

the cavity. Since the electric field is zero everywhere on the surface, the net charge it 

encloses is zero. The net charge is the sum of the charge q in the cavity and the charge qw 

on the cavity wall, so q + qw = 0 and qw = –q = –3.0 × 10
–6

C. 

  

(b) The net charge Q of the conductor is the sum of the charge on the cavity wall and the 

charge qs on the outer surface of the conductor, so Q = qw + qs and 

 

( ) ( )6 6 510 10  C 3.0 10  C 1.3 10 C.sq Q qω
− − −= − = × − − × = + ×  



 
Here, the maximum value is  

 

( )
( ) ( )

8

4

max 12 2 2
0

2.0 10 C/m
1.2 10 N/C.

2 2 0.030 m 8.85 10 C / N m
E

rε

−

−

×λ
= = = ×

π π × ⋅
 

  

 

22. We imagine a cylindrical Gaussian surface A of radius r and unit length concentric 

with the metal tube. Then by symmetry enc

0

2 .
A

q
E dA rE

ε
⋅ = π =∫

ff
¶  

(a) For r < R, qenc = 0, so E = 0.  

 

(b) For r > R, qenc = λ, so 0( ) / 2 .E r rπ ε= λ With 82.00 10  C/mλ −= × and r = 2.00R = 

0.0600 m, we obtain  

 

( )
( )( )

8

3

12 2 2

2.0 10 C/m
5.99 10 N/C.

2 0.0600 m 8.85 10 C / N m
E

−

−

×
= = ×

π × ⋅
 

 

(c) The plot of E vs. r is shown below.  

 



 

23. The magnitude of the electric field produced by a uniformly charged infinite line is E 

= λ/2πε0r, where λ is the linear charge density and r is the distance from the line to the 

point where the field is measured. See Eq. 23-12. Thus, 

 

( )( )( )12 2 2 4 6

02 2 8.85 10 C / N m 4.5 10 N/C 2.0 m 5.0 10 C/m.Erε − −λ = π = π × ⋅ × = ×  



 

24. We combine Newton’s second law (F = ma) with the definition of electric field 

( F qE= ) and with Eq. 23-12 (for the field due to a line of charge).  In terms of 

magnitudes, we have (if r = 0.080 m and 66.0 10 C/mλ −= × )  

 

    ma = eE =  
e λ

2πεo r
      ⇒      a = 

e λ
2πεo r m

  = 2.1 × 10
17 

 m/s
2
  . 



 

25. (a) The side surface area A for the drum of diameter D and length h is given by 

A Dhπ= . Thus,  

 

( )( )( )( )12 2 2 5

0

7

8.85 10 C /N m 2.3 10  N/C 0.12 m 0.42 m

3.2 10 C.

q A Dh EDhσ σπ πε π −

−

= = = = × ⋅ ×

= ×
 

 

(b) The new charge is 

 

( ) ( )( )
( )( )

7 7
8.0 cm 28 cm

3.2 10 C 1.4 10 C.
12 cm 42 cm

A D h
q q q

A Dh

− −⎡ ⎤′ ′ ′π⎛ ⎞ ⎛ ⎞′ = = = × = ×⎢ ⎥⎜ ⎟ ⎜ ⎟π⎝ ⎠ ⎝ ⎠ ⎢ ⎥⎣ ⎦
 



 

 1 2
net 1 2

0 0

2 2

4 ( / 2) 4 ( / 2)
E E E

x L x L

λ λ
πε πε

= + = +
+ −

 . 

                   
Setting this equal to zero and solving for x we find  

 

 1 2

1 2

6.0 C/m ( 2.0 C/m) 8.0 cm
8.0 cm

2 6.0 C/m ( 2.0 C/m) 2

L
x

λ λ µ µ
λ λ µ µ

⎛ ⎞ ⎛ ⎞− − −
= = =⎜ ⎟ ⎜ ⎟+ + −⎝ ⎠⎝ ⎠

. 

 

26. We reason that point P (the point on the x axis where the net electric field is zero) 

cannot be between the lines of charge (since their charges have opposite sign).  We 

reason further that P is not to the left of “line 1” since its magnitude of charge (per unit 

length) exceeds that of “line 2”; thus, we look in the region to the right of “line 2” for P.  

Using Eq. 23-12, we have 



  

 

27. We assume the charge density of both the conducting cylinder and the shell are 

uniform, and we neglect fringing effect. Symmetry can be used to show that the electric 

field is radial, both between the cylinder and the shell and outside the shell. It is zero, of 

course, inside the cylinder and inside the shell. 

 

(a) We take the Gaussian surface to be a cylinder of length L, coaxial with the given 

cylinders and of larger radius r than either of them. The flux through this surface is 

2 ,rLEΦ = π  where E is the magnitude of the field at the Gaussian surface. We may 

ignore any flux through the ends. Now, the charge enclosed by the Gaussian surface is 

qenc = Q1 + Q2 = –Q1= –3.40×10
−12 

C. Consequently, Gauss’ law yields 0 enc2 ,r LE qπ ε =  

or 
12

enc

12 2 2 3

0

3.40 10  C
0.214 N/C,

2 2 (8.85 10  C / N m )(11.0 m)(20.0 1.30 10 m)

q
E

Lrε π

−

− −

− ×
= = = −

π × ⋅ × ×
 

 

or | | 0.214 N/C.E =  

 

(b) The negative sign in E indicates that the field points inward.  

 

(c) Next, for r = 5.00 R1, the charge enclosed by the Gaussian surface is qenc = Q1 = 

3.40×10
−12 

C. Consequently, Gauss’ law yields 0 enc2 ,r LE qπ ε =  or 

 
12

enc

12 2 2 3

0

3.40 10  C
0.855 N/C.

2 2 (8.85 10  C / N m )(11.0 m)(5.00 1.30 10 m)

q
E

Lrπε π

−

− −

×
= = =

× ⋅ × ×
 

 

(d) The positive sign indicates that the field points outward.  

 

(e) we consider a cylindrical Gaussian surface whose radius places it within the shell 

itself. The electric field is zero at all points on the surface since any field within a 

conducting material would lead to current flow (and thus to a situation other than the 

electrostatic ones being considered here), so the total electric flux through the Gaussian 

surface is zero and the net charge within it is zero (by Gauss’ law). Since the central rod 

has charge Q1, the inner surface of the shell must have charge Qin = –Q1= –3.40×10
−12 

C.  

 

(f) Since the shell is known to have total charge Q2 = –2.00Q1, it must have charge Qout = 

Q2 – Qin = –Q1= –3.40×10
−12 

C on its outer surface. 

 



28. As we approach r = 3.5 cm from the inside, we have 

 

internal

0

2
1000 N/C

4
E

r

λ
πε

= = . 

    

And as we approach r = 3.5 cm from the outside, we have 

 

external

0 0

2 2
3000 N/C

4 4
E

r r

λ λ
πε πε

′
= + = −  . 

 

Considering the difference (Eexternal  –  Einternal ) allows us to find λ′ (the charge per unit 

length on the larger cylinder).  Using r = 0.035 m, we obtain λ′ = –5.8 × 10
−9 

C/m.   



 

29. We denote the inner and outer cylinders with subscripts i and o, respectively. 

 

(a) Since ri < r = 4.0 cm < ro, 

 
6

6

12 2 2 2

0

5.0 10  C/m
( ) 2.3 10  N/C.

2 2 (8.85 10  C / N m )(4.0 10  m)

iE r
r

λ
ε

−

− −

×
= = = ×

π π × ⋅ ×
 

 

(b) The electric field
f
E r( )  points radially outward. 

 

(c) Since r > ro, 

 
6 6

5

12 2 2 2

0

5.0 10  C/m 7.0 10  C/m
( 8.0 cm) 4.5 10  N/C,

2 2 (8.85 10  C / N m )(8.0 10  m)

i oE r
rε

− −

− −

λ + λ × − ×
= = = = − ×

π π × ⋅ ×
 

 

or 5| ( 8.0 cm) | 4.5 10  N/C.E r = = ×  

 

(d) The minus sign indicates that ( )E r
f

 points radially inward. 



  

(b) Since the field is zero inside the conductor (in an electrostatic configuration), then 

there resides on the inner surface charge –q, and on the outer surface, charge +q (where q 

is the charge on the rod at the center). Therefore, with ri = 0.05 m, the surface density of 

charge is 
9

9 2

inner

2.0 10 C/m
6.4 10  C/m

2 2 2 (0.050 m)i i

q

r L r
σ

π

−
−− λ ×

= = − = − = − ×
π π

 

 

for the inner surface.  

 

(c) With ro = 0.10 m, the surface charge density of the outer surface is 

 

9 2

outer 3.2 10  C/m .
2 2o o

q

r L r
σ −+ λ

= = = + ×
π π

 

 

30. (a) In Eq. 23-12, λ = q/L where q is the net charge enclosed by a cylindrical Gaussian 

surface of radius r. The field is being measured outside the system (the charged rod 

coaxial with the neutral cylinder) so that the net enclosed charge is only that which is on 

the rod. Consequently, 

 
9

2

0 0

2(2.0 10 C/m)
2.4 10  N/C.

4 4 (0.15 m)
E

rε πε

−2λ ×
= = = ×

π

f
 

 



 

31. We denote the radius of the thin cylinder as R = 0.015 m. Using Eq. 23-12, the net 

electric field for r > R is given by 

 

net wire cylinder

0 02 2
E E E

r rε ε
′−λ λ

= + = +
π π

 

 

where –λ = –3.6 nC/m is the linear charge density of the wire and λ' is the linear charge 

density of the thin cylinder. We note that the surface and linear charge densities of the 

thin cylinder are related by 

 

cylinder (2 ) (2 ).q L RL Rσ σ′ ′= λ = π ⇒ λ = π  

 

Now, Enet outside the cylinder will equal zero, provided that 2πRσ = λ, or 

 
6

8 23.6 10  C/m
3.8 10  C/m .

2 (2 )(0.015 m)R

λσ
π

−
−×

= = = ×
π

 



 

(b) Once outside the cylinder, Eq. 23-12 is obeyed. To find λ = q/L we must find the total 

charge q. Therefore, 
0.04

2 11

0

1
 2 1.0 10  C/m.

q
Ar r L dr

L L
π −= = ×∫  

 

And the result, for r = 0.050 m, is 0| | /2 3.6 N/C.E rλ πε= =
f

 

 

32. To evaluate the field using Gauss’ law, we employ a cylindrical surface of area 2π r L 

where L is very large (large enough that contributions from the ends of the cylinder 

become irrelevant to the calculation). The volume within this surface is V = π r
2
 L, or 

expressed more appropriate to our needs: dV = 2π r L dr. The charge enclosed is, with 
6 52.5 10 C/mA −= × , 

2 4

enc
0

2 .
2

r

q Ar r L dr ALr
π

= π =∫  

By Gauss’ law, we find enc 0| | (2 ) / ;E rL q εΦ = π =
f

 we thus obtain 
3

0

.
4

Ar
E

ε
=

f
 

 

(a) With r = 0.030 m, we find | | 1.9 N/C.E =
f

 



 

33. In the region between sheets 1 and 2, the net field is E1 – E2 + E3  =  2.0 × 10
5  

N/C . 

 

In the region between sheets 2 and 3, the net field is at its greatest value: 

 

E1 + E2 + E3  =  6.0 × 10
5  

N/C . 

 

The net field vanishes in the region to the right of sheet 3, where  E1 + E2 = E3 .  We note 

the implication that σ3 is negative (and is the largest surface-density, in magnitude).  

These three conditions are sufficient for finding the fields: 

           

E1 =  1.0 × 10
5  

N/C ,  E2 =  2.0 × 10
5  

N/C ,   E3 =  3.0 × 10
5  

N/C . 

  

From Eq. 23-13, we infer (from these values of E) 

 

|σ3|

|σ2|
  = 

3.0 x 10
5  

N/C

2.0 x 10
5  

N/C
  = 1.5 . 

 

Recalling our observation, above, about σ3, we conclude   
σ3

σ2
  =  –1.5 . 



 

34. According to Eq. 23-13 the electric field due to either sheet of charge with surface 

charge density σ = 1.77× 10
−22 

C/m
2
 is perpendicular to the plane of the sheet (pointing 

away from the sheet if the charge is positive) and has magnitude E = σ/2ε0. Using the 

superposition principle, we conclude: 

 

(a) E = σ/ε0 = (1.77 × 10
−22

 C/m
2
)/(8.85 × 10

−12 2 2C /N m⋅ ) = 2.00×10
−11 

N/C, pointing in 

the upward direction, or 11 ˆ(2.00 10  N/C)jE −= ×
f

. 

 

(b) E = 0; 

 

(c) and, E = σ/ε0, pointing down, or 11 ˆ(2.00 10  N/C)jE −= − ×
f

. 



  

distributed uniformly over both sides of the original plate, with half being on the side 

near the field point. Thus, 
6

4 2

2

6.0 10  C
4.69 10  C/m .

2 2(0.080 m)

q

A
σ

−
−×

= = = ×  

 

The magnitude of the field is 

 
4 2

7

12 2 2

0

4.69 10  C/m
5.3 10  N/C.

8.85 10  C / N m
E

σ
ε

−

−

×
= = = ×

× ⋅
 

 

The field is normal to the plate and since the charge on the plate is positive, it points 

away from the plate. 

 

(b) At a point far away from the plate, the electric field is nearly that of a point particle 

with charge equal to the total charge on the plate. The magnitude of the field is 
2 2

0/ 4 /E q r kq rπε= = , where r is the distance from the plate. Thus, 

 

( ) ( )
( )

9 2 2 6

2

8.99 10 N m / C 6.0 10 C
60 N/C.

30 m
E

−× ⋅ ×
= =  

 

35. (a) To calculate the electric field at a point very close to the center of a large, 

uniformly charged conducting plate, we may replace the finite plate with an infinite plate 

with the same area charge density and take the magnitude of the field to be E = σ/ε0, 

where σ is the area charge density for the surface just under the point. The charge is 



 

36. The charge distribution in this problem is equivalent to that of an infinite sheet of 

charge with surface charge density σ = 4.50 ×10
−12 

C/m
2 

plus a small circular pad of 

radius R = 1.80 cm located at the middle of the sheet with charge density –σ. We denote 

the electric fields produced by the sheet and the pad with subscripts 1 and 2, respectively. 

Using Eq. 22-26 for 2E
f

, the net electric field E
f

 at a distance z = 2.56 cm along the 

central axis is then 

 

( )
1 2

2 2 2 2
0 0 0

12 2 2

12 2 2 2 2 2 2

ˆ ˆ ˆk 1 k k
2 2 2

(4.50 10 C/m )(2.56 10  m) ˆ ˆk (0.208 N/C) k
2(8.85 10 C /N m ) (2.56 10  m) (1.80 10  m)

z z
E E E

z R z R

σσ σ
ε ε ε

− −

− − −

⎛ ⎞−⎛ ⎞
= + = + − =⎜ ⎟⎜ ⎟

+ +⎝ ⎠ ⎝ ⎠

× ×
= =

× ⋅ × + ×

f f f

 



( )0
ˆ/ 2 iE σ ε=

f
 (from the right plate) ( )0

ˆ/ 2 ( i)σ ε+ − (from the left one) = 0. 

 

(c) Between the plates: 

 

( ) ( )
22 2

11

12 2 2

0 0 0

7.00 10 C/mˆ ˆ ˆ ˆ ˆ( i) i ( i) i 7.91 10 N/C i.
2 2 8.85 10 C /N m

E
σ σ σ
ε ε ε

−
−

−

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞×
= − + − = − = − = − ×⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟× ⋅⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

f

 

37. We use Eq. 23-13. 

 

(a) To the left of the plates:  

 

( )0
ˆ/ 2 ( i)E σ ε= −

f
 (from the right plate) 0

ˆ( / 2 )iσ ε+  (from the left one) = 0. 

 

(b) To the right of the plates:  

 



 

38. We use the result of part (c) of Problem 23-35 to obtain the surface charge density. 

 

( )12 2 2 10 2

0 0/ 8.85 10 C /N m (55 N/C) 4.9 10  C/m .E Eσ ε σ ε − −= ⇒ = = × ⋅ = ×  

 

Since the area of the plates is 21.0 mA = , the magnitude of the charge on the plate is 
104.9 10  C.Q Aσ −= = ×  



 

39. The charge on the metal plate, which is negative, exerts a force of repulsion on the 

electron and stops it. First find an expression for the acceleration of the electron, then use 

kinematics to find the stopping distance. We take the initial direction of motion of the 

electron to be positive. Then, the electric field is given by E = σ/ε0, where σ is the surface 

charge density on the plate. The force on the electron is F = –eE = –eσ/ε0 and the 

acceleration is 

0

F e
a

m m

σ
ε

= = −  

 

where m is the mass of the electron. The force is constant, so we use constant acceleration 

kinematics. If v0 is the initial velocity of the electron, v is the final velocity, and x is the 

distance traveled between the initial and final positions, then 2 2

0 2 .v v ax− =  Set v = 0 and 

replace a with –eσ/ε0m, then solve for x. We find 

 
2 2

0 0 0 .
2 2

v mv
x

a e

ε
σ

= − =  

 

Now 21
02

mv  is the initial kinetic energy K0, so 

 

( )( )
( )( )

12 2 2 17

40 0

19 6 2

8.85 10 C / N m 1.60 10 J
4.4 10 m.

1.60 10 C 2.0 10 C/m

K
x

e

ε
σ

− −
−

− −

× ⋅ ×
= = = ×

× ×
 



        a = 
eσ

2εo m
  = slope of the graph  ( = 2.0 × 10

5 
m/s divided by 7.0 × 10

−12 
s)  . 

 

Thus we obtain σ = 2.9 ×10
−6 

C/m
2
. 

 

 

40. The field due to the sheet is E = 
σ

2εο
 .  The force (in magnitude) on the electron (due to 

that field) is F = eE, and assuming it’s the only force then the acceleration is 

 



41. The forces acting on the ball are shown in the diagram on the 

right. The gravitational force has magnitude mg, where m is the 

mass of the ball; the electrical force has magnitude qE, where q is 

the charge on the ball and E is the magnitude of the electric field at 

the position of the ball; and, the tension in the thread is denoted by 

T. The electric field produced by the plate is normal to the plate and 

points to the right. Since the ball is positively charged, the electric 

force on it also points to the right. The tension in the thread makes 

the angle θ (= 30°) with the vertical. 

 

Since the ball is in equilibrium the net force on it vanishes. The sum of the horizontal 

components yields  

qE – T sin θ = 0 

 

and the sum of the vertical components yields  

 

cos 0T mgθ − = . 

 

The expression T = qE/sin θ, from the first equation, is substituted into the second to 

obtain qE = mg tan θ. The electric field produced by a large uniform plane of charge is 

given by E = σ/2ε0, where σ is the surface charge density. Thus, 

 

0

tan
2

q
mg

σ θ
ε

=  

and 

( )( )( )12 2 2 6 2

0

8

9 2

2 8.85 10 C / N.m 1.0 10 kg 9.8 m/s tan 302 tan

2.0 10 C

5.0 10 C/m .

mg

q

ε θσ
− −

−

−

× × °
= =

×

= ×

 



 

If d = 0.20 m (which is less than the magnitude of r found above), then neither of the 

points (x ≈ ± 0.691 m) is in the “forbidden region” between the particle and the sheet.  

Thus, both values are allowed. Thus, we have 

 

(a) x = 0.691 m on the positive axis, and  

 

(b) x = − 0.691 m on the negative axis. 

 

(c) If, however, d = 0.80 m (greater than the magnitude of r found above), then one of the 

points (x ≈ −0.691 m) is in the “forbidden region” between the particle and the sheet and 

is disallowed.  In this part, the fields cancel only at the point x ≈ +0.691 m. 

  

 

42. The point where the individual fields cancel cannot be in the region between the sheet 

and the particle (−d < x < 0) since the sheet and the particle have opposite-signed charges.  

The point(s) could be in the region to the right of the particle (x > 0) and in the region to 

the left of the sheet (x < d); this is where the condition 

 

 
2

0 0

| |

2 4

Q

r

σ
ε πε

=  

 

must hold.  Solving this with the given values, we find r = x = ± 3/2π  ≈ ± 0.691 m.  



 

(d) For x = 26.0 mm = 2.60 × 10
−2

 m, we take a Gaussian surface of the same shape and 

orientation, but with x > d/2, so the left and right faces are outside the slab. The total flux 

through the surface is again 22EaΦ =  but the charge enclosed is now q = a
2
dρ. Gauss’ 

law yields 2ε0Ea
2
 = a

2
dρ, so 

 
15 3 3

6

12 2 2

0

(5.80 10 C/m )(9.40 10  m)
3.08 10  N/C.

2 2(8.85 10 C /N m )

d
E

ρ
ε

− −
−

−

× ×
= = = ×

× ⋅
 

 

43. We use a Gaussian surface in the form of a box with rectangular sides. The cross 

section is shown with dashed lines in the diagram below. It is centered at the central plane 

of the slab, so the left and right faces are each a distance x from the central plane. We 

take the thickness of the rectangular solid to be a, the same as its length, so the left and 

right faces are squares.  

 

The electric field is normal to the left and right faces and is uniform 

over them. Since ρ = 5.80 fC/m
3
 is positive, it points outward at 

both faces: toward the left at the left face and toward the right at the 

right face. Furthermore, the magnitude is the same at both faces. 

The electric flux through each of these faces is Ea
2
. The field is 

parallel to the other faces of the Gaussian surface and the flux 

through them is zero. The total flux through the Gaussian surface is 
22 .EaΦ =  The volume enclosed by the Gaussian surface is 2a

2
x 

and the charge contained within it is 22q a xρ= . Gauss’ law yields 

 

2ε0Ea
2
 = 2a

2
xρ. 

 

We solve for the magnitude of the electric field: 0/ .E xρ ε=  

 

(a) For x =0, E =0. 

 

(b) For x = 2.00 mm = 2.00 × 10
−3

 m, 

 
15 3 3

6

12 2 2

0

(5.80 10 C/m )(2.00 10  m)
1.31 10  N/C.

8.85 10 C /N m

x
E

ρ
ε

− −
−

−

× ×
= = = ×

× ⋅
 

 

(c) For x = d/2 = 4.70 mm = 4.70 × 10
−3

 m, 

 
15 3 3

6

12 2 2

0

(5.80 10 C/m )(4.70 10  m)
3.08 10  N/C.

8.85 10 C /N m

x
E

ρ
ε

− −
−

−

× ×
= = = ×

× ⋅
 



 

44. (a) The flux is still 2750 N m /C− ⋅ , since it depends only on the amount of charge 

enclosed. 

 

(b) We use 0/q εΦ =  to obtain the charge q: 

 

( )( )12 2 2 2 9

0 8.85 10 C /N m 750 N m / C 6.64 10  C.q ε − −= Φ = × ⋅ − ⋅ = − ×  



 

45. Charge is distributed uniformly over the surface of the sphere and the electric field it 

produces at points outside the sphere is like the field of a point particle with charge equal 

to the net charge on the sphere. That is, the magnitude of the field is given by E = 

|q|/4πε0r
2
, where |q| is the magnitude of the charge on the sphere and r is the distance 

from the center of the sphere to the point where the field is measured. Thus, 

 

( ) ( )2 3

2 9

0 9 2 2

0.15 m 3.0 10  N/C
| | 4 7.5 10  C.

8.99 10  N m / C
q r Eε −

×
= π = = ×

× ⋅
 

 

The field points inward, toward the sphere center, so the charge is negative, i.e., 
97.5 10 C.q −= − ×  



 

46. We determine the (total) charge on the ball by examining the maximum value (E = 

5.0 × 10
7 

N/C) shown in the graph (which occurs at r = 0.020 m).  Thus, from 
2

0/ 4 ,E q rπε=  we obtain 

 
2 7

2 6

0 9 2 2

(0.020 m) (5.0 10 N/C)
4 2.2 10 C

8.99 10 N m C
q r Eπε −×

= = = ×
× ⋅

 . 



  

 

47. (a) Since r1 = 10.0 cm <  r = 12.0 cm < r2 = 15.0 cm, 

 

( )( )
( )

9 2 2 8

41

22

0

8.99 10  N m /C 4.00 10  C1
( ) 2.50 10  N/C.

4 0.120 m

q
E r

rε

−× ⋅ ×
= = = ×

π
 

 

(b) Since r1 < r2 < r = 20.0 cm, 

 

( )( )( )
( )

9 2 2 8

41 2

2 2
0

8.99 10  N m / C 4.00 2.00 1 10  C1
( ) 1.35 10  N/C.

4 0.200 m

q q
E r

rε

−× ⋅ + ×+
= = = ×

π
 

 



48. The point where the individual fields cancel cannot be in the region between the 

shells since the shells have opposite-signed charges.  It cannot be inside the radius R of 

one of the shells since there is only one field contribution there (which would not be 

canceled by another field contribution and thus would not lead to zero net field).  We note 

shell 2 has greater magnitude of charge (|σ2|A2) than shell 1, which implies the point is 

not to the right of shell 2 (any such point would always be closer to the larger charge and 

thus no possibility for cancellation of equal-magnitude fields could occur).  Consequently, 

the point should be in the region to the left of shell 1 (at a distance r > R1 from its center); 

this is where the condition 

     1 2
1 2 2 2

0 0

| | | |

4 4 ( )

q q
E E

r r Lπε πε
= ⇒ =

+
 

or  

1 1 2 2

2 2

0 0

| |

4 4 ( )

A A

r r L

σ σ
πε πε

=
+

 . 

 

Using the fact that the area of a sphere is A = 4πR
2
 ,  this condition simplifies to 

 

r = 
L

(R2 /R1) |σ2|/σ1  −  1
   =  3.3 cm . 

 

We note that this value satisfies the requirement r > R1.  The answer, then, is that the net 

field vanishes at x = −r  = −3.3 cm. 



  

 

The electric field is radial, so the flux through the Gaussian surface is Φ = 4 2πr Eg , where 

E is the magnitude of the field. Gauss’ law yields  

 

4 20

2 2 2π πε Er q A r ag g= + − d i.  
We solve for E: 

E
q

r
A

Aa

rg g

= + −
L
N
MM

O
Q
PP

1

4
2

2

0

2

2

2π
π

π
ε

  .  

 

For the field to be uniform, the first and last terms in the brackets must cancel. They do if 

q – 2πAa
2
 = 0 or A = q/2πa

2
. With a = 2.00 × 10

−2 
m and q = 45.0 × 10

−15 
C, we have 

11 21.79 10 C/m .A −= ×  

 

49. To find an expression for the electric field inside the shell in terms of A and the 

distance from the center of the shell, select A so the field does not depend on the distance. 

We use a Gaussian surface in the form of a sphere with radius rg, concentric with the 

spherical shell and within it (a < rg < b). Gauss’ law will be used to find the magnitude of 

the electric field a distance rg from the shell center. The charge that is both in the shell 

and within the Gaussian sphere is given by the integral q dVs = zρ  over the portion of the 

shell within the Gaussian surface. Since the charge distribution has spherical symmetry, 

we may take dV to be the volume of a spherical shell with radius r and infinitesimal 

thickness dr: dV r dr= 4 2π . Thus, 

 

( )2 2 2 24 4   4    2  .
g g gr r r

s g
a a a

A
q r dr r dr A r dr A r a

r
π ρ π π π= = = = −∫ ∫ ∫  

 

The total charge inside the Gaussian surface is 

 

q q q A r as g+ = + −2 2 2π  d i . 



(f) For r ≥ b we have 2

total / 4E q rε0= π  or 

 
3

2

0

.
3

b a
E

r

ρ
ε

3−
=  

 

Thus, for r = 3.00b = 6.00a, the electric field is  

 
3 3 9 3

2 12 2 2
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(2.00 ) 7 (1.84 10 C/m )(0.100 m) 7
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50. The field is zero for 0 ≤ r ≤ a as a result of Eq. 23-16. Thus, 

 

(a) E = 0 at r = 0, 

 

(b) E = 0 at r = a/2.00, and  

 

(c) E = 0 at r = a.  

 

For a ≤ r ≤ b the enclosed charge qenc (for a ≤ r ≤ b) is related to the volume by 

 

q
r a

enc = −
F
HG

I
KJρ

π π4

3

4

3

3 3

. 

Therefore, the electric field is 

 

E
q

r r

r a r a

r
= = −

F
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I
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−1

4 4

4

3

4

3 30

2

0

2

3 3

0

3 3

2πε
ρ

πε
π π ρ

ε
enc  

for a ≤ r ≤ b.  

 

(d) For r =1.50a, we have  

 
3 3 9 3

2 12 2 2

0 0

(1.50 ) 2.375 (1.84 10 C/m )(0.100 m) 2.375
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−

−
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(e) For r = b=2.00a, the electric field is  

 
3 3 9 3

2 12 2 2

0 0

(2.00 ) 7 (1.84 10 C/m )(0.100 m) 7
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−
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(e) In the region b < r < c, since the shell is conducting, the electric field is zero. Thus, for 

r = 2.30a, we have E = 0.  

 

(f) For r > c, the charge enclosed by the Gaussian surface is zero. Gauss’ law yields 

4 0 02πr E E= ⇒ = .  Thus, E = 0 at r = 3.50a. 

 

(g) Consider a Gaussian surface that lies completely within the conducting shell. Since 

the electric field is everywhere zero on the surface, 
f f
E dA⋅ =z 0  and, according to Gauss’ 

law, the net charge enclosed by the surface is zero. If Qi is the charge on the inner surface 

of the shell, then q1 + Qi = 0 and Qi = –q1 = –5.00 fC.  

 

(h) Let Qo be the charge on the outer surface of the shell. Since the net charge on the shell 

is –q, Qi + Qo = –q1. This means  
 

Qo = –q1 – Qi = –q1 –(–q1) = 0. 

 

51. At all points where there is an electric field, it is radially outward. For each part of the 

problem, use a Gaussian surface in the form of a sphere that is concentric with the sphere 

of charge and passes through the point where the electric field is to be found. The field is 

uniform on the surface, so 24E dA r E⋅ = π∫
ff

¶ , where r is the radius of the Gaussian surface. 
 

For r < a, the charge enclosed by the Gaussian surface is q1(r/a)
3
. Gauss’ law yields 

 
3

2 1 1

3

0 0

4 .
4

q q rr
r E E

a a
π

ε πε
⎛ ⎞⎛ ⎞= ⇒ =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 

 

(a) For r = 0, the above equation implies E = 0. 
 

(b) For r = a/2, we have  
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( / 2) (8.99 10 N m /C )(5.00 10 C)
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−

× ⋅ ×
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(c) For r = a, we have  
 

9 2 2 15
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2 2 2

0

(8.99 10 N m /C )(5.00 10 C)
0.112 N/C.

4 (2.00 10 m)

q
E
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× ⋅ ×
= = =
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In the case where  a < r < b, the charge enclosed by the Gaussian surface is q1, so Gauss’ 

law leads to 

2 1 1

2

0 0

4 .
4

q q
r E E

r
π

ε πε
= ⇒ =  

(d) For r = 1.50a, we have  
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52. Let EA designate the magnitude of the field at r = 2.4 cm.  Thus EA = 2.0 × 10
7 

N/C, 

and is totally due to the particle. Since 2

particle 0/ 4 ,E q rπε=  then the field due to the 

particle at any other point will relate to EA  by a ratio of distances squared.  Now, we note 

that at r = 3.0 cm the total contribution (from particle and shell) is 8.0 × 10
7 

N/C.  

Therefore, 

Eshell + Eparticle =  Eshell  +  (2.4/3)
2 
EA = 8.0 × 10

7 
N/C . 

 

Using the value for EA noted above, we find Eshell = 6.6 × 10
7 

N/C.  Thus, with r = 0.030 

m, we find the charge Q using 2

shell 0/ 4E Q rπε= : 
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53. We use 

2enc

2 2 0
0 0

1
( )  ( )4

4 4

rq
E r r r dr

r r
ρ

ε ε
= = ∫ π

π π
 

 

to solve for ρ(r) and obtain 

 

ρ ε ε ε( ) ( ) .r
r

d

dr
r E r

r

d

dr
Kr K r= = =0

2

2 0

2

6

0

36c h  



Also, outside sphere 2 we have  

 

2 2
2 2 2

0 0

| | | |

4 4 (1.50 )

q q
E

r Rπε πε
= =  . 

Equating these and solving for the ratio of charges, we arrive at  
q2

q1
  =  

9

8
  = 1.125.  

 

54. Applying Eq. 23-20, we have 
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| | | | | |1
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(d) For r = R, the electric field is 
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55. (a) We integrate the volume charge density over the volume and require the result be 

equal to the total charge: 

 

2

0
4  .

R

dx dy dz dr r Qρ ρ= π =∫ ∫ ∫ ∫  

 

Substituting the expression ρ =ρsr/R, with ρs= 14.1 pC/m
3
, and performing the integration 

leads to 
4

4
4

s R
Q

R

ρ ⎛ ⎞⎛ ⎞π =⎜ ⎟⎜ ⎟
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or 

 3 12 3 3 15(14.1 10  C/m )(0.0560 m) 7.78 10  C.sQ Rπρ π − −= = × = ×  

 

(b) At r = 0, the electric field is zero (E = 0) since the enclosed charge is zero. 

 

At a certain point within the sphere, at some distance r from the center, the field (see Eq. 

23-8 through Eq. 23-10) is given by Gauss’ law: 
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q
E

rε
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π
 

 

where qenc is given by an integral similar to that worked in part (a): 
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Therefore, 
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(c) For r = R/2.00, where R = 5.60 cm, the electric field is 
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(e) The electric field strength as a function of r is depicted below: 

 

 



 

56. (a) We consider the radial field produced at points within a uniform cylindrical 

distribution of charge. The volume enclosed by a Gaussian surface in this case is L rπ 2 . 

Thus, Gauss’ law leads to 
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(b) We note from the above expression that the magnitude of the radial field grows with r. 

 

(c) Since the charged powder is negative, the field points radially inward. 

 

(d) The largest value of r which encloses charged material is rmax = R. Therefore, with 

| | .ρ = 0 0011 C m3  and R = 0.050 m, we obtain 

 
3

6

max 12 2 2

0

| | (0.0011 C m )(0.050 m)
3.1 10 N C.

2 2(8.85 10 C /N m )

R
E

ρ
ε −= = = ×

× ⋅
 

 

(e) According to condition 1 mentioned in the problem, the field is high enough to 

produce an electrical discharge (at r = R). 



(b) At r = R/2, the magnitude of the field is 

 

 
2 2

0 0

/ 8 1

4 ( / 2) 2 4

Q Q
E

R Rπε πε
= =  

 

and is equivalent to half the field at the surface. Thus, the ratio is 0.500. 

 

57. (a) Since the volume contained within a radius of  
1

2
 R is one-eighth the volume 

contained within a radius of R, so the charge at 0 < r < R/2  is Q/8. The fraction is 1/8 = 

0.125.  

 



 

58. Since the charge distribution is uniform, we can find the total charge q by multiplying 

ρ by the spherical volume ( 
4

3
 πr

3
 ) with r = R =  0.050 m.  This gives q = 1.68 nC. 

 

(a) Applying Eq. 23-20 with r = 0.035 m, we have 3

internal 3

0

| |
4.2 10 N/C

4

q r
E

Rπε
= = ×  . 

      

(b) Outside the sphere we have (with r = 0.080 m)  

 
9 2 2 9

3

external 2 2

0

| | (8.99 10 N m C )(1.68 10 C)
2.4 10 N/C

4 (0.080 m)

q
E

rπε

−× ⋅ ×
= = = ×  . 



 

59. The initial field (evaluated “just outside the outer surface” which means it is 

evaluated at r = 0.20 m) is related to the charge q on the hollow conductor by Eq. 23-15.  

After the point charge Q is placed at the geometric center of the hollow conductor, the 

final field at that point is a combination of the initial and that due to Q (determined by Eq. 

22-3). 

 

(a) q = 4πεο r
2 
Einitial =  +2.0 × 10

−9 
C. 

 

(b) Q= 4πεο r
2
(Efinal − Einitial) =  −1.2 × 10

−9 
C. 

 

(c) In order to cancel the field (due to Q) within the conducting material, there must be an 

amount of charge equal to –Q distributed uniformly on the inner surface.  Thus, the 

answer is +1.2 × 10
−9 

C. 

 

(d) Since the total excess charge on the conductor is q and is located on the surfaces, then 

the outer surface charge must equal the total minus the inner surface charge.  Thus, the 

answer is  2.0 × 10
−9 

C – 1.2 × 10
−9 

C = +0.80 × 10
−9 

C. 



where r is measured from the center of the ball (to the proton).This agrees with 

Coulomb’s law from Chapter 22.   We note that if r = R then this expression becomes 

 

FR  =   
e q

4πεo R
2 . 

 

(a) If we require F = 
1

2
 FR , and solve for r, we obtain r = 2 R.  Since the problem asks 

for the measurement from the surface then the answer is  2 R  – R = 0.41R.  
 

(b) Now we require Finside = 
1

2
 FR where Finside = eEinside and Einside is given by Eq. 23-20.  

Thus, 

 e 
⎝⎜
⎛

⎠⎟
⎞q

 4πεo R
2  r  = 

1

2
  

e q

4πεo R
2       ⇒        r = 

1

2
 R = 0.50 R . 

 

60. The field at the proton’s location (but not caused by the proton) has magnitude E.  

The proton’s charge is  e.  The ball’s charge has magnitude q.  Thus, as long as the proton 

is at r ≥ R then the force on the proton (caused by the ball) has magnitude 

 

F = eE = e 
⎝⎜
⎛

⎠⎟
⎞q

 4πεo r
2    =   

e q

4πεo r
2  

 



 

61. (a) At x = 0.040 m, the net field has a rightward (+x) contribution (computed using Eq. 

23-13) from the charge lying between x = –0.050 m and x = 0.040 m, and a leftward (–x) 

contribution (again computed using Eq. 23-13) from the charge in the region from 

0.040 mx =  to x = 0.050 m. Thus, since σ = q/A = ρV/A = ρ∆x in this situation, we have 

 
9 3

12 2 2

0 0

(0.090 m) (0.010 m) (1.2 10 C/m )(0.090 m 0.010 m)
5.4 N C.

2 2 2(8.85 10 C /N m )
E

ρ ρ
ε ε

−

−

× −
= − = =

× ⋅

f
 

 

(b) In this case, the field contributions from all layers of charge point rightward, and we 

obtain 
9 3

12 2 2

0

(0.100m) (1.2 10 C/m )(0.100m)
6.8 N C.

2 2(8.85 10 C /N m )
E

ρ
ε

−

−

×
= = =

× ⋅

f
 



 

62. From Gauss’s law, we have  

 
2 9 2 2

2enc

12 2 2

0 0

(8.0 10 C/m ) (0.050 m)
7.1 N m /C

8.85 10 C /N m

q rσπ π
ε ε

−

−

×
Φ = = = = ⋅

× ⋅
 . 

 



  

63. (a) For r < R, E = 0 (see Eq. 23-16). 

 

(b) For r slightly greater than R, 

 

( )( )
( )

29 2 7

4

22 2

0 0

8.99 10 N m C 2.00 10 C1
2.88 10 N C.

4 4 0.250m
R

q q
E

r Rε ε

−× ⋅ ×
= ≈ = = ×

π π
 

 

(c) For r > R, 

 

( )
22

4

2

0

1 0.250  m
2.88 10 N C 200 N C.

4 3.00 m
R

q R
E E

r rε
⎛ ⎞⎛ ⎞= = = × =⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠π
 



 

64. (a) There is no flux through the sides, so we have two contributions to the flux, one 

from the x = 2 end (with Φ2 = +(2 + 2)( π (0.20)
2
) = 0.50 N·m

2
/C) and one from the x = 0 

end (with Φ0 = –(2)( π (0.20)
2
)).  

 

(b) By Gauss’ law we have qenc = ε0 (Φ2 + Φ0) = 2.2 × 10
–12

 C. 

 



65. Since the fields involved are uniform, the precise location of P is not relevant; what is 

important is it is above the three sheets, with the positively charged sheets contributing 

upward fields and the negatively charged sheet contributing a downward field, which 

conveniently conforms to usual conventions (of upward as positive and downward as 

negative). The net field is directed upward ˆ( j)+ , and (from Eq. 23-13) its magnitude is 

 
6 2

431 2

12 2 2

0 0 0

1.0 10 C/m
| | 5.65 10 N C.

2 2 2 2(8.85 10 C /N m )
E

σσ σ
ε ε ε

−

−

×
= + + = = ×

× ⋅

f
 

 

In unit-vector notation, we have 4 ˆ(5.65 10  N/C) jE = ×
f

. 



 

66. Let Φ0

310= ⋅N m C2 . The net flux through the entire surface of the dice is given by 

 

Φ Φ Φ Φ Φ= = − = − + − + − + =
= =

∑ ∑n

n

n

n

n
1

6

0 0 0

1

6

1 1 2 3 4 5 6 3b g b g . 

 

Thus, the net charge enclosed is 

 

( )( )12 2 2 3 2 8

0 0 03 3 8.85 10 C /N m 10 N m /C 2.66 10 C.q ε ε − −= Φ = Φ = × ⋅ ⋅ = ×  



 

67. We choose a coordinate system whose origin is at the center of the flat base, such that 

the base is in the xy plane and the rest of the hemisphere is in the z > 0 half space. 

 

(a) ( )2 2 2 2ˆ ˆk k (0.0568 m) (2.50 N/C) 0.0253 N m /C.R E R Eπ π πΦ = − ⋅ = − = − = − ⋅   

 

(b) Since the flux through the entire hemisphere is zero, the flux through the curved 

surface is 2 2

base 0.0253 N m /C.c R EΦ = −Φ = = ⋅
f

π  



 

68. (a) The direction of the electric field at P1 is away from q1 and its magnitude is 

 
f
E

q

r
= =

× ⋅ ×
= ×

−

4

8 99 10 10 10

0 015
4 0 10

0 1

2

9 2 7
6

πε
( . ) ( . )

( .
.

N m C C

m)
N C.

2

2
 

 

(b) 0E =
f

, since P2 is inside the metal. 

 



  

69. We use Eqs. 23-15, 23-16 and the superposition principle. 

 

(a) E = 0 in the region inside the shell. 

 

(b) 24 .aE q rε= 0π  

 

(c) 2

0( ) / 4 .a bE q q rπε= +  

 

(d) Since E = 0 for r < a the charge on the inner surface of the inner shell is always zero. 

The charge on the outer surface of the inner shell is therefore qa. Since E = 0 inside the 

metallic outer shell the net charge enclosed in a Gaussian surface that lies in between the 

inner and outer surfaces of the outer shell is zero. Thus the inner surface of the outer shell 

must carry a charge –qa, leaving the charge on the outer surface of the outer shell to be 

b aq q+ . 



 

70. The net enclosed charge q is given by 

 

( ) ( )12 2 2 2 10

0 8.85 10 C /N m 48 N m C 4.2 10 C.q ε − −= Φ = × ⋅ − ⋅ = − ×  



 

71. The proton is in uniform circular motion, with the electrical force of the sphere on the 

proton providing the centripetal force. According to Newton’s second law, F = mv
2
/r, 

where F is the magnitude of the force, v is the speed of the proton, and r is the radius of 

its orbit, essentially the same as the radius of the sphere. The magnitude of the force on 

the proton is F = eq/4πε0r
2
, where q is the magnitude of the charge on the sphere. Thus, 

 
2

2

0

1

4

eq mv

r rε
=

π
 

so 

( )( ) ( )
( )( )

2
27 52

90

9 2 2 9

1.67 10  kg 3.00 10  m/s 0.0100 m4
1.04 10  C.

8.99 10  N m / C 1.60 10  C

mv r
q

e

ε
−

−
−

× ×π
= = = ×

× ⋅ ×
 

 

The force must be inward, toward the center of the sphere, and since the proton is 

positively charged, the electric field must also be inward. The charge on the sphere is 

negative: q = –1.04 × 10
–9

 C. 



2 2

0 0 0

1 1

4 4

q q
E

r r

σ
ε ε ε

⎛ ⎞= = =⎜ ⎟π π⎝ ⎠
 

 

which we recognize as the field of a point charge (see Eq. 22-3). 

 

72. We interpret the question as referring to the field just outside the sphere (that is, at 

locations roughly equal to the radius r of the sphere). Since the area of a sphere is A = 

4πr
2
 and the surface charge density is σ = q/A (where we assume q is positive for brevity), 

then 



 

73. The electric field is radially outward from the central wire. We want to find its 

magnitude in the region between the wire and the cylinder as a function of the distance r 

from the wire. Since the magnitude of the field at the cylinder wall is known, we take the 

Gaussian surface to coincide with the wall. Thus, the Gaussian surface is a cylinder with 

radius R and length L, coaxial with the wire. Only the charge on the wire is actually 

enclosed by the Gaussian surface; we denote it by q. The area of the Gaussian surface is 

2πRL, and the flux through it is 2 .RLEΦ = π  We assume there is no flux through the 

ends of the cylinder, so this Φ  is the total flux. Gauss’ law yields q = 2πε0RLE. Thus, 

 

( )12 2 2 4 92 8.85 10 C /N m (0.014 m)(0.16 m) (2.9 10  N/C) 3.6 10  C.q − −= π × ⋅ × = ×  



 

74. (a) The diagram shows a cross section (or, perhaps more 

appropriately, “end view”) of the charged cylinder (solid circle).  

 

Consider a Gaussian surface in the form of a cylinder with radius 

r and length `,  coaxial with the charged cylinder. An “end view” 

of the Gaussian surface is shown as a dotted circle. The charge 

enclosed by it is 2 ,q V rρ ρ= = π `  where 2V r= π `  is the volume 

of the cylinder. 

 

If ρ  is positive, the electric field lines are radially outward, normal to the Gaussian 

surface and distributed uniformly along it. Thus, the total flux through the Gaussian 

cylinder is cylinder (2 ).EA E rΦ = = π `  Now, Gauss’ law leads to 

 

2

0

0

2 .
2

r
r E r E

ρε ρ
ε

π = π ⇒ =` `  

 

(b) Next, we consider a cylindrical Gaussian surface of radius r > R. If the external field 

Eext then the flux is ext2 .r EΦ = π `  The charge enclosed is the total charge in a section of 

the charged cylinder with length ` . That is, 2q R ρ= π ` . In this case, Gauss’ law yields 

 
2

2

0 ext ext

0

2 .
2

R
r E R E

r

ρε ρ
ε

π = π ⇒ =` `  



  

(b) Since water flows only through area wd, the flux through the larger area is still 

693 kg/s.  

 

(c) Now the mass flux is (wd/2)ρv = (693 kg/s)/2 = 347 kg/s. 

 

(d) Since the water flows through an area (wd/2), the flux is 347 kg/s. 

 

(e) Now the flux is ( ) ( ) ( )cos 693kg s cos34 575 kg swd vθ ρ = ° = . 

 

75. (a) The mass flux is wdρv = (3.22 m) (1.04 m) (1000 kg/m
3
) (0.207 m/s) = 693 kg/s. 

 



 

76. (a) We use meg = eE = eσ/ε0 to obtain the surface charge density. 

 

( )( )( )31 12 2 2

22 20

19

9.11 10 kg 9.8m s 8.85 10 C /N m
4.9 10 C m .

1.60 10 C

em g

e

εσ
− −

−
−

× × ⋅
= = = ×

×
 

 

(b) Downward (since the electric force exerted on the electron must be upward). 



 

77. (a) From Gauss’ law, we get  

 

f f f
f f

E r
q

r
r

r r

r

rb g c h
= = =

1

4

1

4

4 3

30

3

0

3

3

0π π

π

ε ε
ρ ρ

ε
encl .  

 

(b) The charge distribution in this case is equivalent to that of a whole sphere of charge 

density ρ plus a smaller sphere of charge density –ρ which fills the void. By 

superposition 
f f f f f f
E r

r r a ab g b g
= +

− −
=

ρ
ε

ρ
ε

ρ
ε3 3 30 0 0

( )
.  



 

78. (a) The cube is totally within the spherical volume, so the charge enclosed is  

 

qenc = ρ Vcube = (500 × 10
–9

 C/m
3
)(0.0400 m)

3
 = 3.20 × 10

–11
 C. 

 

By Gauss’ law, we find Φ = qenc/ε0 = 3.62 N·m
2
/C. 

 

(b) Now the sphere is totally contained within the cube (note that the radius of the sphere 

is less than half the side-length of the cube). Thus, the total charge is  

 

qenc = ρ Vsphere = 4.5 × 10
–10

 C. 

 

By Gauss’ law, we find Φ = qenc/ε0 = 51.1 N·m
2
/C. 



 

(b) In order to cancel the electric field inside the conducting material, the contribution 

from the +4 µC on the inner surface must be canceled by that of the charged particle in 

the hollow. Thus, the particle’s charge is –4.0 µC. 

 

79. (a) In order to have net charge –10 µC when –14 µC is known to be on the outer 

surface, then there must be +4.0 µC on the inner surface (since charges reside on the 

surfaces of a conductor in electrostatic situations). 



 

80. (a) Outside the sphere, we use Eq. 23-15 and obtain  

 
9 2 2 12

2 2

0

1 (8.99 10 N m C )(6.00 10 C)
15.0 N C.

4 (0.0600 m)

q
E

rπε

−× ⋅ ×
= = =  

 

(b) With q = +6.00 × 10
–12

 C, Eq. 23-20 leads to 25.3 N CE = . 



 

81. (a) The field maximum occurs at the outer surface:  

 

Emax = 
⎝⎜
⎛

⎠⎟
⎞|q|

4πεo r 2
at r = R

  = 
|q|

4πεo R 2  

Applying Eq. 23-20, we have 

        

Einternal  =  
|q|

4πεo R 3 r = 
1

4
 Emax    ⇒     r  = 

R

4
 = 0.25 R . 

 

(b) Outside sphere 2 we have  

 

Eexternal = 
|q|

4πεo r 2   =  
1

4
 Emax      ⇒     r  = 2.0R . 



 

82. The field due to a sheet of charge is given by Eq. 23-13. Both sheets are horizontal 

(parallel to the xy plane), producing vertical fields (parallel to the z axis). At points above 

the z = 0 sheet (sheet A), its field points upward (towards +z); at points above the z = 2.0 

sheet (sheet B), its field does likewise. However, below the z = 2.0 sheet, its field is 

oriented downward. 

 

(a) The magnitude of the net field in the region between the sheets is 

 
9 2 9 2

2

12 2 2

0 0

8.00 10 C/m 3.00 10 C/m
| | 2.82 10 N C.

2 2 2(8.85 10 C /N m )

A BE
σ σ
ε ε

− −

−

× − ×
= − = = ×

× ⋅

f
 

 

(b) The magnitude of the net field at points above both sheets is 

 
9 2 9 2

2

12 2 2

0 0

8.00 10 C/m 3.00 10 C/m
| | 6.21 10 N C.

2 2 2(8.85 10 C /N m )

A BE
σ σ
ε ε

− −

−

× + ×
= + = = ×

× ⋅

f
 



Chapter 24 
 



 

 

 

 

1. If the electric potential is zero at infinity then at the surface of a uniformly charged 

sphere it is V = q/4πε0R, where q is the charge on the sphere and R is the sphere radius. 

Thus q = 4πε0RV and the number of electrons is 

 

( )( )
( )( )

6

5

9 2 2 19

1.0 10 m 400V4
2.8 10 .

8.99 10 N m C 1.60 10 C

q R V
n

e e

ε −
0

−

×π
= = = = ×

× ⋅ ×
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2. The magnitude is ∆U = e∆V = 1.2 × 10
9
 eV = 1.2 GeV. 



 

3. (a) An Ampere is a Coulomb per second, so 

 

84 84 3600 30 105 A h
C h

s

s

h
 C⋅ =

⋅F
HG

I
KJ
F
HG

I
KJ = ×. .  

 

(b) The change in potential energy is ∆U = q∆V = (3.0 × 10
5
 C)(12 V) = 3.6 × 10

6
 J. 



 

4. (a) VB – VA = ∆U/q = –W/(–e) = – (3.94 × 10
–19

 J)/(–1.60 × 10
–19

 C) = 2.46 V. 

 

(b) VC – VA = VB – VA = 2.46 V. 

 

(c) VC – VB = 0 (Since C and B are on the same equipotential line). 



 

5. The electric field produced by an infinite sheet of charge has magnitude E = σ/2ε0, 

where σ is the surface charge density. The field is normal to the sheet and is uniform. 

Place the origin of a coordinate system at the sheet and take the x axis to be parallel to the 

field and positive in the direction of the field. Then the electric potential is 

 

V V E dx V Exs

x

s= − = −z0 ,  

 

where Vs is the potential at the sheet. The equipotential surfaces are surfaces of constant x; 

that is, they are planes that are parallel to the plane of charge. If two surfaces are 

separated by ∆x then their potentials differ in magnitude by  

 

∆V = E∆x = (σ/2ε0)∆x. 

Thus, 

∆
∆

x
V

= =
× ⋅

×
= ×

−

−
−2 2 885 10 50

010 10
88 100

12 2

6

3ε
σ

.

.
. .

C N m V

C m
m

2

2

c hb g
 



 

6. (a)  ( ) ( )15 19 4 43.9 10 N 1.60 10 C 2.4 10 N C 2.4 10 V/m.E F e − −= = × × = × = ×  

 

(b) ∆ ∆V E s= = × = ×2 4 10 012 2 9 104 3. . . .N C m Vc hb g  



 

7. (a) The work done by the electric field is  

 
19 12 2

0 0
0 12 2 20

0 0

21

(1.60 10 C)(5.80 10 C/m )(0.0356 m)

2 2 2(8.85 10 C /N m )

1.87 10 J.

f d

i

q q d
W q E ds dz

σ σ
ε ε

− −

−

−

× ×
= ⋅ = = =

× ⋅

= ×

∫ ∫
f f

 

 

(b) Since V – V0 = –W/q0 = –σz/2ε0, with V0 set to be zero on the sheet, the electric 

potential at P is  

 

    
12 2

2

12 2 2

0

(5.80 10 C/m )(0.0356 m)
1.17 10  V.

2 2(8.85 10 C /N m )

z
V

σ
ε

−
−

−

×
= − = − = − ×

× ⋅
 



 

8. (a) By Eq. 24-18, the change in potential is the negative of the “area” under the curve. 

Thus, using the area-of-a-triangle formula, we have 

 

V E ds
x

− = − ⋅ =
=z10

1

2
2 20

0

2 f f b gb g  
 

which yields V = 30 V. 

 

(b) For any region within 0 3< < − ⋅zx E dsm,
f f

 is positive, but for any region for which  

x > 3 m it is negative. Therefore, V = Vmax occurs at x = 3 m. 

 

V E ds
x

− = − ⋅ =
=z10

1

2
3 20

0

3 f f b gb g  
which yields Vmax = 40 V. 

 

(c) In view of our result in part (b), we see that now (to find V = 0) we are looking for 

some X > 3 m such that the “area” from x = 3 m to x = X is 40 V. Using the formula for a 

triangle (3 < x < 4) and a rectangle (4 < x < X), we require 

 

1

2
1 20 4 20 40b gb g b gb g+ − =X .  

 

Therefore, X = 5.5 m. 

 



  

9. We connect A to the origin with a line along the y axis, along which there is no change 

of potential (Eq. 24-18: 
f f
E ds⋅ =z 0). Then, we connect the origin to B with a line along 

the x axis, along which the change in potential is 

 

∆V E ds x dx
x

= − ⋅ = − = −
F
HG
I
KJzz = f f

4 00 4 00
4

2

2

0

4

0

4

. .  

 

which yields VB – VA = –32.0 V. 



 

10. In the “inside” region between the plates, the individual fields (given by Eq. 24-13) 

are in the same direction ( −"i ): 

 
9 2 9 2

3

in 12 2 2 12 2 2

50 10 C/m 25 10 C/m ˆ ˆi (4.2 10 N/C)i
2(8.85 10 C /N m ) 2(8.85 10 C /N m )

E
− −

− −

⎛ ⎞× ×
= − + = − ×⎜ ⎟× ⋅ × ⋅⎝ ⎠

f
. 

 

In the “outside” region where x > 0.5 m, the individual fields point in opposite directions: 

 
9 2 9 2

3

out 12 2 2 12 2 2

50 10 C/m 25 10 C/mˆ ˆ ˆi i (1.4 10 N/C)i .
2(8.85 10 C /N m ) 2(8.85 10 C /N m )
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f
 

 

Therefore, by Eq. 24-18, we have 

 

( )( ) ( )( )
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3 3
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3

4.2 10 0.5 1.4 10 0.3

2.5 10 V.
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= ×

∫ ∫ ∫
f f ff

 



 

11. (a) The potential as a function of r is  

 

( ) ( ) ( )
2

3 30 0
0 0

9 2 2 15 2
4

3
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4 8

(8.99 10 N m C )(3.50 10 C)(0.0145 m)
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r r qr qr
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−

−

= − = − = −

× ⋅ ×
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∫ ∫
 

 

(b) Since ∆V = V(0) – V(R) = q/8πε0R, we have  

 

( )
9 2 2 15

4

0

(8.99 10 N m C )(3.50 10 C)
6.81 10  V.

8 2(0.0231 m)

q
V R

Rπε

−
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(b) Since V(r) depends only on the magnitude of 
f
r , the result is unchanged. 

 

12. (a) The potential difference is 

 



 

13. (a) The charge on the sphere is 
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(b) The (uniform) surface charge density (charge divided by the area of the sphere) is 
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14. The charge is 
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15. A charge –5q is a distance 2d from P, a charge –5q is a distance d from P, and two 

charges +5q are each a distance d from P, so the electric potential at P is  
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The zero of the electric potential was taken to be at infinity. 



 

16. Since according to the problem statement there is a point in between the two charges 

on the x axis where the net electric field is zero, the fields at that point due to q1 and q2 

must be directed opposite to each other. This means that q1 and q2 must have the same 

sign (i.e., either both are positive or both negative). Thus, the potentials due to either of 

them must be of the same sign. Therefore, the net electric potential cannot possibly be 

zero anywhere except at infinity. 
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and solve: x = d/4. With d = 24.0 cm, we have x = 6.00 cm. 

 

(b) Similarly, for x < 0 the separation between q1 and a point on the x axis whose 

coordinate is x is given by d1 = –x; while the corresponding separation for q2 is d2 = d – x. 

We set 

 

V x k
q

d

q

d

q

x d x
( ) = +
F
HG

I
KJ =

−
+

−
−

F
HG

I
KJ =  1

1

2

2 04

1 3
0

πε
 

 

to obtain x = –d/2. With d = 24.0 cm, we have x = –12.0 cm. 

 

 

17. First, we observe that V (x) cannot be equal to zero for x > d. In fact V (x) is always 

negative for x > d. Now we consider the two remaining regions on the x axis: x < 0 and  

0 < x < d.  

 

(a) For 0 < x < d we have d1 = x and d2 = d – x. Let 

 



18. In applying Eq. 24-27, we are assuming V → 0 as r → ∞.  All corner particles are 

equidistant from the center, and since their total charge is  

 

2q1– 3q1+ 2 q1– q1 = 0, 

 

then their contribution to Eq. 24-27 vanishes.  The net potential is due, then, to the two 

+4q2 particles, each of which is a distance of a/2 from the center: 
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19. (a) The electric potential V at the surface of the drop, the charge q on the drop, and 

the radius R of the drop are related by V = q/4πε0R. Thus 

 

R
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(b) After the drops combine the total volume is twice the volume of an original drop, so 

the radius R' of the combined drop is given by (R')
3
 = 2R

3
 and R' = 2

1/3
R. The charge is 

twice the charge of original drop: q' = 2q. Thus, 
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V1 = 1

04

q

dπε
 =  5.76 × 10

−7 
V. 

 

Thus, q1/d = 6.41 × 10
−17 

C/m.  Next, we note that when q2 is located at x = 0.080 m, the 

net potential vanishes (V1 + V2 = 0).  Therefore,  

 

 2 10
0.08 m

kq kq

d
= +  

 

Thus, we find q2 = 1( / )(0.08 m)q d− = –5.13 × 10
−18 

C =  –32 e. 

 

20. When the charge q2 is infinitely far away, the potential at the origin is due only to the 

charge q1 : 

 



 

21. We use Eq. 24-20: 
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22. From Eq. 24-30 and Eq. 24-14, we have (for θi = 0º)  
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with r = 20 × 10
−9 

m.  For θ = 180º the graph indicates Wa = −4.0 × 10
−30 

J, from which 

we can determine p.  The magnitude of the dipole moment is therefore 5.6 × 10
−37 

C
.
m. 



 

23. (a) All the charge is the same distance R from C, so the electric potential at C is 
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where the zero was taken to be at infinity. 

 

(b) All the charge is the same distance from P. That distance is 2 2 ,R D+  so the electric 

potential at P is  
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We note that the result is exactly what one would expect for a point-charge –Q at a 

distance R. This “coincidence” is due, in part, to the fact that V is a scalar quantity. 

 

 

24. The potential is  

 



25. (a) From Eq. 24-35, we find the potential to be 
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(b) The potential at P is V = 0 due to superposition. 



 

26. Using Gauss’ law, q = εοΦ = +495.8 nC.  Consequently,  
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27. Since the charge distribution on the arc is equidistant from the point where V is 

evaluated, its contribution is identical to that of a point charge at that distance. We 

assume V → 0 as r → ∞ and apply Eq. 24-27: 
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28. The dipole potential is given by Eq. 24-30 (with θ = 90º in this case)  
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since cos(90º) = 0 . The potential due to the short arc is 1 0 1/ 4q rπε   and that caused by the 

long arc is 2 0 2/ 4q rπε .  Since q1 = +2 µC, r1 = 4.0 cm, q2 = −3 µC, and r2 = 6.0 cm, the 

potentials of the arcs cancel.  The result is zero. 

 



29. The disk is uniformly charged. This means that when the full disk is present each 

quadrant contributes equally to the electric potential at P, so the potential at P due to a 

single quadrant is one-fourth the potential due to the entire disk. First find an expression 

for the potential at P due to the entire disk. We consider a ring of charge with radius r and 

(infinitesimal) width dr. Its area is 2πr dr and it contains charge dq = 2πσr dr. All the 

charge in it is a distance 2 2r D+ from P, so the potential it produces at P is 
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The total potential at P is 
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The potential Vsq at P due to a single quadrant is  

 
15 2

2 2 2 2

12 2 2

0

5

(7.73 10 C/m )
(0.640 m) (0.259 m) 0.259 m

4 8 8(8.85 10 C /N m )

4.71 10  V.

sq

V
V R D D

σ
ε

−

−

−

×⎡ ⎤ ⎡ ⎤= = + − = + −⎣ ⎦ ⎣ ⎦× ⋅

= ×



 

30. Consider an infinitesimal segment of the rod, located between x and x + dx. It has 

length dx and contains charge dq = λ dx, where λ = Q/L is the linear charge density of the 

rod. Its distance from P1 is d + x and the potential it creates at P1 is 
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To find the total potential at P1, we integrate over the length of the rod and obtain: 
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31. Letting d denote 0.010 m, we have 
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(a) Here r = x > 0, so that 
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(b) Now r x d= +2 2  where d = 0.15 m, so that 
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32. Eq. 24-32 applies with dq = λ dx = bx dx (along 0 ≤ x ≤ 0.20 m). 

 



 

33. Consider an infinitesimal segment of the rod, located between x and x + dx. It has 

length dx and contains charge dq = λ dx = cx dx. Its distance from P1 is d + x and the 

potential it creates at P1 is 
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To find the total potential at P1, we integrate over the length of the rod and obtain 
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34. We use Eq. 24-41. This is an ordinary derivative since the potential is a function of 

only one variable. 
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(a) Thus, the magnitude of the electric field is E = 39 V/m. 

 

(b) The direction of E
f

is î− , or toward plate 1. 



 

We evaluate at x = 3.0 m and y = 2.0 m to obtain  
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35. We use Eq. 24-41: 
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36. The magnitude of the electric field is given by 
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At any point in the region between the plates, 
f
E  points away from the positively charged 

plate, directly towards the negatively charged one. 



 

37. The electric field (along some axis) is the (negative of the) derivative of the potential 

V with respect to the corresponding coordinate.  In this case, the derivatives can be read 

off of the graphs as slopes (since the graphs are of straight lines).  Thus, 
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These components imply the electric field has a magnitude of 2693 N/C and a direction 

of –21.8º (with respect to the positive x axis).  The force on the electron is given by 

F qE=
f f

 where q = –e.  The minus sign associated with the value of q has the implication 

that F  
→

 points in the opposite direction from E  
→

 (which is to say that its angle is found by 

adding 180º to that of E  
→

 ).  With e = 1.60 × 10
–19 

C, we obtain 
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(b) We differentiate the potential with respect to x to find the x component of the electric 

field: 
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or 
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(c) Since 0xE < , its direction relative to the positive x axis is 180 .°  

 

(d) At x = d = 6.20 cm, we obtain 
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(e) Consider two points an equal infinitesimal distance on either side of P1, along a line 

that is perpendicular to the x axis. The difference in the electric potential divided by their 

separation gives the transverse component of the electric field. Since the two points are 

situated symmetrically with respect to the rod, their potentials are the same and the 

potential difference is zero. Thus, the transverse component of the electric field Ey is zero. 

 

38. (a) From the result of Problem 24-30, the electric potential at a point with coordinate 

x is given by 
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At x = d we obtain   
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39. We apply Eq. 24-41: 

2

2

2.00

2.00

4.00

x

y

z

V
E yz

x

V
E xz

y

V
E xyz

z

∂
= − = −

∂
∂

= − = −
∂
∂

= − = −
∂

 

 

which, at (x, y, z) = (3.00 m, –2.00 m, 4.00 m), gives  

 

(Ex, Ey, Ez) = (64.0 V/m, –96.0 V/m, 96.0 V/m). 

 

The magnitude of the field is therefore 
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40. (a) Consider an infinitesimal segment of the rod from x to x + dx. Its contribution to 

the potential at point P2 is 
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(b) The y component of the field there is 
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(c) We obtained above the value of the potential at any point P strictly on the y-axis. In 

order to obtain Ex(x, y) we need to first calculate V(x, y). That is, we must find the 

potential for an arbitrary point located at (x, y). Then Ex(x, y) can be obtained from 

( , ) ( , ) /xE x y V x y x= −∂ ∂ . 



 

41. We choose the zero of electric potential to be at infinity. The initial electric potential 

energy Ui of the system before the particles are brought together is therefore zero. After 

the system is set up the final potential energy is 
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Thus the amount of work required to set up the system is given by  
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42. The work done must equal the change in the electric potential energy.  From Eq. 24-

14 and Eq. 24-26, we find (with r = 0.020 m) 
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43. We apply conservation of energy for the particle with q = 7.5 × 10
−6

 C (which has 

zero initial kinetic energy): 

U0  =  Kf  + Uf , 

where U  =  
q Q

4πεor
   . 

 

(a) The initial value of r is 0.60 m and the final value is (0.6 + 0.4) m = 1.0 m (since the 

particles repel each other).  Conservation of energy, then, leads to Kf  = 0.90 J. 

 

(b) Now the particles attract each other so that the final value of r is 0.60 − 0.40 = 0.20 m.  

Use of energy conservation yields Kf  = 4.5 J in this case. 



 

44. (a) We use Eq. 24-43 with q1 = q2 = –e and r = 2.00 nm: 
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(b) Since U > 0 and U ∝ r
–1

 the potential energy U decreases as r increases. 



energy when q3 is at A and UB is the potential energy when q3 is at B, then the work done 

in moving the charge from B to A is  

 

W = UA – UB = q3(VA – VB) = (3.0 × 10
–6

 C)(6.0 × 10
4
 V + 7.8 × 10

5
 V) = 2.5 J. 

 

(d) The work done by the external agent is positive, so the energy of the three-charge 

system increases. 

 

(e) and (f) The electrostatic force is conservative, so the work is the same no matter 

which path is used. 

 

45. (a) Let ` = 015. m  be the length of the rectangle and w = 0.050 m be its width. Charge 

q1 is a distance `  from point A and charge q2 is a distance w, so the electric potential at A 

is 
6 6

9 2 21 2

0

4

1 5.0 10 C 2.0 10 C
(8.99 10 N m / C )

4 0.15m 0.050 m

6.0 10 V.

A

q q
V

wε

− −⎛ ⎞− × ×⎛ ⎞= + = × ⋅ +⎜ ⎟⎜ ⎟π ⎝ ⎠ ⎝ ⎠
= ×

`  

 

(b) Charge q1 is a distance w from point b and charge q2 is a distance `,  so the electric 

potential at B is 

 
6 6

9 2 21 2

0

5

1 5.0 10 C 2.0 10 C
(8.99 10 N m / C )

4 0.050 m 0.15m

7.8 10 V.

B

q q
V

wε

− −⎛ ⎞− × ×⎛ ⎞= + = × ⋅ +⎜ ⎟⎜ ⎟π ⎝ ⎠ ⎝ ⎠
= − ×

`  

 

(c) Since the kinetic energy is zero at the beginning and end of the trip, the work done by 

an external agent equals the change in the potential energy of the system. The potential 

energy is the product of the charge q3 and the electric potential. If UA is the potential 



 

46. The work required is 

 

1 2 1 1

0 0

( / 2)1 1
0.

4 2 4 2

q Q q Q q Q q Q
W U

d d d dπε πε
−⎛ ⎞ ⎛ ⎞= ∆ = + = + =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 



 

47. We use the conservation of energy principle. The initial potential energy is Ui = 

q
2
/4πε0r1, the initial kinetic energy is Ki = 0, the final potential energy is Uf = q

2
/4πε0r2, 

and the final kinetic energy is K mvf = 1
2

2 , where v is the final speed of the particle. 

Conservation of energy yields 

     
q

r

q

r
mv

2

0 1

2

0 2

2

4 4

1

2π πε ε
= + .  

The solution for v is 

 

2 9 2 2 6 2

6 3 3

0 1 2

3

2 1 1 (8.99 10 N m C )(2)(3.1 10 C) 1 1

4 20 10 kg 0.90 10 m 2.5 10 m

2.5 10 m s.

q
v

m r rε

−

− − −

⎛ ⎞ × ⋅ × ⎛ ⎞= − = −⎜ ⎟ ⎜ ⎟× × ×⎝ ⎠⎝ ⎠

= ×

π



 

48. Let r = 1.5 m, x = 3.0 m, q1 = –9.0 nC, and q2 = –6.0 pC. The work done by an 

external agent is given by 

 

W U
q q

r r x
= = −

+

F
HG

I
KJ

= − × − × ×
⋅F
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I
KJ ⋅ −

+
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− −

−
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 2

0

1

2 4

eq
mv

rπε
=  

 

where  m = 9.11 × 10
−31 

kg, e = 1.60 × 10
−19 

C, q = 10000e, and r = 0.010 m.  This yields 

v = 22490 m/s 42.2 10  m/s≈ × .   

 

49. The escape speed may be calculated from the requirement that the initial kinetic 

energy (of launch) be equal to the absolute value of the initial potential energy (compare 

with the gravitational case in chapter 14).  Thus, 

 



 

50. The change in electric potential energy of the electron-shell system as the electron 

starts from its initial position and just reaches the shell is ∆U = (–e)(–V) = eV. Thus from 

∆U K m ve i= = 1
2

2  we find the initial electron speed to be 

 
19

6

31

2 2 2(1.6 10 C)(125 V)
6.63 10  m/s.

9.11 10 kg
i

e e

U eV
v

m m

−

−

∆ ×
= = = = ×

×
 



U m v m vA A B B= +
1

2

1

2

2 2 .  

Momentum is also conserved, so 

 

0 = +m v m vA A B B .  

 

These equations may be solved simultaneously for vA and vB. Substituting 

( / )B A B Av m m v= − , from the momentum equation into the energy equation, and collecting 

terms, we obtain  

U m m m m vA B A B A= +1
2

2( / )( ) .  

Thus, 

 
3

3 3 3

2 2(0.225 J)(10 10  kg)
7.75 m/s.

( ) (5.0 10  kg)(5.0 10  kg 10 10  kg)

B
A

A A B

Um
v

m m m

−

− − −

×
= = =

+ × × + ×
 

 

51. (a) The potential energy is 

 

U
q

d
= =

× ⋅ ×
=

−2 9 6

4
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π 0ε
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relative to the potential energy at infinite separation. 

 

(b) Each sphere repels the other with a force that has magnitude 

 

F
q

d
= =

× ⋅ ×
=

−2

2

9 6

4
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π 0ε
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.
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According to Newton’s second law the acceleration of each sphere is the force divided by 

the mass of the sphere. Let mA and mB be the masses of the spheres. The acceleration of 

sphere A is 

a
F

m
A

A

= =
×

=−

0 225
450

3

.
.

 N

5.0 10  kg
 m s2  

 

and the acceleration of sphere B is 

 

a
F

m
B

B

= =
×

=−

0 225
22 5

3

.
. .

 N

10 10  kg
 m s2  

 

(c) Energy is conserved. The initial potential energy is U = 0.225 J, as calculated in part 

(a). The initial kinetic energy is zero since the spheres start from rest. The final potential 

energy is zero since the spheres are then far apart. The final kinetic energy is 
1
2

2 1
2

2m v m vA A B B+ ,  where vA and vB are the final velocities. Thus, 

 



 

We thus obtain 
3

3

5.0 10  kg
 (7.75 m/s) 3.87 m/s,

10 10  kg

A
B A

B

m
v v

m

−

−

⎛ ⎞×
= − = − = −⎜ ⎟×⎝ ⎠

 

 

or | | 3.87 m/s.Bv =  



 

52. When particle 3 is at x = 0.10 m, the total potential energy vanishes.  Using Eq. 24-43, 

we have (with meters understood at the length unit) 

 

 1 3 3 21 2

0 0 0

0
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This leads to  

1 2 1 2
3
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q q q q
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d d
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which yields q3 = −5.7 µC.  
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53. We use conservation of energy, taking the potential energy to be zero when the 

moving electron is far away from the fixed electrons. The final potential energy is then 
2

02 / 4fU e dπε= , where d is half the distance between the fixed electrons. The initial 

kinetic energy is K mvi = 1
2

2 ,   where m is the mass of an electron and v is the initial speed 

of the moving electron. The final kinetic energy is zero. Thus, 

 

Ki = Uf     
2 2

0

1
2 / 4 .

2
mv e dπε⇒ =  

Hence, 



 

54. (a) When the proton is released, its energy is K + U = 4.0 eV + 3.0 eV (the latter 

value is inferred from the graph).  This implies that if we draw a horizontal line at the 7.0 

Volt “height” in the graph and find where it intersects the voltage plot, then we can 

determine the turning point.  Interpolating in the region between 1.0 cm and 3.0 cm, we 

find the turning point is at roughly x = 1.7 cm. 

 

(b) There is no turning point towards the right, so the speed there is nonzero, and is given 

by energy conservation:  

 

v = 
2(7.0 eV)

m
  = 

2(7.0 eV)(1.6 x 10
-19 

J/eV)

1.67 x 10
-27

 kg
 = 20 km/s. 

 

(c) The electric field at any point P is the (negative of the) slope of the voltage graph 

evaluated at P. Once we know the electric field, the force on the proton follows 

immediately from F 
→

 = q E 
→

 , where q = +e for the proton. In the region just to the left of x 

= 3.0 cm, the field is E 
→

 = (+300 V/m) î  and the force is F = +4.8 × 10
−17 

N. 

 

(d) The force F
f

 points in the +x direction, as the electric field E
f

. 

 

(e) In the region just to the right of x = 5.0 cm, the field is E 
→

 =(–200 V/m) î  and the 

magnitude of the force is F = 3.2 × 10
−17 

N. 

 

(f) The force F
f

 points in the −x direction, as the electric field E
f

. 



 

55. (a)  The electric field between the plates is leftward in Fig, 24-52 since it points 

towards lower values of potential. The force (associated with the field, by Eq. 23-28) is 

evidently leftward, from the problem description (indicating deceleration of the rightward 

moving particle), so that q > 0 (ensuring that F  
→

is parallel to E  
→

); it is a proton. 

 

(b) We use conservation of energy: 

 

K0 + U0 = K + U   ⇒    
1

2
 mpv

2
0  + qV1= 

1

2
 mpv

2
 + qV 2  . 

 

Using q = +1.6 × 10
−19

 C, mp = 1.67 × 10
−27

 kg, v0 = 90 × 10
3
 m/s, V1 = −70 V and 

2 50 VV = − , we obtain the final speed v = 6.53 × 10
4
 m/s.  We note that the value of d is 

not used in the solution. 

 



 

 
2 2
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cos

4 4

p ep
U qV e

r r

θ
πε πε

⎛ ⎞
= = − =⎜ ⎟

⎝ ⎠
 

 

where r = 0.020 m. Using energy conservation, we set this expression equal to 100 eV 

and solve for p.  The magnitude of the dipole moment is therefore  p = 4.5 × 10
−12 

C m .⋅  

  

56. From Eq. 24-30 and Eq. 24-7, we have (for θ = 180º)  



 

57. Let the distance in question be r. The initial kinetic energy of the electron is 

K m vi e i= 1
2

2 ,  where vi = 3.2 × 10
5
 m/s. As the speed doubles, K becomes 4Ki. Thus 

 

∆ ∆U
e

r
K K K K m vi i i e i=

−
= − = − − = − = −

2
2

4
4 3

3

2π 0ε
( ) ,  
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( )
( ) ( )
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2
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3 4 3 9.11 10  kg 3.2 10  m se i

e
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−
−

−

× × ⋅
= = = ×

× ×
 



 

58. (a) Using U = qV we can “translate” the graph of voltage into a potential energy 

graph (in eV units).  From the information in the problem, we can calculate its kinetic 

energy (which is its total energy at x = 0) in those units: Ki = 284 eV.  This is less than 

the “height” of the potential energy “barrier” (500 eV high once we’ve translated the 

graph as indicated above).  Thus, it must reach a turning point and then reverse its motion. 

 

(b) Its final velocity, then, is in the negative x direction with a magnitude equal to that of 

its initial velocity.  That is, its speed (upon leaving this region) is 1.0 × 10
7 
m/s. 



0 0
2 2 2 2

0 0 0

2 2
1.2 J

4 4
f

qq qq
K U U

x y x yπε πε

′ ′
+ = ⇒ + =

+ +
 . 

 

This yields y = −8.5 m. 

              

59. We apply conservation of energy for particle 3 (with q' = −15 × 10
− 6

 C): 

 

K0 + U0  =  Kf  + Uf 

 

where (letting x = ±3 m and q1 = q2 = 50 × 10
−6

 C = q) 

 

 1 2

2 2 2 2 2 2

0 0 0

2

4 4 4

q q q q qq
U

x y x y x yπε πε πε
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= + =

+ + +
 . 

 

(a) We solve for Kf (with y0 = 4 m): 

 

 0 0
2 2

0 0

2 1 1
1.2 J 3.0 J

4 | |
f f

qq
K K U U

xx yπε

⎛ ⎞′
⎜ ⎟= + − = + − =
⎜ ⎟+⎝ ⎠

 . 

 

(b) We set Kf  = 0 and solve for y (choosing the negative root, as indicated in the problem 

statement): 



 

60. (a) The work done results in a potential energy gain: 

 

W = q ∆V  = (− e) 
⎝⎜
⎛

⎠⎟
⎞Q

4πεo R
  =  + 2.16 × 10

−13 
J . 

 

With R = 0.0800 m, we find Q =  –1.20 × 10
−5 

C. 

 

(b) The work is the same, so the increase in the potential energy is ∆U =  + 2.16 × 10
−13 

J.   



N 4 5 6 7 8 9 10 11 12 13 14 15 

U1 3.83 6.88 10.96 16.13 22.44 29.92 38.62 48.58 59.81 72.35 86.22 101.5 

U2 4.73 7.83 11.88 16.96 23.13 30.44 39.92 48.62 59.58 71.81 85.35 100.2 

 

We see that the potential energy for configuration 2 is greater than that for configuration 

1 for N < 12, but for N ≥ 12 it is configuration 1 that has the greatest potential energy. 

 

(a) N = 12 is the smallest value such that U2 < U1. 

  

 

61. We note that for two points on a circle, separated by angle θ (in radians), the direct-

line distance between them is r = 2R sin(θ/2). Using this fact, distinguishing between the 

cases where N = odd and N = even, and counting the pair-wise interactions very carefully, 

we arrive at the following results for the total potential energies. We use k = 1 4π 0ε .  For 

configuration 1 (where all N electrons are on the circle), we have 

 

( ) ( )

1
1

2 22 2

1, even 1, odd

1 1

1 1 1
,    

2 sin 2 2 2 sin 2

N N
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j j
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U U
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= =
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⎜ ⎟ ⎜ ⎟= + =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
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∑ ∑  

 

where θ =
2π
N

.  For configuration 2, we find 

 

( )
( )

( )
( )

3
12 22 2

2, even 2, odd

1 1

1 11 1 5
2 ,

2 sin 2 2 sin 2 2

N N

N N

j j

N ke N ke
U U

R j R jθ θ

−
−

= =
= =

⎛ ⎞ ⎛ ⎞
− −⎜ ⎟ ⎜ ⎟= + = +⎜ ⎟ ⎜ ⎟′ ′⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑  

 

where ′ =
−

θ 2

1

π
N

.  The results are all of the form 

 

U
ke

R
1

2

2
or 2 a pure number.×  

 

In our table, below, we have the results for those “pure numbers” as they depend on N 

and on which configuration we are considering. The values listed in the U rows are the 

potential energies divided by ke
2
/2R. 

 



 

(b) For N = 12, configuration 2 consists of 11 electrons distributed at equal distances 

around the circle, and one electron at the center. A specific electron e0 on the circle is R 

distance from the one in the center, and is 

 

r R R= F
HG
I
KJ ≈2 0 56sin .

π
11

 

 

distance away from its nearest neighbors on the circle (of which there are two — one on 

each side). Beyond the nearest neighbors, the next nearest electron on the circle is 

 

r R R= F
HG
I
KJ ≈2 11sin .

2π
11

 

 

distance away from e0. Thus, we see that there are only two electrons closer to e0 than the 

one in the center. 



 

62. Since the electric potential throughout the entire conductor is a constant, the electric 

potential at its center is also +400 V. 



 

63. If the electric potential is zero at infinity, then the potential at the surface of the 

sphere is given by V = q/4πε0r, where q is the charge on the sphere and r is its radius. 

Thus, 

q rV= =
× ⋅

= × −4
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64. (a) Since the two conductors are connected V1 and V2 must be equal to each other. 

 

Let V1 = q1/4πε0R1 = V2 = q2/4πε0R2 and note that q1 + q2 = q and R2 = 2R1. We solve for 

q1 and q2:  q1 = q/3, q2 = 2q/3, or 

 

(b) q1/q = 1/3 = 0.333. 

 

(c) Similarly, q2/q = 2/3 = 0.667. 

 

(d) The ratio of surface charge densities is 



 

65. (a) The electric potential is the sum of the contributions of the individual spheres. Let 

q1 be the charge on one, q2 be the charge on the other, and d be their separation. The point 

halfway between them is the same distance d/2 (= 1.0 m) from the center of each sphere, 

so the potential at the halfway point is 

 

( )( )9 2 2 8 8

21 2
8.99 10  N m C 1.0 10 C 3.0 10 C

1.8 10 V.
4 2 1.0 m

q q
V

dε

− −× ⋅ × − ×+
= = = − ×

0π
 

 

(b) The distance from the center of one sphere to the surface of the other is d – R, where 

R is the radius of either sphere. The potential of either one of the spheres is due to the 

charge on that sphere and the charge on the other sphere. The potential at the surface of 

sphere 1 is 

 

( )
8 8

9 2 2 31 2
1

0

1 1.0 10 C 3.0 10 C
8.99 10 N m C 2.9 10 V.

4 0.030 m 2.0 m 0.030 m

q q
V

R d Rπε

− −⎡ ⎤× ×⎡ ⎤= + = × ⋅ − = ×⎢ ⎥⎢ ⎥− −⎣ ⎦ ⎣ ⎦
 

 

(c) The potential at the surface of sphere 2 is 

 

( )
8 8

9 2 2 31 2
2

0

1 1.0 10 C 3.0 10 C
8.99 10 N m C 8.9 10 V.
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q q
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(c) For R2 > R1 > r, the enclosed charge is zero. Thus, E = 0. 

 

The electric potential may be obtained using Eq. 24-18:  

 

V r V r E r dr
r

rb g b g b g− ′ =
′z .  

 

(d) For r = 4.00 m > R2 > R1, we have 

 

( )
9 2 2 6 6

31 2

0

(8.99 10 N m C )(2.00 10 C 1.00 10 C)
6.74 10  V.

4 (4.00 m)

q q
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− −+ × ⋅ × + ×
= = = ×  

 

(e) For r = 1.00 m = R2 > R1, we have 
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(8.99 10 N m C )(2.00 10 C 1.00 10 C)
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(f) For R2 > r = 0.700 m > R2,  
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9 2 21 2

0 2

4

1 2.00 10 C 1.00 10 C
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66. Since the charge distribution is spherically symmetric we may write 

 

enc

0

1
( ) ,

4

q
E r

rπε
=  

 

where qenc is the charge enclosed in a sphere of radius r centered at the origin.  

 

(a) For r = 4.00 m, R2 = 1.00 m and R1 = 0.500 m, with r > R2 > R1 we have 
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(b) For R2 > r = 0.700 m > R2 
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(g) For R2 > r = 0.500 m = R2,  
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(h) For R2 > R1 > r,  
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(i) At r = 0, the potential remains constant, 44.50 10  V.V = ×  

 

(j) The electric field and the potential as a function of r are depicted below: 

 



 

67. (a) The magnitude of the electric field is 
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(b) V = RE = (0.15 m)(1.2 × 10
4
 N/C) = 1.8 × 10

3
 V. 

 

(c) Let the distance be x. Then 
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68. (a) We use Eq. 24-18 to find the potential: wall

R

r
V V Edr− = −∫ , or 
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r

r
V V R r

ρ ρ
ε ε

⎛ ⎞
− = − ⇒ − = − −⎜ ⎟

⎝ ⎠
∫  

 

Consequently, V = ρ(R
2
 – r

2
)/4ε0. 

 

(b) The value at r = 0 is 
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Thus, the difference is 4

center| | 7.8 10 V.V = ×  
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r r

θ θ
πε πε

−
= = =  . 

 

Noting that θi = θf = 0º, conservation of energy leads to 

 

Kf + Uf  =  Ki + Ui     ⇒   v = 
2 e

2

4πεo m d
 ⎝⎜
⎛

⎠⎟
⎞1

25
 − 

1

49
   =  7.0 510×  m/s . 

 

69. The electric potential energy in the presence of the dipole is 



 

70. We treat the system as a superposition of a disk of surface charge density σ and 

radius R and a smaller, oppositely charged, disk of surface charge density –σ and radius r. 

For each of these, Eq 24-37 applies (for z > 0) 

 

V z R z z r z= + − +
−

+ −
σ
ε

σ
ε2 20

2 2

0

2 2e j e j.  
 

This expression does vanish as r → ∞, as the problem requires. Substituting r = 0.200R 

and z = 2.00R and simplifying, we obtain 
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4.0 cmx = , the electric field is ˆ( 133 V/m)iE = −
f

 and the magnitude of the force is 
172.1 10  NF −= × . 

 

(d) The force points in the +x direction. 

 

(e) In the region just to the right of x = 5.0 cm, the field is E 
→

 = +100 V/m î  and the force 

is F 
→

 = ( –1.6 x 10
−17 

N) î . Thus, the magnitude of the force is 171.6 10  NF −= × . 

 

(f) The minus sign indicates that F 
→

 points in the –x direction. 

 

71. (a) When the electron is released, its energy is  K + U = 3.0 eV − 6.0 eV (the latter 

value is inferred from the graph along with the fact that U = qV and q = − e).  Because of 

the minus sign (of the charge) it is convenient to imagine the graph multiplied by a minus 

sign so that it represents potential energy in eV.  Thus, the 2 V value shown at x = 0 

would become –2 eV, and the 6 V value at x = 4.5 cm becomes –6 eV, and so on.  The 

total energy (− 3.0 eV) is constant and can then be represented on our (imagined) graph as 

a horizontal line at − 3.0 V.  This intersects the potential energy plot at a point we 

recognize as the turning point.  Interpolating in the region between 1.0 cm and 4.0 cm, we 

find the turning point is at x = 1.75 cm 1.8 cm.≈  

 

(b) There is no turning point towards the right, so the speed there is nonzero.  Noting that 

the kinetic energy at x = 7.0 cm is K = − 3.0 eV − (− 5.0 eV) = 2.0 eV, we find the speed 

using energy conservation:  

 

( )( )19

5

31

2 2.0 eV 1.60 10  J/eV2
8.4 10 m/s.

9.11 10  kge

K
v

m

−

−

×
= = = ×

×
 

 

(c) The electric field at any point P is the (negative of the) slope of the voltage graph 

evaluated at P.  Once we know the electric field, the force on the electron follows 

immediately from F qE=
f f

, where q = −e for the electron. In the region just to the left of 



 

72. The electric field throughout the conducting volume is zero, which implies that the 

potential there is constant and equal to the value it has on the surface of the charged 

sphere: 

 
04

A S

q
V V

Rπε
= =  

 

where q = 30 × 10
−9

 C and R = 0.030 m.  For points beyond the surface of the sphere, the 

potential follows Eq. 24-26: 

04
B

q
V

rπε
=  

where r = 0.050 m. 

 

(a) We see that 

VS – VB  =
0

1 1

4

q

R rπε
⎛ ⎞−⎜ ⎟
⎝ ⎠

= 3.6 × 10
3
 V. 

 

(b) Similarly,  

 VA – VB = 
0

1 1

4

q

R rπε
⎛ ⎞−⎜ ⎟
⎝ ⎠

= 3.6 × 10
3
 V. 



Thus, the work done is approximately equal to Wapp = 2.30 × 10
−28

 J. 

 

(c) Now, combining the contribution to Usystem from part (b) and from the original pair of 

fixed charges 

 

 

9 2 2 19 2

fixed
2 2

0

28

1 (2 )( 2 ) (8.99 10 N m C )(4)(1.60 10 C)

4 20.0  m(4.00 m) (2.00 m)

2.058 10  J .

e e
U

πε

−

−

− × ⋅ ×
= =

+

= − ×

, 

we obtain 

Usystem =  Wapp + Ufixed = 2.43 × 10
–29

 J   . 

 

73. (a)  Using d = 2 m, we find the potential at P: 

 
9 2 2 19

10

0 0 0

2 2 (8.99 10 N m C )(1.6 10 C)
7.192 10 V

4 4 (2 ) 4 2.00 m
P

e e e
V

d d dπε πε πε

−
−− × ⋅ ×

= + = = = ×  . 

 

Note that we are implicitly assuming that V → 0 as r → ∞. 

 

(b) Since U = qV , then the movable particle's contribution of the potential energy when it 

is at r = ∞ is zero, and its contribution to Usystem when it is at P is  

 
19 10 282(1.6 10 C)(7.192 10 V) 2.3014 10  JPU qV − − −= = × × = × . 

 



 

74. The derivation is shown in the book (Eq. 24-33 through Eq. 24-35) except for the 

change in the lower limit of integration (which is now x = D instead of x = 0).  The result 

is therefore (cf. Eq. 24-35)  

                  

V =   
λ

4πεo
 ln

⎝
⎜
⎛

⎠
⎟
⎞L + L

2
 + d

2

 D + D
2
 + d

2    =  
2.0 x 10

-6

4πεo
 ln

⎝
⎜
⎛

⎠
⎟
⎞4 + 17

1 + 2
  = 2.18 × 10

4
 V. 



 

75. The work done results in a change of potential energy: 

 

 

2 2 2

0 0 0

9 2 2 2 8

2 2 2 1 1

4 4 4

1 1
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 . 

 

At a rate of P = 0.83 × 10
3 

Joules per second, it would take W/P = 1.8 × 10
5 

seconds or 

about 2.1 days to do this amount of work. 



 

76. Using Eq. 24-18, we have 

 

ǻV  =  
3

42

A
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r
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). 



  

( )( ) ( )160 N/C 0.020 m 0.050 m 64 N CE = =
f

. 

 

(b) Integrating the above expression (where the variable to be integrated, r, is now 

denoted ρ) gives the potential difference between VB and VC. 

 

ȡ ln 2.9 V .
ȡ

r
B

B C B
R

E R r
V V d E R
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(c) The electric field throughout the conducting volume is zero, which implies that the 

potential there is constant and equal to the value it has on the surface of the charged 

cylinder: VA – VB = 0. 

 

77. The radius of the cylinder (0.020 m, the same as rB) is denoted R, and the field 

magnitude there (160 N/C) is denoted EB. The electric field beyond the surface of the 

sphere follows Eq. 23-12, which expresses inverse proportionality with r: 

 f
E

E

R

r
r R

B

= ≥for .  

 

(a) Thus, if r = rC = 0.050 m, we obtain  

 



 

78. (a) The potential would be 
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(b) The electric field is 

                E
V

R

e e

e

= = = −
×

= − × −σ
ε 0

8012
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.
. ,

V

6.37 10 m
N C
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or  8| | 1.8 10 N C.E −= ×  

 

(c) The minus sign in E indicates that 
f
E  is radially inward. 



 

79. We note that the net potential (due to the "fixed" charges) is zero at the first location 

("at ∞") being considered for the movable charge q (where q = +2e).  Thus, with D = 4.00 

m and e = 1.60 × 10
−19

 C, we obtain 
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The work required is equal to the potential energy in the final configuration:   

 

Wapp = qV = (2e)(7.192 × 10
−10

 V) = 2.30 × 10
−28

 J. 



would be obtained from a complete (whole) sphere.  If it were a whole sphere (of the 

same density) then its charge would be qwhole = 8.00 µC.  Then  

 

V  =  
1

2
 Vwhole  =  

1

2
  

qwhole

4πεo r
  =   

1

2
  

8.00 x 10
-6 

C

4πεo(0.15 m)
  =  2.40 × 10

5
 V . 

 

80. Since the electric potential is a scalar quantity, this calculation is far simpler than it 

would be for the electric field.  We are able to simply take half the contribution that 



 

81. The net potential at point P (the place where we are to place the third electron) due to 

the fixed charges is computed using Eq. 24-27 (which assumes V → 0 as r → ∞): 

 

0 0 0

2

4 4 4
P

e e e
V

d d dπε πε πε
− −

= + = −  . 

 

Thus, with d = 2.00 × 10
−6

 m and e = 1.60 × 10
−19

 C, we find  
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Then the required “applied” work is, by Eq. 24-14, 

 

Wapp = (−e) VP  = 2.30 × 10
−22

 J  . 



 

82. The work done is equal to the change in the (total) electric potential energy U of the 

system, where 

 3 2 1 31 2

0 12 0 23 0 134 4 4

q q q qq q
U

r r rπε πε πε
= + +  

 

and the notation r13 indicates the distance between q1 and q3 (similar definitions apply to 

r12 and r23).   

 

(a) We consider the difference in U where initially r12 = b and r23 = a, and finally r12 = a 

and r23 = b  (r13 doesn’t change).  Converting the values given in the problem to SI units 

(µC to C, cm to m), we obtain ∆U =  – 24 J. 

 

(b) Now we consider the difference in U where initially r23 = a and r13 = a, and finally r23 

is again equal to a and r13 is also again equal to a  (and of course, r12 doesn’t change in 

this case).  Thus, we obtain ∆U = 0. 
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which would have exceeded 3.0 MV/m. So this situation cannot occur. 

 

83. (a) The potential on the surface is 
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(b) The field just outside the sphere would be 



 

84. (a) The charges are equal and are the same distance from C. We use the Pythagorean 

theorem to find the distance r d d d= + =2 2 2
2 2b g b g .  The electric potential at C is 

the sum of the potential due to the individual charges but since they produce the same 

potential, it is twice that of either one: 
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(b) As you move the charge into position from far away the potential energy changes 

from zero to qV, where V is the electric potential at the final location of the charge. The 

change in the potential energy equals the work you must do to bring the charge in: 

 

( )( )6 62.0 10 C 2.54 10 V 5.1 J.W qV −= = × × =  

 

(c) The work calculated in part (b) represents the potential energy of the interactions 

between the charge brought in from infinity and the other two charges. To find the total 

potential energy of the three-charge system you must add the potential energy of the 

interaction between the fixed charges. Their separation is d so this potential energy is 

q d2 4π 0ε .  The total potential energy is 
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85. For a point on the axis of the ring the potential (assuming V → 0 as r → ∞) is 

 

V
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where q = 16 × 10
–6

 C and R = 0.0300 m. Therefore, 
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where zB = 0.040 m. The result is –1.92 × 10
6
 V. 



 

86. The potential energy of the two-charge system is 
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Thus, –1.93 J of work is needed. 



 

87. The initial speed vi of the electron satisfies K m v e Vi e i= =1
2

2 ∆ ,  which gives 
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88. The particle with charge –q has both potential and kinetic energy, and both of these 

change when the radius of the orbit is changed. We first find an expression for the total 

energy in terms of the orbit radius r. Q provides the centripetal force required for –q to 

move in uniform circular motion. The magnitude of the force is F = Qq/4πε0r
2
. The 

acceleration of –q is v
2
/r, where v is its speed. Newton’s second law yields 
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and the kinetic energy is 

2

0

1

2 8

Qq
K mv

rπε
= = . 

 

The potential energy is U = –Qq/4πε0r, and the total energy is 

 

E K U
Qq

r

Qq

r

Qq

r
= + = − = −

8 4 80 0 0π π πε ε ε
.  

 

When the orbit radius is r1 the energy is E1 = –Qq/8πε0r1 and when it is r2 the energy is 

E2 = –Qq/8πε0r2. The difference E2 – E1 is the work W done by an external agent to 

change the radius: 

W E E
Qq

r r
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r r
= − = − −
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8
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π π0 0ε ε
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89. Assume the charge on Earth is distributed with spherical symmetry. If the electric 

potential is zero at infinity then at the surface of Earth it is V = q/4πε0R, where q is the 

charge on Earth and R = 6.37 × 10
6
 m is the radius of Earth. The magnitude of the electric 

field at the surface is E = q/4πε0R
2
, so  

 

V = ER = (100 V/m) (6.37 × 10
6
 m) = 6.4 × 10

8
 V. 



 

90. The net electric potential at point P is the sum of those due to the six charges: 
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91. In the sketches shown next, the lines with the arrows are field lines and those without 

are the equipotentials (which become more circular the closer one gets to the individual 

charges). In all pictures, q2 is on the left and q1 is on the right (which is reversed from the 

way it is shown in the textbook). 

 

(a) 

  

 

(b) 

  

 



92. (a) We use Gauss’ law to find expressions for the electric field inside and outside the 

spherical charge distribution. Since the field is radial the electric potential can be written 

as an integral of the field along a sphere radius, extended to infinity. Since different 

expressions for the field apply in different regions the integral must be split into two parts, 

one from infinity to the surface of the distribution and one from the surface to a point 

inside. Outside the charge distribution the magnitude of the field is E = q/4πε0r
2 

and the 

potential is V = q/4πε0r, where r is the distance from the center of the distribution. This is 

the same as the field and potential of a point charge at the center of the spherical 

distribution. To find an expression for the magnitude of the field inside the charge 

distribution, we use a Gaussian surface in the form of a sphere with radius r, concentric 

with the distribution. The field is normal to the Gaussian surface and its magnitude is 

uniform over it, so the electric flux through the surface is 4πr
2
E. The charge enclosed is 

qr
3
/R

3
. Gauss’ law becomes 

4 2
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3
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R
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so 

E
qr

R
=

4 0

3πε
.  

 

If Vs is the potential at the surface of the distribution (r = R) then the potential at a point 

inside, a distance r from the center, is 
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The potential at the surface can be found by replacing r with R in the expression for the 

potential at points outside the distribution. It is Vs = q/4πε0R. Thus, 
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(b) The potential difference is 
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(b) To find the potential in the region r1 < r < r2, first use Gauss’s law to find an 

expression for the electric field, then integrate along a radial path from r2 to r. The 

Gaussian surface is a sphere of radius r, concentric with the shell. The field is radial and 

therefore normal to the surface. Its magnitude is uniform over the surface, so the flux 

through the surface is Φ = 4πr
2
E. The volume of the shell is 4 3 2

3

1

3πb gc hr r− , so the 

charge density is 

ρ =
−

3

4 2
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and the charge enclosed by the Gaussian surface is 
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Gauss’ law yields 
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If Vs is the electric potential at the outer surface of the shell (r = r2) then the potential a 

distance r from the center is given by 
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The potential at the outer surface is found by placing r = r2 in the expression found in 

part (a). It is Vs = Q/4πε0r2. We make this substitution and collect terms to find 
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Since ρ = −3 4 2

3

1

3Q r rπ c h  this can also be written 
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93. (a) For r > r2 the field is like that of a point charge and 
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where the zero of potential was taken to be at infinity. 
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or in terms of the charge density V r r= −
ρ
ε2 0

2

2

1

2c h. 
 

(d) The solutions agree at r = r1 and at r = r2. 

 

(c) The electric field vanishes in the cavity, so the potential is everywhere the same inside 

and has the same value as at a point on the inside surface of the shell. We put r = r1 in the 

result of part (b). After collecting terms the result is 



 

94. The distance r being looked for is that where the alpha particle has (momentarily) 

zero kinetic energy.  Thus, energy conservation leads to 
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If we set r0 = ∞ (so U0 = 0) then we obtain r = 8.8 × 10
−14

 m. 



 

95. On the dipole axis θ = 0 or π, so |cos θ | = 1. Therefore, magnitude of the electric field 

is 
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96. We imagine moving all the charges on the surface of the sphere to the center of the 

the sphere. Using Gauss’ law, we see that this would not change the electric field outside 

the sphere. The magnitude of the electric field E of the uniformly charged sphere as a 

function of r, the distance from the center of the sphere, is thus given by E(r) = q/(4πε0r
2
) 

for r > R. Here R is the radius of the sphere. Thus, the potential V at the surface of the 

sphere (where r = R) is given by 
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97. The potential difference is  

 

∆V = E∆s = (1.92 × 10
5
 N/C)(0.0150 m) = 2.90 × 10

3
 V. 
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(8.99 10 N m C )(1.50 10 C)
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Vπε
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(b) If the potential were a linear function of r then it would have equally spaced 

equipotentials, but since V r∝1  they are spaced more and more widely apart as r 

increases. 

 

98. (a) Using Eq. 24-26, we calculate the radius r of the sphere representing the 30 V 

equipotential surface: 

 



 

99. (a) Let the quark-quark separation be r. To “naturally” obtain the eV unit, we only 

plug in for one of the e values involved in the computation: 
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(b) The total consists of all pair-wise terms: 
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100. (a) At the smallest center-to-center separation pd the initial kinetic energy Ki of the 

proton is entirely converted to the electric potential energy between the proton and the 

nucleus. Thus, 
2

lead1 82
.

4 4
i

p p

eq e
K

d dε ε
= =

0 0π π
 

 

In solving for pd  using the eV unit, we note that a factor of e cancels in the middle line: 
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It is worth recalling that 1 V 1 N m/C= ⋅ , in making sense of the above manipulations. 

 

(b) An alpha particle has 2 protons (as well as 2 neutrons). Therefore, using ′rmin  for the 

new separation, we find 
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q q e e
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which leads to / 2.00pd dα = . 

 



101. (a) The charge on every part of the ring is the same distance from any point P on the 

axis. This distance is r z R= +2 2 , where R is the radius of the ring and z is the distance 

from the center of the ring to P. The electric potential at P is 
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(b) The electric field is along the axis and its component is given by 
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This agrees with Eq. 23-16. 

 



102. The electric potential energy is 
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103. (a) With V = 1000 V, we solve  0/ 4 ,V q Rπε=  where R = 0.010 m for the net charge 

on the sphere, and find q =  1.1 × 10
−9 

C.  Dividing this by e yields 6.95 × 10
9 

electrons 

that entered the copper sphere.  Now, half of the 3.7 × 10
8 

decays per second resulted in 

electrons entering the sphere, so the time required is 

 

 
9

8

6.95 10
38 s

(3.7 10 / s) / 2

×
=

×
 

 

(b) We note that 100 keV is 1.6 × 10
−14

 J (per electron that entered the sphere).  Using the 

given heat capacity, we note that a temperature increase of ∆T = 5.0 K = 5.0 Cº required 

71.5 J of energy.  Dividing this by 1.6 × 10
−14

 J, we find the number of electrons needed 

to enter the sphere (in order to achieve that temperature change); since this is half the 

number of decays, we multiply to 2 and find 

 

          N = 8.94 × 10
15

 decays. 

 

We divide N  by 3.7 × 10
8
 to obtain the number of seconds.  Converting to days, this 

becomes roughly 280 days.  

 



104. The charges are equidistant from the point where we are evaluating the potential — 

which is computed using Eq. 24-27 (or its integral equivalent). Eq. 24-27 implicitly 

assumes V → 0 as r → ∞. Thus, we have 
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9 2 2 12

2 3 21 1 1 1

4 4 4 4

2(8.99 10 N m C )(4.52 10 C)
0.956 V.

0.0850 m

Q Q Q Q
V

R R R Rε ε ε ε0 0 0 0

−

+ − +
= + + =

π π π π

× ⋅ ×
= =

 



 

105. Since the electric potential energy is not changed by the introduction of the third 

particle, we conclude that the net electric potential evaluated at P caused by the original 

two particles must be zero: 

 1 2

0 1 0 2

0
4 4

q q

r rπε πε
+ =  . 

 

Setting r1 = 5d/2 and r2 = 3d /2 we obtain q1 = – 5q2/3, or 1 2/ 5 / 3 1.7q q = − ≈ − . 



 

106. (a)  Clearly, the net voltage 

 

0 0

2

4 | | 4 | |

q q
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x d xπε πε
= +

−
 

 

is not zero for any finite value of x. 

 

(b) The electric field cancels at a point between the charges: 

 

2 2

0 0

2

4 4 ( )

q q

x d xπε πε
=

−
 

         

which has the solution:  x =  ( 2  − 1) d  =  0.41 m. 



 

107. This can be approached more than one way, but the simplest is to observe that the 

net potential (using Eq. 24-27) due to q1 = +2e and q3 = –2e is zero at both the initial and 

final positions of the movable charge q2 = +5q. This implies that no work is necessary to 

effect its change of position, which, in turn, implies there is no resulting change in 

potential energy of the configuration. Hence, the ratio is unity. 



 

(b) Ex(bc) = 0,  

 

(c) Ex(cd) = 3.0 V/m, 

 

(d) Ex(de) = 3.0 V/m,  

 

(e) Ex(ef) = 15 V/m,  

 

(f) Ex(fg) = 0,  

 

(g) Ex(gh) = –3.0 V/m.  

 

Since these values are constant during their respective time-intervals, their graph consists 

of several disconnected line-segments (horizontal) and is not shown here.  

  

 

108. We use Ex = –dV/dx, where dV/dx is the local slope of the V vs. x curve depicted in 

Fig. 24-69. The results are:  

 

(a) Ex(ab) = –6.0 V/m,  



 

109. (a) We denote the surface charge density of the disk as σ1 for 0 < r < R/2, and as σ2 

for R/2 < r < R. Thus the total charge on the disk is given by  
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(b) We use Eq. 24-36: 
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Substituting the numerical values of σ1, σ2, R and z, we obtain V(z) = 7.95 × 10
2
 V. 



 

110. The net potential (at point A or B) is computed using Eq. 24-27. Thus, using k for 

1/4πε0, the difference is 
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111. We denote q = 25 × 10
–9

 C, y = 0.6 m, x = 0.8 m, with V = the net potential 

(assuming V → 0 as r → ∞). Then, 
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112. (a) The total electric potential energy consists of three equal terms: 

 

U = 
q1 q2

4πεo r
  +  

q2 q3

4πεo r
  + 

q1 q3

4πεo r
  

 

where q1 = q2 = q3 = q = − 
e

3
  , and 152.82 10 mr −= × as given in the problem.  The result is  
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(b) Dividing by the square of the speed of light (roughly 3.0 × 10
8 
m/s), we obtain  
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which is about a third of the correct electron mass value. 
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Only the first two terms of each expansion were retained. Thus, 
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113. A positive charge q is a distance r – d from P, another positive charge q is a distance 

r from P, and a negative charge –q is a distance r + d from P. Sum the individual electric 

potentials created at P to find the total: 

 

V
q

r d r r d
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+ −
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We use the binomial theorem to approximate 1/(r – d) for r much larger than d: 

 

1 11 1 2

2r d
r d r r d
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Similarly, 



 

114. (a) The net potential is  

 

V = V1 + V2 =  
q1

4πεo r1
  + 

q2

4πεo r2
  

 

where r1 = x
2
 + y

2
  and r2 = (x− d)

2
 + y

2
.  The distance d is 8.6 nm. To find the locus 

of points resulting in V = 0, we set V1 equal to the (absolute value of) V2 and square both 

sides.  After simplifying and rearranging we arrive at an equation for a circle: 
 

          y
2
 + ⎝⎜

⎛
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⎞

x + 
9d

16

2

  = 
225

256
  d 

2
 . 

 

From this form, we recognize that the center of the circle is –9d/16 =  – 4.8 nm. 

 

(b) Also from this form, we identify the radius as the square root of the right-hand side: R 

= 15d/16 = 8.1 nm. 

 

(c) If one uses a graphing program with “implicitplot” features, it is certainly possible to 

set V = 5 volts in the expression (shown in part (a)) and find its (or one of its) 

equipotential curves in the xy plane.  In fact, it will look very much like a circle.  

Algebraically, attempts to put the expression into any standard form for a circle will fail, 

but that can be a frustrating endeavor.  Perhaps the easiest way to show that it is not truly 

a circle is to find where its “horizontal diameter” Dx and its “vertical diameter” Dy (not 

hard to do); we find Dx = 2.582 nm and Dy = 2.598 nm.  The fact that Dx ≠ Dy is evidence 

that it is not a true circle. 



  

 
 

 (b) In this case, the same procedure yields these two equipotential lines: 

 

 
 

(c) One way to search for the “crossover” case (from a single equipotential line, to two) is 

to “solve” for a point on the y axis (chosen here to be an absolute distance ξ below q1 – 

that is, the point is at a negative value of y, specifically at y = −ξ) in terms of V (or more 

conveniently, in terms of the parameter η = 4πεoV x 10
10

).  Thus, the above expression 

for V becomes simply 

 

115. The (implicit) equation for the pair (x,y) in terms of a specific V is 

 

V = 
q1

4πεo x
2 
+ y

2   + 
q2

4πεo x
2 
+ (y − d)

2   

 

where d = 0.50 m.  The values of q1 and q2 are given in the problem. 

 

(a)  We set V = 5.0 V and plotted (using MAPLE’s implicit plotting routine) those points 

in the xy plane which (when plugged into the above expression for V) yield 5.0 volts.  The 

result is 



Clearly there is the possibility of having two solutions (implying two intersections of 

equipotential lines with the –y axis) when the square root term is nonzero.  This suggests 

that we explore the special case where the square root term is zero; that is, 

 

d
2

 η2
 + 169 − 74 d η  = 0 . 

 

Squaring both sides, using the fact that d = 0.50 m and recalling how we have defined the 

parameter η, this leads to a “critical value” of the potential (corresponding to the 

crossover case, between one and two equipotentials): 

 

ηcritical =  
37 − 20 3

d
    ⇒     Vcritical  =  

ηcritical
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10  =  4.2 V. 

 
12 25

d
η

ξ ξ
−

= +
+

 . 

 

This leads to a quadratic equation with the (formal) solution 

 

ξ =  
13 − d η ± d

2
 η2

 + 169 − 74 d η
2 η   . 

 



  
 

 

116. From the previous chapter, we know that the radial field due to an infinite line-

source is 

E
r

=
λ

2π 0ε
 

which integrates, using Eq. 24-18, to obtain 
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The subscripts i and f are somewhat arbitrary designations, and we let Vi = V be the 

potential of some point P at a distance ri = r from the wire and Vf = Vo be the potential 

along some reference axis (which intersects the plane of our figure, shown next, at the xy 

coordinate origin, placed midway between the bottom two line charges — that is, the 

midpoint of the bottom side of the equilateral triangle) at a distance rf = a from each of 

the bottom wires (and a distance a 3  from the topmost wire). Thus, each side of the 

triangle is of length 2a. Skipping some steps, we arrive at an expression for the net 

potential created by the three wires (where we have set Vo = 0): 
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which forms the basis of our contour plot shown below. On the same plot we have shown 

four electric field lines, which have been sketched (as opposed to rigorously calculated) 

and are not meant to be as accurate as the equipotentials. The ±2λ by the top wire in our 

figure should be –2λ (the ± typo is an artifact of our plotting routine). 
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where we have set the potential along the z axis equal to zero (Vo = 0) in the last step 

(which we are free to do). This is the expression used to obtain the equipotentials shown 

next. The center dot in the figure is the intersection of the z axis with the xy plane, and the 

dots on either side are the intersections of the wires with the plane. 
 

 

 

117. From the previous chapter, we know that the radial field due to an infinite line-

source is 

E
r

=
λ

2π 0ε
 

 

which integrates, using Eq. 24-18, to obtain 
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The subscripts i and f are somewhat arbitrary designations, and we let Vi = V be the 

potential of some point P at a distance ri = r from the wire and Vf = Vo be the potential 

along some reference axis (which will be the z axis described in this problem) at a 

distance rf = a from the wire. In the “end-view” presented here, the wires and the z axis 

appear as points as they intersect the xy plane. The potential due to the wire on the left 

(intersecting the plane at x = –a) is 
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and the potential due to the wire on the right (intersecting the plane at x = +a) is 
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Since potential is a scalar quantity, the net potential at point P is the addition of V–λ and 

V+λ which simplifies to 

 



 

118. The electric field (along the radial axis) is the (negative of the) derivative of the 

voltage with respect to r.  There are no other components of E  
→

 in this case, so  (noting 

that the derivative of a constant is zero) we conclude that the magnitude of the field is 
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for r ≤ R.  This agrees with the Rutherford field expression shown in exercise 37 (in the 

textbook).  We note that he has designed his voltage expression to be zero at r = R.  Since 

the zero point for the voltage of this system (in an otherwise empty space) is arbitrary, 

then choosing  V = 0  at r = R is certainly permissible.  



Chapter 25 
 



 

 

 

 

 

1. (a) The capacitance of the system is 

 

C
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V
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∆
70
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V
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(b) The capacitance is independent of q; it is still 3.5 pF. 

 

(c) The potential difference becomes 

 

∆V
q

C
= = =
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2. Charge flows until the potential difference across the capacitor is the same as the 

potential difference across the battery. The charge on the capacitor is then q = CV, and 

this is the same as the total charge that has passed through the battery. Thus,  

 

q = (25 × 10
–6

 F)(120 V) = 3.0 × 10
–3

 C. 

 



3. For a given potential difference V, the charge on the surface of the plate is  

 

 ( )q Ne nAd e= =  

 

where d is the depth from which the electrons come in the plate, and n is the density of 

conduction electrons. The charge collected on the plate is related to the capacitance and 

the potential difference by q CV=  (Eq. 25-1). Combining the two expressions leads to 

 

 
C d
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With 14 / / 5.0 10 m/Vs sd V d V −= = ×  and 28 38.49 10 / mn = ×  (see, for example, Sample 

Problem 25-1), we obtain 
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− −= × × × − = × . 
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(b) Since d is much less than the size of an atom (∼ 10
–10

 m), this capacitor cannot be 

constructed. 

 

4. We use C = Aε0/d.  

 

(a) The distance between the plates is 

 



 

5. (a) The capacitance of a parallel-plate capacitor is given by C = ε0A/d, where A is the 

area of each plate and d is the plate separation. Since the plates are circular, the plate area 

is A = πR
2
, where R is the radius of a plate. Thus, 
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(b) The charge on the positive plate is given by q = CV, where V is the potential 

difference across the plates. Thus,  

 

q = (1.44 × 10
–10

 F)(120 V) = 1.73 × 10
–8

 C = 17.3 nC. 



 

6. (a) We use Eq. 25-17: 
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(b) Let the area required be A. Then C = ε0A/(b – a), or 
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7. Assuming conservation of volume, we find the radius of the combined spheres, then 

use C = 4πε0R to find the capacitance. When the drops combine, the volume is doubled. It 

is then V = 2(4π/3)R
3
. The new radius R' is given by 

 

( )3 34 4
2     

3 3
R R′ = ⇒

π π
   ′ =R R21 3 . 

 

The new capacitance is 
1 3

0 0 04 4 2 5.04 .C R R Rε ε ε′ ′= = =π π π  

 

With R = 2.00 mm, we obtain ( )( )12 3 135.04 8.85 10 F m 2.00 10 m 2.80 10 FC π − − −= × × = × . 



 

8. The equivalent capacitance is 
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9. The equivalent capacitance is 

 

( ) ( )( )1 2 3

eq

1 2 3

10.0 F 5.00 F 4.00 F
3.16 F.

10.0 F 5.00 F 4.00 F

C C C
C

C C C

µ µ µ
µ

µ µ µ
+ +

= = =
+ + + +

 



 

10. The equivalent capacitance is given by Ceq = q/V, where q is the total charge on all the 

capacitors and V is the potential difference across any one of them. For N identical 

capacitors in parallel, Ceq = NC, where C is the capacitance of one of them. Thus, 

/NC q V=  and 

( ) ( )
3

6

1 00C
9 09 10

110V 1 00 10 F

q .
N . .

VC . −
= = = ×

×
 



 

11. The charge that passes through meter A is 

 

q C V CV= = = =eq F V C.3 3 25 0 4200 0 315. .µb gb g  



 

12. (a) The potential difference across C1 is V1 = 10.0 V. Thus,  

 

q1 = C1V1 = (10.0 µF)(10.0 V) = 1.00 × 10
–4

 C. 

 

(b) Let C = 10.0 µF. We first consider the three-capacitor combination consisting of C2 

and its two closest neighbors, each of capacitance C. The equivalent capacitance of this 

combination is 

2
eq

2

1 50 
C C

C C . C.
C C

= + =
+

 

 

Also, the voltage drop across this combination is 

 

1 1
10 40

1 50 eq

CV CV
V . V .

C C C . C
= = =

+ +
 

 

Since this voltage difference is divided equally between C2 and the one connected in 

series with it, the voltage difference across C2 satisfies V2 = V/2 = V1/5. Thus 

 

( ) 5

2 2 2

10 0V
10 0 F 2 00 10 C.

5

.
q C V . .µ −⎛ ⎞= = = ×⎜ ⎟

⎝ ⎠
 



        

 

( )( )eq

1

1 2

3.16 F 100.0V
21.1V.

10.0 F 5.00 F

C V
V

C C

µ
µ µ

= = =
+ +

 

 

Thus ∆V1 = 100.0 V – 21.1 V = 78.9 V and  

 

∆q1 = C1∆V1 = (10.0 µF)(78.9 V) = 7.89 × 10
–4

 C. 

 

13. (a) and (b) The original potential difference V1 across C1 is 



 

14. The two 6.0 µF capacitors are in parallel and are consequently equivalent to 

eq 12 FC µ= .  Thus, the total charge stored (before the squeezing) is  

 

( )total eq 12 F (10 0V) 120 C.q C V .µ µ= = =  

 

(a) and (b)  As a result of the squeezing, one of the capacitors is now 12 µF (due to the 

inverse proportionality between C and d in Eq. 25-9) which represents an increase of 

6.0 Fµ  and thus a charge increase of  

 

( )total eq 6 0 F (10 0V) 60 C .q C V . .µ µ∆ = ∆ = =  



 

15. The charge initially on the charged capacitor is given by q = C1V0, where C1 = 100 pF 

is the capacitance and V0 = 50 V is the initial potential difference. After the battery is 

disconnected and the second capacitor wired in parallel to the first, the charge on the first 

capacitor is q1 = C1V, where V = 35 V is the new potential difference. Since charge is 

conserved in the process, the charge on the second capacitor is q2 = q – q1, where C2 is 

the capacitance of the second capacitor. Substituting C1V0 for q and C1V for q1, we obtain 

q2 = C1 (V0 – V). The potential difference across the second capacitor is also V, so the 

capacitance is 

( )02
2 1

50V 35V
100pF 43pF.

35V

V Vq
C C

V V

− −
= = = =  



 

16. We note that the voltage across C3 is V3 = (12 V – 2 V – 5 V ) = 5 V.  Thus, its charge 

is q3  = C3 V3 = 4 µC.  

 

(a) Therefore, since C1, C2 and C3 are in series (so they have the same charge), then 

 

C1 =  
4 µC

2 V
   =  2.0 µF . 

 

(b) Similarly, C2 = 4/5 = 0.80 µF. 



  

3(2.00 µF) = 6.00 µF. This is now seen to be in series with another combination, which 

consists of the two 3.0-µF capacitors connected in parallel (which are themselves 

equivalent to C' = 2(3.00 µF) = 6.00 µF). Thus, the equivalent capacitance of the circuit 

is 

( ) ( )
eq

6 00 F 6 00 F
3 00 F.

6 00 F 6 00 F

. .CC
C .

C C . .

µ µ
µ

µ µ
′

= = =
′+ +

 

 

(b) Let V = 20.0 V be the potential difference supplied by the battery. Then  

 

q = CeqV = (3.00 µF)(20.0 V) = 6.00 × 10
–5

 C. 

 

(c) The potential difference across C1 is given by 

 

( ) ( )
1

6 00 F 20 0V
10 0V

6 00 F 6 00 F

. .CV
V . .

C C . .

µ
µ µ

= = =
′+ +

 

 

(d) The charge carried by C1 is q1 = C1V1= (3.00 µF)(10.0 V) = 3.00 × 10
–5

 C. 

 

(e) The potential difference across C2 is given by V2 = V – V1 = 20.0 V – 10.0 V = 10.0 V.  

 

(f) The charge carried by C2 is q2 = C2V2 = (2.00 µF)(10.0 V) = 2.00 × 10
–5

 C. 

 

(g) Since this voltage difference V2 is divided equally between C3 and the other 4.00-µF 

capacitors connected in series with it, the voltage difference across C3 is given by V3 = 

V2/2 = 10.0 V/2 = 5.00 V.  

 

(h) Thus, q3 = C3V3 = (4.00 µF)(5.00 V) = 2.00 × 10
–5

 C. 

 

17. (a) First, the equivalent capacitance of the two 4.00 µF capacitors connected in series 

is given by 4.00 µF/2 = 2.00 µF. This combination is then connected in parallel with two 

other 2.00-µF capacitors (one on each side), resulting in an equivalent capacitance C = 



 

18. We determine each capacitance from the slope of the appropriate line in the graph.  

Thus, C1 = (12 µC)/(2.0 V) = 6.0 µF.  Similarly, C2 = 4.0 µF and C3 = 2.0 µF.  The total 

equivalent capacitance is given by 

 

1 2 3

123 1 2 3 1 2 3

1 1 1

( )

C C C

C C C C C C C

+ +
= + =

+ +
, 

or  

1 2 3
123

1 2 3

( ) (6.0 F)(4.0 F 2.0 F) 36
F 3.0 F

6.0 F 4.0 F 2.0 F 12

C C C
C

C C C

µ µ µ µ µ
µ µ µ

+ +
= = = =

+ + + +
. 

 

This implies that the charge on capacitor 1 is 1q = (3.0 µF)(6.0 V) = 18 µC.  The voltage 

across capacitor 1 is therefore V1 = (18 µC)/( 6.0 µF) = 3.0 V.  From the discussion in 

section 25-4, we conclude that the voltage across capacitor 2 must be 6.0 V – 3.0 V = 3.0 

V.  Consequently, the charge on capacitor 2 is (4.0 µF)( 3.0 V) = 12 µC.   

 



        

19. (a) After the switches are closed, the potential differences across the capacitors are 

the same and the two capacitors are in parallel. The potential difference from a to b is 

given by Vab = Q/Ceq, where Q is the net charge on the combination and Ceq is the 

equivalent capacitance. The equivalent capacitance is Ceq = C1 + C2 = 4.0 × 10
–6

 F. The 

total charge on the combination is the net charge on either pair of connected plates. The 

charge on capacitor 1 is 

 

( )( )6 4

1 1 1.0 10 F 100V 1.0 10 Cq C V − −= = × = ×  

 

and the charge on capacitor 2 is 

 

q C V2 2

6 430 10 100 30 10= = × = ×− −. .F V C,c hb g  

 

so the net charge on the combination is 3.0 × 10
–4

 C – 1.0 × 10
–4

 C = 2.0 × 10
–4

 C. The 

potential difference is 

Vab =
×
×

=
−

−

2 0 10

4 0 10
50

4

6

.

.

C

F
V. 

 

(b) The charge on capacitor 1 is now q1 = C1Vab = (1.0 × 10
–6

 F)(50 V) = 5.0 × 10
–5

 C. 

 

(c) The charge on capacitor 2 is now q2 = C2Vab = (3.0 × 10
–6

 F)(50 V) = 1.5 × 10
–4

 C. 



 

20. We do not employ energy conservation since, in reaching equilibrium, some energy is 

dissipated either as heat or radio waves. Charge is conserved; therefore, if Q = C1Vbat = 

100 µC, and q1, q2 and q3 are the charges on C1, C2 and C3 after the switch is thrown to 

the right and equilibrium is reached, then 

 

Q = q1 + q2 + q3 . 

 

Since the parallel pair C2 and C3 are identical, it is clear that q2 = q3.  They are in parallel 

with C1 so that V1=V3, or 

 31

1 3

qq

C C
=  

 

which leads to q1 =  q3/2.  Therefore, 

 

 3 3 3 3( / 2) 5 / 2Q q q q q= + + =  

 

which yields q3 = 2 / 5 2(100 C) / 5 40 CQ µ µ= =  and consequently q1 = q3/2 = 20 µC. 



 

21. Eq. 23-14 applies to each of these capacitors.  Bearing in mind that σ = q/A, we find 

the total charge to be 

 
qtotal  = q1 + q2 =  σ 1 A1  + σ 2 A2 =   εo E1 A1  + εo E2 A2  =  3.6 pC 

 

where we have been careful to convert cm
2
 to m

2
 by dividing by 10

4
. 

 



  

22. Using Equation 25-14, the capacitances are   

 
12 2 2

0 1
1

1 1

12 2 2

0 2
2

2 2

2 2 (8.85 10 C /N m )(0.050 m)
2.53 pF

ln( / ) ln(15 mm/5.0 mm)

2 2 (8.85 10 C /N m )(0.090 m)
3.61 pF .

ln( / ) ln(10 mm/2.5 mm)

L
C

b a

L
C

b a

πε π

πε π

−

−

× ⋅
= = =

× ⋅
= = =

 

 

Initially, the total equivalent capacitance is  

 

1 2 1 2
12

12 1 2 1 2 1 2

1 1 1 (2.53 pF)(3.61 pF)
1.49 pF

2.53 pF 3.61 pF

C C C C
C

C C C C C C C

+
= + = ⇒ = = =

+ +
, 

 

and the charge on the positive plate of each one is (1.49 pF )(10 V) = 14.9 pC.  Next, 

capacitor 2 is modified as described in the problem, with the effect that  

 

 
12 2 2

0 2
2

2 2

2 2 (8.85 10 C /N m )(0.090 m)
2.17 pF .

ln( / ) ln(25 mm/2.5 mm)

L
C

b a

πε π −× ⋅′ = = =
′

 

 

The new total equivalent capacitance is  

 

1 2
12

1 2

(2.53 pF)(2.17 pF)
1.17 pF

2.53 pF 2.17 pF

C C
C

C C

′
′ = = =

′+ +
 

 

and the new charge on the positive plate of each one is (1.17 pF)(10 V) = 11.7 pC.  Thus 

we see that the charge transferred from the battery (considered in absolute value) as a 

result of the modification is 14.9 pC – 11.7 pC = 3.2 pC.  

 

(a) This charge, divided by e gives the number of electrons that pass point P.  Thus,  

 

 
12

7

19

3.2 10 C
2.0 10

1.6 10 C
N

−

−

×
= = ×

×
. 

 

(b) These electrons move rightwards in the figure (that is, away from the battery) since 

the positive plates (the ones closest to point P) of the capacitors have suffered a decease 

in their positive charges. The usual reason for a metal plate to be positive is that it has 

more protons than electrons.  Thus, in this problem some electrons have “returned” to the 

positive plates (making them less positive).  

 



        

23. (a) and (b) We note that the charge on C3 is q3 = 12 µC – 8.0 µC = 4.0 µC.  Since the 

charge on C4 is q4 = 8.0 µC, then the voltage across it is q4/C4 = 2.0 V.  Consequently, the 

voltage V3 across C3 is 2.0 V ⇒ C3 = q3/V3 = 2.0 µF.   

 

Now C3 and C4  are in parallel and are thus equivalent to 6 µF capacitor which would then 

be in series with C2 ; thus, Eq 25-20 leads to an equivalence of  2.0 µF which is to be 

thought of as being in series with the unknown C1 .  We know that the total effective 

capacitance of the circuit (in the sense of what the battery “sees” when it is hooked up) is 

(12 µC)/Vbattery = 4µF/3.  Using Eq 25-20 again, we find 

 

1

2 µF
   +   

1

C1
   =  

3

4 µF
    ⇒     C1  = 4.0 µF . 



 

24. For maximum capacitance the two groups of plates must face each other with 

maximum area. In this case the whole capacitor consists of (n – 1) identical single 

capacitors connected in parallel. Each capacitor has surface area A and plate separation d 

so its capacitance is given by C0 = ε0A/d. Thus, the total capacitance of the combination is  

 

( ) ( ) 12 2 2 4 2
0 12

0 3

1 (8 1)(8.85 10 C /N m )(1.25 10  m )
1 2.28 10 F.

3.40 10  m

n A
C n C

d

ε − −
−

−

− − × ⋅ ×
= − = = = ×

×
 



  

positive plate of the fully charged capacitor – making its leftmost plate (the one closest to 

the negative terminal of the battery) the negative plate, as it should be.  

 

(e) As stated in (b), the electrons travel up through point b. 

 

(f) As stated in (c), the electrons travel up through point c. 

 

25. We note that the total equivalent capacitance is C123 = [(C3)
−1 + (C1 + C2)

−1]
−1

 = 6 µF.   

 

(a) Thus, the charge that passed point a is C123 Vbatt = (6 µF)(12 V) = 72 µC.  Dividing this 

by the value e = 1.60 × 10
−19 

C gives the number of electrons: 4.5 × 10
14

, which travel to 

the left – towards the positive terminal of the battery.   

 

(b) The equivalent capacitance of the parallel pair is C12 = C1 + C2 = 12 µF.  Thus, the 

voltage across the pair (which is the same as the voltage across C1 and C2 individually) is 

 

72 µC

12 µF
  = 6 V . 

 

Thus, the charge on C1 is 1q = (4 µF)(6 V) = 24 µC, and dividing this by e gives 
14

1 1 / 1.5 10N q e= = × , the number of electrons that have passed (upward) though point b.  

 

(c) Similarly, the charge on C2 is 2q =  (8 µF)(6 V) = 48 µC, and dividing this by e gives 
14

2 2 / 3.0 10N q e= = × , the number of electrons which have passed (upward) though point 

c. 

 

(d) Finally, since C3 is in series with the battery, its charge is the same that passed through 

the battery (the same as passed through the switch).  Thus, 4.5 × 10
14

 electrons passed 

rightward though point d.  By leaving the rightmost plate of C3, that plate is then the 



 

26. The charges on capacitors 2 and 3 are the same, so these capacitors may be replaced 

by an equivalent capacitance determined from 

 

1 1 1

2 3

2 3

2 3C C C

C C

C Ceq

= + =
+

.  

 

Thus, Ceq = C2C3/(C2 + C3). The charge on the equivalent capacitor is the same as the 

charge on either of the two capacitors in the combination and the potential difference 

across the equivalent capacitor is given by q2/Ceq. The potential difference across 

capacitor 1 is q1/C1, where q1 is the charge on this capacitor. The potential difference 

across the combination of capacitors 2 and 3 must be the same as the potential difference 

across capacitor 1, so q1/C1 = q2/Ceq. Now some of the charge originally on capacitor 1 

flows to the combination of 2 and 3. If q0 is the original charge, conservation of charge 

yields q1 + q2 = q0 = C1 V0, where V0 is the original potential difference across capacitor 1.  

 

(a) Solving the two equations 

1 2
1 2 1 0

1 eq

,
q q

q q C V
C C

= + =  

for q1 and q2, we obtain 

 

( )22 2
1 2 3 01 0 1 0

1
2 3eq 1 1 2 1 3 2 3

1

2 3

.
C C C VC V C V

q
C CC C C C C C C C

C
C C

+
= = =

+ + ++
+

 

 

With V0 = 12.0 V, C1= 4.00 µF, C2= 6.00 µF and C3 =3.00 µF, we find Ceq = 2.00 µF and 

q1 = 32.0 µC. 

 

(b) The charge on capacitors 2 is 

 

2 1 0 1 (4.00 F)(12.0V) 32.0 C 16.0 Cq C V q µ µ µ= − = − = . 

 

(c) The charge on capacitor 3 is the same as that on capacitor 2: 

 

3 1 0 1 (4.00 F)(12.0V) 32.0 C 16.0 Cq C V q µ µ µ= − = − = . 



         

( ) ( ) ( )1 3
1 3

1 3

1.00 F 3.00 F 12.0V
9.00 C.

1.00 F+3.00 F

C C V
q q

C C

µ µ
µ

µ µ
= = = =

+
 

 

(b) Capacitors 2 and 4 are also in series: 

 

( ) ( ) ( )
2 4

2 4

2 4

2.00 F 4.00 F 12.0V
16.0 C.

2.00 F 4.00 F

C C V
q q

C C

µ µ
µ

µ µ
= = = =

+ +
 

 

(c) 3 1 9.00 C.q q µ= =  

 

(d) 4 2 16.0 C.q q µ= =  

 

(e) With switch 2 also closed, the potential difference V1 across C1 must equal the 

potential difference across C2 and is 

 

( )( )3 4
1

1 2 3 4

3.00 F 4.00 F 12.0V
8.40V.

1.00 F 2.00 F 3.00 F 4.00 F

C C
V V

C C C C

µ µ
µ µ µ µ

++
= = =

+ + + + + +
 

 

Thus, q1 = C1V1 = (1.00 µF)(8.40 V) = 8.40 µC.  

 

(f) Similarly, q2 = C2V1 = (2.00 µF)(8.40 V) = 16.8 µC. 

 

(g) q3 = C3(V – V1) = (3.00 µF)(12.0 V – 8.40 V) = 10.8 µC. 

 

(h) q4 = C4(V – V1) = (4.00 µF)(12.0 V – 8.40 V) = 14.4 µC. 

 

27. (a) In this situation, capacitors 1 and 3 are in series, which means their charges are 

necessarily the same: 



(b) and (c)   At C3 = 0, the graph indicates V1 = 2.0 V.  The above expression 

consequently implies C1 = 4C2 .  Next we note that the graph shows that, at C3 = 6.0 µF, 

the voltage across C1 is exactly half of the battery voltage.  Thus, 

 

1

2
   =  

C2 + 6.0 µF

 C1 + C2 + 6.0 µF
    =   

C2 + 6.0 µF

 4C2 + C2 + 6.0 µF
  

 

which leads to C2 = 2.0 µF.  We conclude, too, that C1  = 8.0 µF.  

 

28. Initially the capacitors C1, C2, and C3 form a combination equivalent to a single 

capacitor which we denote C123. This obeys the equation 

 

 1 2 3

123 1 2 3 1 2 3

1 1 1

( )

C C C

C C C C C C C

+ +
= + =

+ +
 . 

 

Hence, using q = C123V and the fact that q = q1 = C1 V1 , we arrive at 

 

 123 2 31
1

1 1 1 1 2 3

C C Cq q
V V V

C C C C C C

+
= = = =

+ +
 . 

 

(a) As C3 → ∞ this expression becomes V1 = V.  Since the problem states that V1 

approaches 10 volts in this limit, so we conclude V = 10 V. 

 



 

29. The total energy is the sum of the energies stored in the individual capacitors. Since 

they are connected in parallel, the potential difference V across the capacitors is the same 

and the total energy is  

 

( ) ( )( )22 6 6

1 2

1 1
2.0 10 F 4.0 10 F 300V 0.27 J.

2 2
U C C V − −= + = × + × =  



 

30. (a) The capacitance is 

 

( )( )12 2 2 4 2

110

3

8.85 10 C /N m 40 10 m
3.5 10 F 35pF.

1.0 10 m

A
C

d

ε
− −

−
−

× ⋅ ×
= = = × =

×
 

 

(b) q = CV = (35 pF)(600 V) = 2.1 × 10
–8

 C = 21 nC. 

 

(c) U CV= = = × −1
2

2 1
2

2 635 21 6 3 10pF nC J = 6.3 J.b gb g . µ  

 

(d) E = V/d = 600 V/1.0 × 10
–3

 m = 6.0 × 10
5
 V/m. 

 

(e) The energy density (energy per unit volume) is 

 

( )( )
6

3

4 2 3

6.3 10 J
1.6 J m .

40 10 m 1.0 10 m

U
u

Ad

−

− −

×
= = =

× ×
 



 

31. The energy stored by a capacitor is given by U CV= 1
2

2 , where V is the potential 

difference across its plates. We convert the given value of the energy to Joules. Since 

1 J 1 W s,= ⋅  we multiply by (10
3
 W/kW)(3600 s/h) to obtain 710 kW h 3.6 10  J⋅ = × . Thus, 

 

C
U

V
= =

×
=

2 2 3 6 10
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72

2
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2

. J

V
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c h
b g

 



  

 

32. Let V = 1.00 m
3
. Using Eq. 25-25, the energy stored is 

 

        

( ) ( )
2

22 12 3 8

0 2

1 1 C
8.85 10 150 V m 1.00 m 9.96 10 J.

2 2 N m
U u Eε − −⎛ ⎞

= = = × = ×⎜ ⎟⋅⎝ ⎠
V V  

 



33. The energy per unit volume is 

 

u E
e

r

e

r
= =

F
HG

I
KJ =

1

2

1

2 4 32
0

2

0 2

2
2

0

4
ε ε

ε επ π0
2 .  

 

(a) At 31.00 10 mr −= × , with 191.60 10 Ce −= ×  and 12 2 2

0 8.85 10  C /N mε −= × ⋅ , we have  
18 39.16 10  J/mu −= × . 

 

(b) Similarly, at 61.00 10 mr −= × , 6 39.16 10  J/mu −= × . 

 

(c) At 91.00 10 mr −= × , 6 39.16 10  J/mu = × . 

 

(d) At 121.00 10 mr −= × , 18 39.16 10  J/mu = × . 

 

(e) From the expression above u ∝ r
–4

. Thus, for r → 0, the energy density u → ∞. 



  

 ( )( )22 2

1 1 1

1 1
10.0 F 50.0V 1.25 10 J.

2 2
U C V µ −= = = ×  

 

(g) Again, from part (a), 4

2 2.50 10 Cq −= × . 

 

(h) V2 = 50.0 V, as shown in (a). 

 

(i) The energy stored in C2 is ( )( )22 3

2 2 2

1 1
5.00 F 50.0V 6.25 10 J.

2 2
U C V µ −= = = ×  

 

34. (a) The potential difference across C1 (the same as across C2) is given by 

 

( )( )3
1 2

1 2 3

15.0 F 100V
50.0V.

10.0 F+5.00 F+15.0 F

C V
V V

C C C

µ
µ µ µ

= = = =
+ +

 

 

Also, V3 = V – V1 = V – V2 = 100 V – 50.0 V = 50.0 V. Thus, 

 

( )( )
( )( )
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1 1 1

4

2 2 2

4 4 4

3 1 2
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−
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(b) The potential difference V3 was found in the course of solving for the charges in part 

(a). Its value is V3 = 50.0 V. 

 

(c) The energy stored in C3 is ( )( )22 2

3 3 3 / 2 15.0 F 50.0V / 2 1.88 10 J.U C V µ −= = = ×  

 

(d) From part (a), we have 4

1 5.00 10 Cq −= × , and 

 

(e) V1 = 50.0 V, as shown in (a). 

 

(f) The energy stored in C1 is 

 



 

35. (a) Let q be the charge on the positive plate. Since the capacitance of a parallel-plate 

capacitor is given by 0 i
A dε , the charge is 0 i i

q CV AV dε= = . After the plates are 

pulled apart, their separation is fd and the potential difference is Vf. Then 

0 2f f
q AV dε=  and 

0

0 0

.
f f f

f i i

i i

d d dA
V q V V

A A d d

ε
ε ε

= = =  

 

With 33.00 10 mid −= × , 6.00 ViV = and 38.00 10 mfd −= × , we have 16.0 VfV = . 

 

(b) The initial energy stored in the capacitor is  

 
2 12 2 2 4 2 2

2 110

3

1 (8.85 10 C /N m )(8.50 10  m )(6.00 V)
4.51 10  J.

2 2 2(3.00 10  m)

i
i i

i

AV
U CV

d

ε − −
−

−

× ⋅ ×
= = = = ×

×
 

 

(c) The final energy stored is 

 
2

2
20 0 01 1

.
2 2

f f fi
f f i i

f f i i i i

d d dA A AV
U V V U

d d d d d d

ε ε ε⎛ ⎞ ⎛ ⎞
= = = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 

With / 8.00 / 3.00f id d = , we have 101.20 10  J.fU −= ×  

 

(d) The work done to pull the plates apart is the difference in the energy:  

 

W = Uf – Ui = 117.52 10  J.−×  



        

 

(d) From the figure,  

 

41 2
1 2

1 2

(10.0 F)(5.00 F)(100 V)
3.33 10 C.

10.0 F 5.00 F

C C V
q q

C C

µ µ
µ µ

−= = = = ×
+ +

 

 

(e) V1 = q1/C1 = 3.33 × 10
–4

 C/10.0 µF = 33.3 V. 

 

(f) 2 31
1 1 12

5.55 10 JU C V −= = × .  

 

(g) From part (d), we have 4

2 1 3.33 10 C.q q −= = ×  

 

(h) V2 = V – V1 = 100 V – 33.3 V = 66.7 V. 

 

(i) 2 21
2 2 22

1.11 10 JU C V −= = × . 

 

36. (a) The charge q3 in the figure is 4

3 3 (4.00 F)(100 V) 4.00 10 Cq C V µ −= = = × . 

 

(b) V3 = V = 100 V. 

 

(c) Using U CVi i i= 1
2

2 , we have 2 21
3 3 32

2.00 10 JU C V −= = × . 



 

37. (a) They each store the same charge, so the maximum voltage is across the smallest 

capacitor. With 100 V across 10 µF, then the voltage across the 20 µF capacitor is 50 V 

and the voltage across the 25 µF capacitor is 40 V. Therefore, the voltage across the 

arrangement is 190 V. 

 

(b) Using Eq. 25-21 or Eq. 25-22, we sum the energies on the capacitors and obtain Utotal 

= 0.095 J. 



 

38. (a) We calculate the charged surface area of the cylindrical volume as follows: 

 

A rh r= + = + =2 2 0 252π π π(0.20 π(0.20m)(0.10 m) m) m2 2.  

 

where we note from the figure that although the bottom is charged, the top is not. 

Therefore, the charge is q = σA = –0.50 µC on the exterior surface, and consequently 

(according to the assumptions in the problem) that same charge q is induced in the 

interior of the fluid. 

 

(b) By Eq. 25-21, the energy stored is 

 

U
q

C
= =

×
×

= ×
−

−
−

2 7

12

3

2

50 10

2 35 10
36 10

( .

(
.

C)

F)
J.

2

 

 

(c) Our result is within a factor of three of that needed to cause a spark. Our conclusion is 

that it will probably not cause a spark; however, there is not enough of a safety factor to 

be sure. 



 

39. We use E q R V R= =/ /4 0

2πε . Thus 

2 22
2 12 3

0 0 2

1 1 1 C 8000V
8.85 10 0.11 J/m .

2 2 2 N m 0.050 m

V
u E

R
ε ε −⎛ ⎞⎛ ⎞ ⎛ ⎞= = = × =⎜ ⎟⎜ ⎟ ⎜ ⎟⋅⎝ ⎠ ⎝ ⎠⎝ ⎠

 



  

 

 

40. (a) We use C = ε0A/d to solve for d: 

 

( )12 2 2 2

20

12

8.85 10 C /N m (0.35 m )
6.2 10 m.

50 10 F

A
d

C

ε
−

−
−

× ⋅
= = = ×

×
 

 

(b) We use C ∝ κ. The new capacitance is  

 

C' = C(κ/κair) = (50 pf)(5.6/1.0) = 2.8×10
2
 pF. 



 

41. The capacitance with the dielectric in place is given by C = κC0, where C0 is the 

capacitance before the dielectric is inserted. The energy stored is given by 

U CV C V= =1
2

2 1
2 0

2κ , so 

6

2 12 2

0

2 2(7.4 10 J)
4.7.

(7.4 10 F)(652V)

U

C V
κ

−

−

×
= = =

×
 

 

According to Table 25-1, you should use Pyrex. 



 

42. If the original capacitance is given by C = ε0A/d, then the new capacitance is 

0' / 2C A dε κ= . Thus C'/C = κ/2 or  

 

κ = 2C'/C = 2(2.6 pF/1.3 pF) = 4.0. 



 

43. The capacitance of a cylindrical capacitor is given by 

 

C C
L

b a
= =κ 0

02πκε
ln( / )

,  

 

where C0 is the capacitance without the dielectric, κ is the dielectric constant, L is the 

length, a is the inner radius, and b is the outer radius. The capacitance per unit length of 

the cable is 

 
12

1102 2 F/m)
8.1 10 F/m 81 pF/m.

ln( / ) ln[(0.60 mm)/(0.10 mm)]

C

L b a

−
−πκε π(2.6)(8.85×10

= = = × =  



        

C2 =  
ε0 A

d
  =  2.21 × 10

−11
 F  , 

and from Eq. 25-27, 

C1 =  
κε0 A

d
  =  6.64 × 10

−11
 F  . 

 

This leads to q1 = C1V1 = 8.00 × 10
−10

 C and q2 = C2V2 = 2.66 × 10
−10

 C.  The addition of 

these gives the desired result: qtot = 1.06 × 10
−9

 C.  Alternatively, the circuit could be 

reduced to find the qtot. 

 

44. Each capacitor has 12.0 V across it, so Eq. 25-1 yields the charge values once we 

know C1 and C2.  From Eq. 25-9, 

 



 

45. The capacitance is given by C = κC0 = κε0A/d, where C0 is the capacitance without 

the dielectric, κ is the dielectric constant, A is the plate area, and d is the plate separation. 

The electric field between the plates is given by E = V/d, where V is the potential 

difference between the plates. Thus, d = V/E and C = κε0AE/V. Thus, 

 

A
CV

E
=

κε 0

.  

 

For the area to be a minimum, the electric field must be the greatest it can be without 

breakdown occurring. That is, 

 

A =
× ×

× ×
=

−

−

( .

. ( .
. .

7 0 10

2 8 885 10
0 63

8

12

2F)(4.0 10 V)

F / m)(18 10 V / m)
m

3

6
 



 

46. (a) We use Eq. 25-14: 

 

( )2

2

9 N m

C

(4.7)(0.15 m)
2 0.73 nF.

ln( / ) 2 8.99 10 ln(3.8 cm/3.6 cm)

L
C

b a
0 ⋅

= πε κ = =
×

 

 

(b) The breakdown potential is (14 kV/mm) (3.8 cm – 3.6 cm) = 28 kV. 



 

47. Using Eq. 25-29, with σ = q/A, we have 

 
f
E

q

A
= = ×

κε 0

3200 10 N C  

 

which yields q = 3.3 × 10
–7

 C. Eq. 25-21 and Eq. 25-27 therefore lead to 

 

U
q

C

q d

A
= = = × −

2 2

0

5

2 2
6 6 10

κε
. .J  

 



  

48. The capacitor can be viewed as two capacitors C1 and C2 in parallel, each with 

surface area A/2 and plate separation d, filled with dielectric materials with dielectric 

constants κ1 and κ2, respectively. Thus, (in SI units), 

 

0 1 0 2 0 1 2
1 2

12 2 2 4 2
12

3

( / 2) ( / 2)

2

(8.85 10 C /N m )(5.56 10  m ) 7.00 12.00
8.41 10  F.

5.56 10  m 2

A A A
C C C

d d d

ε κ ε κ ε κ κ

− −
−

−

+⎛ ⎞= + = + = ⎜ ⎟
⎝ ⎠

× ⋅ × +⎛ ⎞= = ×⎜ ⎟× ⎝ ⎠

 



 

49. We assume there is charge q on one plate and charge –q on the other. The electric 

field in the lower half of the region between the plates is 

 

E
q

A
1

1 0

=
κ ε

,  

 

where A is the plate area. The electric field in the upper half is 

 

E
q

A
2

2 0

=
κ ε

.  

 

Let d/2 be the thickness of each dielectric. Since the field is uniform in each region, the 

potential difference between the plates is 

 

V
E d E d qd

A

qd

A
= + = +

L
NM

O
QP

=
+1 2

0 1 2 0

1 2

1 22 2 2

1 1

2ε κ κ ε
κ κ
κ κ

,  

so 

C
q

V

A

d
= =

+
2 0 1 2

1 2

ε κ κ
κ κ

.  

 

This expression is exactly the same as that for Ceq of two capacitors in series, one with 

dielectric constant κ1 and the other with dielectric constant κ2. Each has plate area A and 

plate separation d/2. Also we note that if κ1 = κ2, the expression reduces to C = κ1ε0A/d, 

the correct result for a parallel-plate capacitor with plate area A, plate separation d, and 

dielectric constant κ1. 

 

With 4 27.89 10 mA −= × , 34.62 10 md −= × , 1 11.0κ = and 2 12.0κ = , the capacitance is 

 
12 2 2 4 2

11

3

2(8.85 10 C /N m )(7.89 10  m ) (11.0)(12.0)
1.73 10 F.

4.62 10  m 11.0 12.0
C

− −
−

−

× ⋅ ×
= = ×

× +
 

 



        

50. Let C1 = ε0(A/2)κ1/2d = ε0Aκ1/4d, C2 = ε0(A/2)κ2/d = ε0Aκ2/2d, and C3 = ε0Aκ3/2d. 

Note that C2 and C3 are effectively connected in series, while C1 is effectively connected 

in parallel with the C2-C3 combination. Thus, 

 

( ) ( ) ( )0 2 32 3 0 1 0 2 3
1 1

2 3 2 3 2 3

2 2 2
.

4 2 2 4

A dC C A A
C C

C C d d

ε κ κε κ ε κ κκ
κ κ κ κ

⎛ ⎞
= + = + = +⎜ ⎟+ + +⎝ ⎠

 

 

With 3 21.05 10 mA −= × , 33.56 10 md −= × , 1 21.0κ = , 2 42.0κ = and 3 58.0,κ =  the 

capacitance is 

 
12 2 2 3 2

11

3

(8.85 10 C /N m )(1.05 10  m ) 2(42.0)(58.0)
21.0 4.55 10 F.

4(3.56 10  m) 42.0 58.0
C

− −
−

−

× ⋅ × ⎛ ⎞= + = ×⎜ ⎟× +⎝ ⎠
 



 

51. (a) The electric field in the region between the plates is given by E = V/d, where V is 

the potential difference between the plates and d is the plate separation. The capacitance 

is given by C = κε0A/d, where A is the plate area and κ is the dielectric constant, so 

0 /d A Cκε=  and 

  

E
VC

A
= =

×

× ×
= ×

−

− −κε 0

12

12 4 2

4
50 100 10

54 885 10 100 10
10 10

V F

F m m
V m

b gc h
c hc h. .

. .  

 

(b) The free charge on the plates is qf = CV = (100 × 10
–12

 F)(50 V) = 5.0 × 10
–9

 C. 

 

(c) The electric field is produced by both the free and induced charge. Since the field of a 

large uniform layer of charge is q/2ε0A, the field between the plates is 

 

E
q

A

q

A

q

A

q

A

f f i i= + − −
2 2 2 20 0 0 0ε ε ε ε

,  

 

where the first term is due to the positive free charge on one plate, the second is due to 

the negative free charge on the other plate, the third is due to the positive induced charge 

on one dielectric surface, and the fourth is due to the negative induced charge on the other 

dielectric surface. Note that the field due to the induced charge is opposite the field due to 

the free charge, so they tend to cancel. The induced charge is therefore 

 

( )( )( )9 12 4 2 4

0

9

5.0 10 C 8.85 10 F m 100 10 m 1.0 10 V m

4.1 10 C 4.1nC.

i fq q AEε − − −

−

= − = × − × × ×

= × =
 



  

V E d b E b
q

A
d b

b
0 1 2= − + =

F
HG
I
KJ − +F
HG

I
KJb g

ε κ0

,  

and the capacitance is 

 

( )
( )( )( )
( )( ) ( )

12 2 2 4 2

0

0

8.85 10 C /N m 115 10 m 2.61
13.4pF.

2.61 0.0124m 0.00780m 0.00780m

Aq
C

V d b b

ε κ
κ

− −× ⋅ ×
= = = =

− + − +

 

 

(b) q = CV = (13.4 × 10
–12

 F)(85.5 V) = 1.15 nC. 

 

(c) The magnitude of the electric field in the gap is 

 

E
q

A
1

0

9

12 4 2

4115 10

885 10 115 10
113 10= =

×
× ×

= ×
−

−
⋅

−ε
.

.
. .

C

m
N C

C

N m

2

2d ic h
 

 

(d) Using Eq. 25-34, we obtain 

 

E
E

2
1

4
3113 10

2 61
4 33 10= =

×
= ×

κ
.

.
. .

N C
N C  

 

52. (a) The electric field E1 in the free space between the two plates is E1 = q/ε0A while 

that inside the slab is E2 = E1/κ = q/κε0A. Thus, 

 



 

53. (a) According to Eq. 25-17 the capacitance of an air-filled spherical capacitor is given 

by  

0 04 .
ab

C
b a

ε ⎛ ⎞= ⎜ ⎟−⎝ ⎠
π  

 

When the dielectric is inserted between the plates the capacitance is greater by a factor of 

the dielectric constant κ. Consequently, the new capacitance is 

 

0 9 2 2

23.5 (0.0120 m)(0.0170 m)
4 0.107 nF.

8.99 10 N m C 0.0170 m 0.0120 m

ab
C

b a
κε ⎛ ⎞= = ⋅ =⎜ ⎟− × ⋅ −⎝ ⎠

π  

 

(b) The charge on the positive plate is (0.107 nF)(73.0 V) 7.79 nC.q CV= = =  

 

(c) Let the charge on the inner conductor be –q. Immediately adjacent to it is the induced 

charge q'. Since the electric field is less by a factor 1/κ than the field when no dielectric is 

present, then –q + q' = –q/κ. Thus, 

 

( ) 0

1 23.5 1.00
4 1 (7.79 nC) 7.45 nC.

23.5

ab
q q V

b a

κ κ ε
κ
− −⎛ ⎞′ = = − = =⎜ ⎟− ⎝ ⎠

π  



        

( )( )( )
7

12 2 2 6 4 2
0

8.9 10 C
7.2.

8.85 10 C /N m 1.4 10 V m 100 10 m

q

EA
κ

ε

−

− − −

×
= = =

× ⋅ × ×
 

 

(b) The charge induced is 

 

′ = −FHG
I
KJ = × −FHG

I
KJ = ×− −q q 1

1
8 9 10 1

1

7 2
7 7 107 7

κ
.

.
.C C.c h  

 

54. (a) We apply Gauss’s law with dielectric: q/ε0 = κEA, and solve for κ: 

 



 

55. (a) Initially, the capacitance is 

 

( )12 2 2 2

0
0 2

8.85 10 C /N m (0.12 m )
89 pF.

1.2 10 m

A
C

d

ε
−

−

× ⋅
= = =

×
 

 

(b) Working through Sample Problem 25-7 algebraically, we find: 

 

( )12 2 2 2

20

2 3

8.85 10 C /N m (0.12m )(4.8)
1.2 10 pF.

( ) (4.8)(1.2 0.40)(10 m) (4.0 10 m)

A
C

d b b

ε κ
κ

−

− −

× ⋅
= = = ×

− + − + ×
 

 

(c) Before the insertion, q = C0V (89 pF)(120 V) = 11 nC.  

 

(d) Since the battery is disconnected, q will remain the same after the insertion of the slab, 

with q = 11 nC. 

 

(e) E q A= = × × =− −
⋅

/ ) ( . )ε 0

9 1211 10 10 012 10C / (8.85 m kV / m.C

N m

22

2  

 

(f) E' = E/κ = (10 kV/m)/4.8 = 2.1 kV/m. 

 

(g) The potential difference across the plates is  

 

V = E(d – b) + E'b = (10 kV/m)(0.012 m – 0.0040 m)+ (2.1 kV/m)(0.40 × 10
–3

 m) = 88 V. 

 

(h) The work done is 

 
2 9 2

7

ext 12 12

0

1 1 (11 10 C) 1 1
1.7 10 J.

2 2 89 10 F 120 10 F

q
W U

C C

−
−

− −

⎛ ⎞ ⎛ ⎞×
= ∆ = − = − = − ×⎜ ⎟ ⎜ ⎟× ×⎝ ⎠⎝ ⎠

 

 



56. (a) Eq. 25-22 yields 

 

U CV= = × × = ×− −1

2

1

2
200 10 7 0 10 4 9 102 12 3

2
3F V Jc hc h. . .  

 
(b) Our result from part (a) is much less than the required 150 mJ, so such a spark should 

not have set off an explosion. 

 



  

57. Initially the capacitors C1, C2, and C3 form a series combination equivalent to a single 

capacitor which we denote C123. Solving the equation 

 

1 2 2 3 1 3

123 1 2 3 1 2 3

1 1 1 1 C C C C C C

C C C C C C C

+ +
= + + = , 

 

we obtain C123 = 2.40 µF.  With V = 12.0 V, we then obtain q = C123V = 28.8 µC.  In the 

final situation, C2 and C4  are in parallel and are thus effectively equivalent to 

24 12.0 FC µ= .  Similar to the previous computation, we use   

 

1 24 24 3 1 3

1234 1 24 3 1 24 3

1 1 1 1 C C C C C C

C C C C C C C

+ +
= + + =  

 

and find C1234 = 3.00 µF.  Therefore, the final charge is q = C1234V = 36.0 µC.   

 

(a) This represents a change (relative to the initial charge) of ∆q = 7.20 µC. 

 

(b) The capacitor C24 which we imagined to replace the parallel pair C2 and C4 is in series 

with C1 and C3 and thus also has the final charge q =36.0 µC found above.  The voltage 

across C24 would be  

 24

24

36.0 C
3.00 V

12.0 F

q
V

C

µ
µ

= = = . 

 

This is the same voltage across each of the parallel pair. In particular, V4 = 3.00 V implies 

that q4 = C4 V4 = 18.0 µC.  

 

(c) The battery supplies charges only to the plates where it is connected. The charges on 

the rest of the plates are due to electron transfers between them, in accord with the new 

distribution of voltages across the capacitors. So, the battery does not directly supply the 

charge on capacitor 4. 



 

58. In series, their equivalent capacitance (and thus their total energy stored) is smaller 

than either one individually (by Eq. 25-20).  In parallel, their equivalent capacitance (and 

thus their total energy stored) is larger than either one individually (by Eq. 25-19).  Thus, 

the middle two values quoted in the problem must correspond to the individual capacitors.  

We use Eq. 25-22 and find 

 

(a) 100 µJ  = 
1

2
 C1 (10 V)

2
   ⇒  C1  = 2.0 µF 

 

(b) 300 µJ  = 
1

2
 C2 (10 V)

2
   ⇒  C2  = 6.0 µF  . 



        
 

59. Initially, the total equivalent capacitance is C12 = [(C1)
−1 + (C2)

 −1]
−1

 = 3.0 µF, and the 

charge on the positive plate of each one is (3.0 µF)(10 V) = 30 µC.  Next, the capacitor 

(call is C1) is squeezed as described in the problem, with the effect that the new value of 

C1 is 12 µF (see Eq. 25-9). The new total equivalent capacitance then becomes  

 

C12 = [(C1)
 −1 + (C2)

 −1]
−1

 = 4.0 µF, 

 

and the new charge on the positive plate of each one is (4.0 µF)(10 V) = 40 µC. 

 

(a) Thus we see that the charge transferred from the battery as a result of the squeezing is 

40 µC − 30 µC = 10 µC. 

 

(b) The total increase in positive charge (on the respective positive plates) stored on the 

capacitors is twice the value found in part (a) (since we are dealing with two capacitors in 

series): 20 µC.  



 

60. (a) We reduce the parallel group C2, C3 and C4, and the parallel pair C5 and C6, 

obtaining equivalent values C' = 12 µF and C'' = 12 µF, respectively. We then reduce the 

series group C1, C' and C'' to obtain an equivalent capacitance of Ceq = 3 µF hooked to 

the battery. Thus, the charge stored in the system is qsys = CeqVbat = 36 µC . 

 

(b)  Since qsys = q1 then the voltage across C1 is 

 

V1 =  
q1

C1
 =  

36 µC

6.0 µF
  =  6.0 V  . 

 

The voltage across the series-pair C' and C'' is consequently Vbat − V1 = 6.0 V.  Since C' = 

C'', we infer V' = V'' = 6.0/2 = 3.0 V, which, in turn, is equal to V4, the potential across 

C4.  Therefore, 

q4 = C4V4 = (4.0 µF)(3.0 V) = 12 µC  . 



 

61. The pair C3 and C4 are in parallel and consequently equivalent to 30 µF.  Since this 

numerical value is identical to that of the others (with which it is in series, with the 

battery), we observe that each has one-third the battery voltage across it.  Hence, 3.0 V is 

across C4, producing a charge 

 

q4  = C4V4  = (15 µF)(3.0 V) = 45 µC  . 



  

bottom right capacitor.  The bottom right capacitor has, as a result, a potential across it 

equal to 

V  = 
q

C
 =  

60 µC

10 µF
 = 6.00 V 

 

which leaves 10.0 V − 6.00 V = 4.00 V across the group of capacitors in the upper right 

portion of the circuit.  Inspection of the arrangement (and capacitance values) of that 

group reveals that this 4.00 V must be equally divided by C2 and the capacitor directly 

below it (in series with it).  Therefore, with 2.00 V across C2 we find 

 

q2 = C2V2 = (10.0 µF)(2.00 V) = 20.0 µC  . 

 

62. (a)  The potential across C1 is 10 V, so the charge on it is 

 

q1 = C1V1 = (10.0 µF)(10.0 V) = 100 µC. 

 

(b) Reducing the right portion of the circuit produces an equivalence equal to 6.00 µF, 

with 10.0 V across it.  Thus, a charge of 60.0 µC is on it -- and consequently also on the 



 

63. The pair C1 and C2 are in parallel, as are the pair C3 and C4; they reduce to equivalent 

values 6.0 µF and 3.0 µF, respectively.  These are now in series and reduce to 2.0 µF, 

across which we have the battery voltage. Consequently, the charge on the 2.0 µF 

equivalence is (2.0 µF)(12 V) = 24 µC.  This charge on the 3.0 µF equivalence (of C3 and 

C4) has a voltage of 

V = 
q

C
 = 

24 µC

3 µF
 = 8.0 V . 

 

Finally, this voltage on capacitor C4 produces a charge (2.0 µF)(8.0 V) = 16 µC. 



 

64. (a) Here D is not attached to anything, so that the 6C and 4C capacitors are in series 

(equivalent to 2.4C). This is then in parallel with the 2C capacitor, which produces an 

equivalence of 4.4C. Finally the 4.4C is in series with C and we obtain 

 

( )( )
eq

4.4
0.82 0.82(50 F) 41 F

4.4

C C
C C

C C
µ µ= = = =

+
 

 

where we have used the fact that C = 50 µF. 

 

(b) Now, B is the point which is not attached to anything, so that the 6C and 2C 

capacitors are now in series (equivalent to 1.5C), which is then in parallel with the 4C 

capacitor (and thus equivalent to 5.5C). The 5.5C is then in series with the C capacitor; 

consequently, 

C
C C

C C
Ceq F=

+
= =

b gb g55

55
085 42

.

.
. .µ  



        

 

(c) V1 = q1/C1 = 4.80 × 10
−4

 C/6.00 µF = 80.0 V. 

 

(d) q2 = q1 = 4.80 × 10
−4

 C. 

 

(e) V2 = V – V1 = 200 V – 80.0 V = 120 V. 

 

65. (a) The equivalent capacitance is 

 

C
C C

C C
eq

F F

F F
F=

+
=

+
=1 2

1 2

6 00 4 00

6 00 4 00
2 40

. .
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. .

µ µ
µ µ

µ
b gb g

 

 

(b) q1 = CeqV = (2.40 µF)(200 V) = 4.80 × 10
−4

 C. 



 

66. (a) Now Ceq = C1 + C2 = 6.00 µF + 4.00 µF = 10.0 µF. 

 

(b) q1 = C1V = (6.00 µF)(200 V) = 1.20 × 10
–3

 C. 

 

(c) V1=200 V. 

 

(d) q2 = C2V = (4.00 µF)(200 V) = 8.00 × 10
–4

 C. 

 

(e) V2 = V1 = 200 V. 



 

67. We cannot expect simple energy conservation to hold since energy is presumably 

dissipated either as heat in the hookup wires or as radio waves while the charge oscillates 

in the course of the system “settling down” to its final state (of having 40 V across the 

parallel pair of capacitors C and 60 µF). We do expect charge to be conserved. Thus,  if 

Q is the charge originally stored on C and q1, q2 are the charges on the parallel pair after 

“settling down,” then 

 

( ) ( ) ( )( )1 2 100 V 40 V 60 F 40 VQ q q C C µ= + ⇒ = +  

 

which leads to the solution C = 40 µF. 



.RU ud= ∫ V  

Now, 2d rLdr= πV , so 

 

U
q

L r
rLdr

q

L
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r

q

L

R

a
R

a

R

a

R

= = =z z2

2
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2
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2
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2

4 4π
π

π πεε ε
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To find an expression for the total energy stored in the capacitor, we replace R with b: 

 

U
q

L

b

a
b =

2

04πε
ln .  

 

We want the ratio UR/Ub to be 1/2, so 

 

ln ln
R

a

b

a
=

1

2
 

 

or, since 1
2

ln / ln / , ln / ln /b a b a R a b ab g d i b g d i= = . This means / /R a b a= or 

R ab= . 

 

68. We first need to find an expression for the energy stored in a cylinder of radius R and 

length L, whose surface lies between the inner and outer cylinders of the capacitor (a < R 

< b). The energy density at any point is given by u E= 1
2 0

2ε , where E is the magnitude of 

the electric field at that point. If q is the charge on the surface of the inner cylinder, then 

the magnitude of the electric field at a point a distance r from the cylinder axis is given 

by (see Eq. 25-12) 

E
q

Lr
=

2 0πε
, 

 

and the energy density at that point is 

 

u E
q

L r
= =

1

2 8
0

2
2

2

0

2 2
ε

επ
.  

 

The corresponding energy in the cylinder is the volume integral 

 



        

follows. Adapting Eq. 25-35 to this problem, we see that the difference in charge 

densities between parts (c) and (d) is due, in part, to the (negative) layer of charge at the 

top surface of the dielectric; consequently, 

 

′ = × − × = − ×− − −σ 177 10 4 60 10 2 83 106 6 6. . . .c h c h C m2  

  

 

69. (a) Since the field is constant and the capacitors are in parallel (each with 600 V 

across them) with identical distances (d = 0.00300 m) between the plates, then the field in 

A is equal to the field in B: 
f
E

V

d
= = ×2 00 105. .V m  

 

(b) 5| | 2.00 10 V m .E = ×
f

See the note in part (a). 

 

(c) For the air-filled capacitor, Eq. 25-4 leads to 

 

σ ε= = = × −q

A
E0

6 2177 10
f

. .C m  

 

(d) For the dielectric-filled capacitor, we use Eq. 25-29: 

 

σ κε= = × −
0

6 24 60 10
f
E . .C m  

 

(e) Although the discussion in the textbook (§25-8) is in terms of the charge being held 

fixed (while a dielectric is inserted), it is readily adapted to this situation (where 

comparison is made of two capacitors which have the same voltage and are identical 

except for the fact that one has a dielectric). The fact that capacitor B has a relatively 

large charge but only produces the field that A produces (with its smaller charge) is in 

line with the point being made (in the text) with Eq. 25-34 and in the material that 



 

70. (a) The equivalent capacitance is Ceq = C1C2/(C1 + C2). Thus the charge q on each 

capacitor is 

 

41 2
1 2 eq

1 2

(2.00 F)(8.00 F)(300V)
4.80 10 C.

2.00 F 8.00 F

C C V
q q q C V

C C

µ µ
µ µ

−= = = = = = ×
+ +

 

 

(b) The potential difference is V1 = q/C1 = 4.80 × 10
–4

 C/2.0 µF = 240 V. 

 

(c) As noted in part (a), 4

2 1 4.80 10 C.q q −= = ×  

 

(d) V2 = V – V1 = 300 V – 240 V = 60.0 V. 

 

Now we have q'1/C1 = q'2/C2 = V' (V' being the new potential difference across each 

capacitor) and q'1 + q'2 = 2q. We solve for q'1, q'2 and V: 

 

(e) 
4

41
1

1 2

2 2(2.00 F)(4.80 10 )
' 1.92 10 C.

2.00 F 8.00 F

C q C
q

C C

µ
µ µ

−
−×

= = = ×
+ +

 

 

(f) 
4

1
1

1

1.92 10
96.0V.

2.00 F

q C
V

C µ

−′ ×′= = =  

 

(g) 4

2 1' 2 7.68 10 .q q q C−= − = ×  

 

(h) 2 1 96.0 V.V V′ ′= =  

 

(i) In this circumstance, the capacitors will simply discharge themselves, leaving q1 =0, 

 

(j) V1=0,  

 

(k) q2 = 0, 

 

(l) and V2 = V1 = 0. 



 

∆ ∆V

V

U

U
= + − = + − =1 1 1 10% 1 4 9%. .  

 

71. We use U CV= 1
2

2 . As V is increased by ∆V, the energy stored in the capacitor 

increases correspondingly from U to U + ∆U: U U C V V+ = +∆ ∆1
2

2( ) . Thus,  

(1 + ∆V/V)
2
 = 1 + ∆U/U, or 



 

72. We use C = ε0κA/d ∝ κ/d. To maximize C we need to choose the material with the 

greatest value of κ/d. It follows that the mica sheet should be chosen. 



 

73. We may think of this as two capacitors in series C1 and C2, the former with the 

1 3.00κ =  material and the latter with the κ2 = 4.00 material.  Upon using Eq. 25-9, Eq. 

25-27 and then reducing C1 and C2 to an equivalent capacitance (connected directly to the 

battery) with Eq. 25-20, we obtain 

 

Ceq  =  
⎝
⎜
⎛

⎠
⎟
⎞κ1 κ2

 κ1 + κ2
 
ε0 A

d
  =  1.52 × 10

−10
 F   . 

 

Therefore, q = CeqV = 1.06 × 10
−9

 C. 



 

74. (a) The length d is effectively shortened by b so C' = ε0A/(d – b) = 0.708 pF. 

  

(b) The energy before, divided by the energy after inserting the slab is 

 
2

0

2

0

/( )/ 2 5.00
1.67.

/ 2 / 5.00 2.00

A d bU q C C d

U q C C A d d b

ε
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= = = = = =
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(c) The work done is 

 
2 2 2

0 0

1 1
( ) 5.44 J.

2 2 2

q q q b
W U U U d b d

C C A Aε ε
⎛ ⎞′= ∆ = − = − = − − = − = −⎜ ⎟′⎝ ⎠

 

 

(d) Since W < 0 the slab is sucked in. 



        

(d) In Problem 25-74 where the capacitor is disconnected from the battery and the slab is 

sucked in, F is certainly given by −dU/dx. However, that relation does not hold when the 

battery is left attached because the force on the slab is not conservative. The charge 

distribution in the slab causes the slab to be sucked into the gap by the charge distribution 

on the plates. This action causes an increase in the potential energy stored by the battery 

in the capacitor. 

  

 

75. (a) C' = ε0A/(d – b) = 0.708 pF, the same as part (a) in Problem 25-74. 

 

(b) The ratio of the stored energy is now 

 
21

02

21
02

/ 5.00 2.00
0.600.

/( ) 5.00

CV A dU C d b

U C V C A d b d

ε
ε

− −
= = = = = =
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(c) The work done is 

 
2

2 2 90 01 1 1
' ( ) 1.02 10 J.

2 2 2 ( )

A AbV
W U U U C C V V

d b d d d b

ε ε −⎛ ⎞′= ∆ = − = − = − = = ×⎜ ⎟− −⎝ ⎠
 

 



 

76. (a) Put five such capacitors in series. Then, the equivalent capacitance is 2.0 µF/5 = 

0.40 µF. With each capacitor taking a 200-V potential difference, the equivalent capacitor 

can withstand 1000 V. 

 

(b) As one possibility, you can take three identical arrays of capacitors, each array being a 

five-capacitor combination described in part (a) above, and hook up the arrays in parallel. 

The equivalent capacitance is now Ceq = 3(0.40 µF) = 1.2 µF. With each capacitor taking 

a 200-V potential difference the equivalent capacitor can withstand 1000 V. 



 

77. The voltage across capacitor 1 is 

 

V
q

C
1

1

1

30

10
30= = =

µ
µ

C

F
V. .  

 

Since V1 = V2, the total charge on capacitor 2 is 

 

q C V2 2 2 20 2 60= = =µ µF V Cb gb g ,  

 

which means a total of 90 µC of charge is on the pair of capacitors C1 and C2. This 

implies there is a total of 90 µC of charge also on the C3 and C4 pair. Since C3 = C4, the 

charge divides equally between them, so q3 = q4 = 45 µC. Thus, the voltage across 

capacitor 3 is 

V
q

C
3

3

3

45

20
2 3= = =

µ
µ
C

F
V. .  

 

Therefore, |VA – VB| = V1 + V3 = 5.3 V. 



 

78. One way to approach this is to note that – since they are identical – the voltage is 

evenly divided between them.  That is, the voltage across each capacitor is V = (10/n) volt.  

With C = 2.0 × 10
−6

 F, the electric energy stored by each capacitor is 
1

2
 CV

2
.  The total 

energy stored by the capacitors is n times that value, and the problem requires the total be 

equal to 25 × 10
−6

 J.  Thus, 

n

2
 (2.0 × 10

−6
) ⎝⎜

⎛
⎠⎟
⎞10

n

2

  =  25 × 10
−6

 

leads to n = 4. 

 



Chapter 26 
 



 

 

 
 
1. (a) The charge that passes through any cross section is the product of the current and 
time. Since t = 4.0 min = (4.0 min)(60 s/min) = 240 s,  
 

q = it = (5.0 A)(240 s) = 1.2× 103 C. 
 
(b) The number of electrons N is given by q = Ne, where e is the magnitude of the charge 
on an electron. Thus, 
 

N = q/e = (1200 C)/(1.60 × 10–19 C) = 7.5 × 1021. 

A-PDF Split DEMO : Purchase from www.A-PDF.com to remove the watermark

http://www.a-pdf.com/?product-split-demo


 

2. Suppose the charge on the sphere increases by ∆q in time ∆t. Then, in that time its 
potential increases by 

∆
∆

V
q

r
=

4 0πε
,  

 

where r is the radius of the sphere. This means ∆ ∆q r V= 4 0πε .  Now, ∆q = (iin – iout) ∆t, 

where iin is the current entering the sphere and iout is the current leaving. Thus, 
 

( )( )
( )( )

0

9
in out in out

3

0.10 m 1000 V4

8.99 10 F/m 1.0000020 A 1.0000000 A

5.6 10 s.

r Vq
t

i i i i

πε

−

∆∆
∆ = = =

− − × −

= ×

 



 
3. We adapt the discussion in the text to a moving two-dimensional collection of charges. 

Using σ for the charge per unit area and w for the belt width, we can see that the transport 

of charge is expressed in the relationship i = σvw, which leads to 
 

σ = =
×

×
= ×

−

−
−i

vw
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4. (a) The magnitude of the current density vector is 
 

J
i
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(b) The drift speed of the current-carrying electrons is 
 

v
J

ne
d = =

×
× ×

= ×
−

−
−2 4 10
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5
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5. The cross-sectional area of wire is given by A = πr
2, where r is its radius (half its 

thickness). The magnitude of the current density vector is J i A i r= =/ / π 2 , so 
 

r
i

J
= =

×
= × −

π π
0 50

440 10
19 10

4

4.
.

A

A / m
m.

2c h  

 

The diameter of the wire is therefore d = 2r = 2(1.9 × 10–4 m) = 3.8 × 10–4 m. 



 
6. We express the magnitude of the current density vector in SI units by converting the 
diameter values in mils to inches (by dividing by 1000) and then converting to meters (by 
multiplying by 0.0254) and finally using 
 

J
i

A

i

R

i

D
= = =

π π2 2

4
.  

 
For example, the gauge 14 wire with D = 64 mil = 0.0016 m is found to have a 

(maximum safe) current density of J = 7.2 × 106 A/m2. In fact, this is the wire with the 
largest value of J allowed by the given data. The values of J in SI units are plotted below 
as a function of their diameters in mils. 
 

 



  

J = × × × =−2 10 32 10 10 10 6 414 19 5/ . . . .m C m / s A / m2c hc hc h  

 
(b) Since the particles are positively charged the current density is in the same direction 
as their motion, to the north. 
 
(c) The current cannot be calculated unless the cross-sectional area of the beam is known. 
Then i = JA can be used. 

 
7. (a) The magnitude of the current density is given by J = nqvd, where n is the number of 
particles per unit volume, q is the charge on each particle, and vd is the drift speed of the 

particles. The particle concentration is n = 2.0 × 108/cm3 = 2.0 × 1014 m–3, the charge is  
 

q = 2e = 2(1.60 × 10–19 C) = 3.20 × 10–19 C, 
 

and the drift speed is 1.0 × 105 m/s. Thus, 
 



 
8. (a) Circular area depends, of course, on r2, so the horizontal axis of the graph in Fig. 
26-24(b) is effectively the same as the area (enclosed at variable radius values), except 

for a factor of π.  The fact that the current increases linearly in the graph means that i/A = 

J = constant.   Thus, the answer is “yes, the current density is uniform.” 
 

(b) We find  i/(πr
2) = (0.005 A)/(π × 4 × 10−6 m2) = 398 ≈ 4.0 × 102 A/m2. 



 

9. We use vd = J/ne = i/Ane. Thus, 
 

( ) ( ) ( ) ( )14 2 28 3 19

2

0.85m 0.21 10 m 8.47 10 / m 1.60 10 C
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10. (a) Since 1 cm3 = 10–6 m3, the magnitude of the current density vector is 
 

J nev= =
F
HG

I
KJ × × = ×−

− −8 70

10
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6
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(b) Although the total surface area of Earth is 4 2πRE  (that of a sphere), the area to be used 

in a computation of how many protons in an approximately unidirectional beam (the solar 
wind) will be captured by Earth is its projected area. In other words, for the beam, the 

encounter is with a “target” of circular area πRE

2 . The rate of charge transport implied by 

the influx of protons is 
 

i AJ R JE= = = × × = ×−π π2 6
2

7 76 37 10 654 10 8 34 10. . .m A / m A.2c h c h  



 

11. We note that the radial width ∆r = 10 µm is small enough (compared to r = 1.20 mm) 
that we can make the approximation 
 

 2 2Br rdr Br r rπ π≈ ∆∫  

 

Thus, the enclosed current is 2πBr
2∆r = 18.1 µA.  Performing the integral gives the same 

answer. 
 



12. Assuming 
f
J  is directed along the wire (with no radial flow) we integrate, starting 

with Eq. 26-4, 
 

( )2 4 4

9 /10

1
| | ( )2 0.656

2

R

R
i J dA kr rdr k R R= = π = π −∫ ∫

f
 

 

where k = 3.0 × 108 and SI units understood. Therefore, if R = 0.00200 m, we 

obtain 32.59 10 Ai −= × . 



 
13. (a) The current resulting from this non-uniform current density is 
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(b) In this case, 
 

2 3 2 4 2
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R
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(c) The result is different from that in part (a) because Jb is higher near the center of the 
cylinder (where the area is smaller for the same radial interval) and lower outward, 
resulting in a lower average current density over the cross section and consequently a 
lower current than that in part (a). So, Ja has its maximum value near the surface of the 
wire. 



 

14. We use R/L = ρ/A = 0.150 Ω/km. 
 

(a) For copper J = i/A = (60.0 A)(0.150 Ω/km)/(1.69 × 10–8 Ω·m) = 5.32 × 105 A/m2. 
 

(b) We denote the mass densities as ρm. For copper,  
 

(m/L)c = (ρmA)c = (8960 kg/m3) (1.69 × 10–8 Ω· m)/(0.150 Ω/km) = 1.01 kg/m. 
 

(c) For aluminum J = (60.0 A)(0.150 Ω/km)/(2.75 × 10–8 Ω·m) = 3.27 × 105 A/m2. 
 
(d) The mass density of aluminum is 
 

(m/L)a = (ρmA)a = (2700 kg/m3)(2.75 × 10–8 Ω·m)/(0.150 Ω/km) = 0.495 kg/m. 



 
15. We find the conductivity of Nichrome (the reciprocal of its resistivity) as follows: 
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16. (a) i = V/R = 23.0 V/15.0 × 10–3 Ω = 1.53 × 103 A. 
 

(b) The cross-sectional area is A r D= =π π2 1
4

2 . Thus, the magnitude of the current 

density vector is 

J
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D
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×
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(c) The resistivity is 
 

3 3 2
8(15.0 10 ) (6.00 10 m)
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πρ
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−× Ω ×
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(d) The material is platinum. 



 

17. The resistance of the wire is given by R L A= ρ / , where ρ is the resistivity of the 

material, L is the length of the wire, and A is its cross-sectional area. In this case, 
 

A r= = × = ×− −π π2 3
2

7050 10 7 85 10. . .m m2c h  

Thus, 
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18. The thickness (diameter) of the wire is denoted by D. We use R ∝ L/A (Eq. 26-16) 

and note that A D D= ∝1
4

2 2π .  The resistance of the second wire is given by 
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According to Table 26-1, the resistivity of copper is 81.69 10 mρ −= × Ω⋅ . Thus, 
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19. The resistance of the coil is given by R = ρL/A, where L is the length of the wire, ρ is 
the resistivity of copper, and A is the cross-sectional area of the wire. Since each turn of 

wire has length 2πr, where r is the radius of the coil, then  
 

L = (250)2πr = (250)(2π)(0.12 m) = 188.5 m. 
 
If rw is the radius of the wire itself, then its cross-sectional area is  
 

A = πr
2
w = π(0.65 × 10–3 m)2 = 1.33 × 10–6 m2. 

 



 
20. Since the potential difference V and current i are related by V = iR, where R is the 

resistance of the electrician, the fatal voltage is V = (50 × 10–3 A)(2000 Ω) = 100 V. 



 
21. Since the mass density of the material do not change, the volume remains the same. If 
L0 is the original length, L is the new length, A0 is the original cross-sectional area, and A 
is the new cross-sectional area, then L0A0 = LA and A = L0A0/L = L0A0/3L0 = A0/3. The 
new resistance is 

R
L

A

L

A

L

A
R= = = =

ρ ρ ρ3

3
9 90

0

0

0

0
/

,  

 

where R0 is the original resistance. Thus, R = 9(6.0 Ω) = 54 Ω. 



 

22. (a)  Since the material is the same, the resistivity ρ is the same, which implies (by Eq. 
26-11) that the electric fields (in the various rods) are directly proportional to their 
current-densities.  Thus,  J1: J2: J3 are in the ratio 2.5/4/1.5  (see Fig. 26-25).  Now the 
currents in the rods must be the same (they are “in series”) so  
 

J1 A1  = J3 A3 ,      J2 A2  = J3 A3   . 
 

Since A = πr
2  this leads (in view of the aforementioned ratios) to  

 
4r2

2  = 1.5r3
2 ,      2.5r1

2  = 1.5r3
2   . 

 
Thus, with r3 = 2 mm, the latter relation leads to r1 = 1.55 mm. 
 
(b) The 4r2

2  = 1.5r3
2 relation leads to r2 = 1.22 mm. 



 

23. The resistance of conductor A is given by 
 

R
L

r
A

A

=
ρ
π 2

,  

 
where rA is the radius of the conductor. If ro is the outside diameter of conductor B and ri 

is its inside diameter, then its cross-sectional area is π(ro
2 – ri

2), and its resistance is 
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24. The cross-sectional area is A = πr
2  =  π(0.002 m)2.  The resistivity from Table 26-1 is   

ρ = 1.69 × 10−8 Ω·m.  Thus, with L = 3 m, Ohm’s Law leads to V = iR = iρL/A, or 
 

   12 × 10−6 V  =  i (1.69 × 10−8 Ω·m)(3.0 m)/ π(0.002 m)2 
 
which yields i = 0.00297 A or roughly 3.0 mA. 



 

25. The resistance at operating temperature T is R = V/i = 2.9 V/0.30 A = 9.67 Ω. Thus, 

from R – R0 = R0α (T – T0), we find 
 

3

0 3

0

1 1 9.67
1 20 C 1 1.8 10  C

4.5 10 K 1.1

R
T T

Rα −

⎛ ⎞ ⎛ ⎞ ⎛ ⎞Ω
= + − = ° + − = × °⎜ ⎟ ⎜ ⎟ ⎜ ⎟× Ω⎝ ⎠ ⎝ ⎠⎝ ⎠

. 

 
Since a change in Celsius is equivalent to a change on the Kelvin temperature scale, the 

value of α used in this calculation is not inconsistent with the other units involved. Table 
26-1 has been used. 



 
26. Let 2.00 mmr = be the radius of the kite string and 0.50 mmt = be the thickness of 

the water layer. The cross-sectional area of the layer of water is 
 

 2 2 3 2 3 2 6 2( ) [(2.50 10  m) (2.00 10  m) ] 7.07 10  mA r t rπ π − − −⎡ ⎤= + − = × − × = ×⎣ ⎦ . 

 
Using Eq. 26-16, the resistance of the wet string is 
 

( )( ) 10

6 2

150 m 800 m
1.698 10 .

7.07 10 m

L
R

A

ρ
−

Ω⋅
= = = × Ω

×
 

 
The current through the water layer is  
 

 
8

3

10

1.60 10 V
9.42 10 A

1.698 10

V
i

R

−×
= = = ×

× Ω
. 



9
4

5

3.00 10 V
1.115 10 A

2.69 10

V
i

R

−
−

−

×
= = = ×

× Ω
. 

 
Therefore, in 3.00 ms, the amount of charge drifting through a cross section is 
 

4 3 7(1.115 10 A)(3.00 10 s) 3.35 10 CQ i t − − −∆ = ∆ = × × = ×  . 

 
27. First we find the resistance of the copper wire to be 
 

( )( )8

5

3 2

1.69 10 m 0.020 m
2.69 10 .

(2.0 10 m)

L
R

A

ρ
π

−
−

−

× Ω⋅
= = = × Ω

×
 

 
With potential difference 3.00 nVV = , the current flowing through the wire is 

 



 

28. The absolute values of the slopes (for the straight-line segments shown in the graph of 
Fig. 26-27(b)) are equal to the respective electric field magnitudes.  Thus, applying Eq. 
26-5 and Eq. 26-13 to the three sections of the resistive strip, we have 
 

   J1  =  
i

A
  =  σ1 E1  =  σ1 (0.50 × 103 V/m) 

 

   J2  =  
i

A
  =  σ2 E2 =  σ2 (4.0 × 103 V/m) 

 

   J3  =  
i

A
  =  σ3 E3  =  σ3 (1.0 × 103 V/m)  . 

 
We note that the current densities are the same since the values of i and A are the same 
(see the problem statement) in the three sections, so J1  = J2  = J3 .   
 

(a) Thus we see that  σ1 = 2σ3  = 2 (3.00 × 107(Ω·m)−1 ) = 6.00 × 107  (Ω·m)−1. 
 

(b) Similarly, σ2 = σ3/4  =  (3.00 × 107(Ω·m)−1 )/4 = 7.50 × 106 (Ω·m)−1 . 



 

29. We use J = E/ρ, where E is the magnitude of the (uniform) electric field in the wire, J 

is the magnitude of the current density, and ρ is the resistivity of the material. The 
electric field is given by E = V/L, where V is the potential difference along the wire and L 

is the length of the wire. Thus J = V/Lρ and 
 

ρ = =
×

= × ⋅−V

LJ

115

14 10
8 2 10

4

4V

10 m A m
m.

2b gc h.
. Ω  



 

30. We use J = σ E = (n+ + n–)evd, which combines Eq. 26-13 and Eq. 26-7. 
 
(a) The magnitude of the current density is 
 

J = σ E = (2.70 × 10–14 / Ω·m) (120 V/m) = 3.24 × 10–12 A/m2. 
 
(b) The drift velocity is 
 

( )
( )( )

( ) ( )
14

3 19

2.70 10 m 120 V m
1.73 cm s.

620 550 cm 1.60 10 C
d

E
v

n n e

σ
−

−
+ −

× Ω⋅
= = =

+ ⎡ ⎤+ ×⎣ ⎦
 

 



  

 

31. (a) The current in the block is i = V/R = 35.8 V/935 Ω = 3.83 × 10–2 A. 
 
(b) The magnitude of current density is  
 

J = i/A = (3.83 × 10–2 A)/(3.50 × 10–4 m2) = 109 A/m2. 
 

(c) vd = J/ne = (109 A/m2)/[(5.33 × 1022/m3) (1.60 × 10–19 C)] = 1.28 × 10–2 m/s. 
 
(d) E = V/L = 35.8 V/0.158 m = 227 V/m. 



 

32. We use R ∝ L/A. The diameter of a 22-gauge wire is 1/4 that of a 10-gauge wire. 

Thus from R = ρL/A we find the resistance of 25 ft of 22-gauge copper wire to be  
 

R = (1.00 Ω) (25 ft/1000 ft)(4)2 = 0.40 Ω. 



 

33. (a) The current in each strand is i = 0.750 A/125 = 6.00 × 10–3 A. 
 

(b) The potential difference is V = iR = (6.00 × 10–3 A) (2.65 × 10–6 Ω) = 1.59 × 10–8 V. 
 

(c) The resistance is Rtotal = 2.65 × 10–6 Ω/125 = 2.12 × 10–8 Ω. 



 
Substituting the values given, we obtain 
 

4
2

3

(30.0 m)(7.80 10 A) 0.70 m
5.22 10 A

2 (4.00 10 ) (35.0 m)(35.0 m 0.70 m)
i

π
−Ω⋅ ×

= = ×
× Ω +

. 

 
34. We follow the procedure used in Sample Problem 26-5. 
 
Since the current spreads uniformly over the hemisphere, the current density at any given 

radius r from the striking point is 2/ 2J I rπ= . From Eq. 26-10, the magnitude of the 
electric field at a radial distance r is 

 
22

w
w

I
E J

r

ρρ
π

= = , 

 

where 30 mwρ = Ω⋅ is the resistivity of water. The potential difference between a point at 

radial distance D and a point at D r+ ∆ is 
 

2

1 1

2 2 2 ( )

D r D r
w w w

D D

I I I r
V Edr dr

r D r D D D r

ρ ρ ρ
π π π

+∆ +∆ ∆⎛ ⎞∆ = − = − = − = −⎜ ⎟+ ∆ + ∆⎝ ⎠∫ ∫ , 

 
which implies that the current across the swimmer is 
 

| |

2 ( )
wIV r

i
R R D D r

ρ
π

∆ ∆
= =

+ ∆
. 



  

 
The resistance is therefore 
 

2
5

3 3

(731 m)(1.94 10  m)
9.81 10  

(2.00 10  m)(2.30 10  m)

V L
R

i ab

ρ
π

−

− −

Ω⋅ ×
= = = = × Ω

π × ×
 

 

Note that if b = a, then R = ρL/πa
2 = ρL/A, where A = πa

2 is the cross-sectional area of 
the cylinder. 

 
35. (a) The current i is shown in Fig. 26-30 entering the truncated cone at the left end and 
leaving at the right. This is our choice of positive x direction. We make the assumption 
that the current density J at each value of x may be found by taking the ratio i/A where A 

= πr
2 is the cone’s cross-section area at that particular value of x. The direction of 

f
J  is 

identical to that shown in the figure for i (our +x direction). Using Eq. 26-11, we then 
find an expression for the electric field at each value of x, and next find the potential 
difference V by integrating the field along the x axis, in accordance with the ideas of 
Chapter 25. Finally, the resistance of the cone is given by R = V/i. Thus, 
 

J
i

r

E
= =

π 2 ρ
 

 
where we must deduce how r depends on x in order to proceed. We note that the radius 
increases linearly with x, so (with c1 and c2 to be determined later) we may write 
 

r c c x= +1 2 .  
 
Choosing the origin at the left end of the truncated cone, the coefficient c1 is chosen so 
that r = a (when x = 0); therefore, c1 = a. Also, the coefficient c2 must be chosen so that 
(at the right end of the truncated cone) we have r = b (when x = L); therefore, 

2 ( ) /c b a L= − . Our expression, then, becomes 

 

r a
b a

L
x= +

−F
HG
I
KJ .  

 
Substituting this into our previous statement and solving for the field, we find 
 

E
i

a
b a

L
x= +

−F
HG

I
KJ

−ρ
π

2

.  

 
Consequently, the potential difference between the faces of the cone is 
 

2 1

0 0

0

1 1
.

L

L Li b a i L b a
V E dx a x dx a x

L b a L

i L i L b a i L

b a a b b a ab ab

ρ ρ

ρ ρ ρ

− −− −⎛ ⎞ ⎛ ⎞= − = − + = +⎜ ⎟ ⎜ ⎟π π −⎝ ⎠ ⎝ ⎠

−⎛ ⎞= − = =⎜ ⎟π − π − π⎝ ⎠

∫ ∫
 



 
36. The number density of conduction electrons in copper is n = 8.49 × 1028 /m3.  The 

electric field in section 2 is (10.0 µV)/(2.00 m) = 5.00 µV/m.  Since ρ = 1.69 × 10−8 Ω·m 
for copper (see Table 26-1) then Eq. 26-10 leads to a current density vector of magnitude 

J2 = (5.00 µV/m)/(1.69 × 10−8 Ω·m) = 296 A/m2 in section 2.  Conservation of electric 
current from section 1 into section 2 implies 
 

 2 2

1 1 2 2 1 2(4 ) ( )J A J A J R J Rπ π= ⇒ =  

 

 (see Eq. 26-5).   This leads to J1  = 74 A/m2.  Now, for the drift speed of conduction-
electrons in section 1, Eq. 26-7 immediately yields  
 

 91 5.44 10 m/sd

J
v

ne

−= = ×  



 

37. From Eq. 26-25, ρ ∝ τ–1 ∝ veff. The connection with veff is indicated in part (b) of 
Sample Problem 26-6, which contains useful insight regarding the problem we are 

working now. According to Chapter 20, v Teff ∝ .  Thus, we may conclude that ρ ∝ T .  



 
38. Since P = iV, the charge is  
 

q = it = Pt/V = (7.0 W) (5.0 h) (3600 s/h)/9.0 V = 1.4 × 104 C. 



 

39. (a) Electrical energy is converted to heat at a rate given by 2 / ,P V R=  where V is the 

potential difference across the heater and R is the resistance of the heater. Thus, 
 

P = = × =
(

. .
120

14
10 10 103V)

W kW.
2

Ω
 

 
(b) The cost is given by (1.0kW)(5.0h)(5.0cents/kW h) US$0.25.⋅ =  



(b) Eq. 24-6 immediately gives 12 eV, or (using e = 1.60 × 10−19 C) 1.9 × 10−18 J for the 
work done by the field (which equals, in magnitude, the potential energy change of the 
electron). 
 
(c) Since the electrons don’t (on average) gain kinetic energy as a result of this work done, 

it is generally dissipated as heat.  The answer is as in part (b): 12 eV or 1.9 × 10−18 J. 

 
40. (a) Referring to Fig. 26-32, the electric field would point down (towards the bottom 
of the page) in the strip, which means the current density vector would point down, too 
(by Eq. 26-11).  This implies (since electrons are negatively charged) that the conduction-
electrons would be “drifting” upward in the strip. 
 



 

41. The relation P = V 
2/R implies P ∝ V 

2. Consequently, the power dissipated in the 
second case is 

P =
F
HG

I
KJ =

150
0540 0135

2

.
( . .

V

3.00 V
W) W.  



 

42. The resistance is R = P/i2 = (100 W)/(3.00 A)2 = 11.1 Ω. 



 
43. (a) The power dissipated, the current in the heater, and the potential difference across 
the heater are related by P = iV. Therefore, 
 

i
P

V
= = =

1250
10 9

W

115 V
A..  

 
(b) Ohm’s law states V = iR, where R is the resistance of the heater. Thus, 
 

R
V

i
= = =

115
10 6

V

10.9 A
. .Ω  

 
(c) The thermal energy E generated by the heater in time t = 1.0 h = 3600 s is 
 

6(1250W)(3600s) 4.50 10 J.E Pt= = = ×  



 

44. The slope of the graph is P = 5.0 × 10−4 W.  Using this in the P = V2
/R relation leads 

to V = 0.10 Vs. 



 

45. Eq. 26-26 gives the rate of thermal energy production: 
 

(10.0A)(120V) 1.20kW.P iV= = =  

 
Dividing this into the 180 kJ necessary to cook the three hot-dogs leads to the result 

150 s.t =  



  

 

 4(2256 kJ / kg)(0.018 kg) 4.06 10  JQ Lm= = = × . 

 
The thermal energy is supplied by Joule heating of the resistor: 
 

 2Q P t I R t= ∆ = ∆ . 

 
Since the resistance over the length of water is 
 

( )( ) 5

5 2

150 m 0.120 m
1.2 10

15 10 m
wL

R
A

ρ
−

Ω⋅
= = = × Ω

×
, 

 
the average current required to vaporize water is  
 

4

5 3

4.06 10  J
13.0 A

(1.2 10 )(2.0 10 s)

Q
I

R t −

×
= = =

∆ × Ω ×
. 

 
46. The mass of the water over the length is  
 

 3 5 2(1000 kg/m )(15 10  m )(0.12 m) 0.018 kgm ALρ −= = × = , 

 
and the energy required to vaporize the water is  



 

47. (a) From P = V 
2/R we find R = V 

2/P = (120 V)2/500 W = 28.8 Ω. 
 
(b) Since i = P/V, the rate of electron transport is 
 

i

e

P

eV
= =

×
= ×−

500
2 60 10

19

19W

(1.60 10 C)(120 V)
s.. /  



 
48. The slopes of the lines yield P1 = 8 mW and P2 = 4 mW.  Their sum (by energy 
conservation) must be equal to that supplied by the battery: Pbatt = ( 8 + 4 ) mW = 12 mW. 



 

49. (a) From P = V 
2/R = AV 

2 / ρL, we solve for the length: 
 

L
AV

P
= =

×
× ⋅

=
−

−

2 6

7

2 60 10 750

500 10
585

ρ
( . )( .

( .
.

m V)

m)(500 W)
m.

2 2

Ω
 

 

(b) Since L ∝ V 
2 the new length should be 

 

′ =
′F
HG
I
KJ =

F
HG

I
KJ =L L

V

V

2 2

585 10 4( . .m)
100 V

75.0 V
m. 



where k = 2.75 × 1010 A/m4 and R = 0.00300 m.  The rate of thermal energy generation is 
found from Eq. 26-26:  P = iV = 210 W.  Assuming a steady rate, the thermal energy 

generated in 40 s is Q P t= ∆ = (210 J/s)(3600 s) = 7.56 × 105 J. 

 
50. Assuming the current is along the wire (not radial) we find the current from Eq. 26-4: 
 

i  =  ⌡⌠| J  
→

| dA = 2

0
2

R

kr rdrπ∫  =  
1

2
 kπR

4 = 3.50 A 

 



 

51. (a) Assuming a 31-day month, the monthly cost is  
 

(100 W)(24 h/day)(31day/month) (6 cents/kW h)⋅ =  446 cents US$4.46= . 

 

(b) R = V 
2/P = (120 V)2/100 W = 144 Ω. 

 
(c) i = P/V = 100 W/120 V = 0.833 A. 



 
52. (a) Using Table 26-1 and Eq. 26-10 (or Eq. 26-11), we have 
 

( )8 2

6 2

2.00A
| | | | 1.69 10 m 1.69 10 V/m.

2.00 10 m
E Jρ − −

−

⎛ ⎞
= = × Ω⋅ = ×⎜ ⎟×⎝ ⎠

f f
 

 

(b) Using L = 4.0 m, the resistance is found from Eq. 26-16: R = ρL/A = 0.0338 Ω. The 
rate of thermal energy generation is found from Eq. 26-27:  
 

P = i
2 R = (2.00 A)2(0.0338 Ω)=0.135 W. 

 

Assuming a steady rate, the thermal energy generated in 30 minutes is (0.135 J/s)(30 × 

60s) = 2.43 × 102 J. 



 
53. (a) We use Eq. 26-16 to compute the resistances: 
 

6

2 2

1.0 m
(2.0 10 m) 2.55 .

 m
C

C C

C

L
R

r
ρ

π π
−= = × Ω⋅ = Ω

(0.00050 )
 

 

The voltage follows from Ohm’s law: 1 2| | (2.0 A)(2.55 ) 5.1V.C CV V V iR− = = = Ω =  

 
(b) Similarly, 

6

2 2

1.0 m
(1.0 10 m) 5.09

 m
D

D D

D

L
R

r
ρ

π π
−= = × Ω⋅ = Ω

(0.00025 )
 

 

and 2 3| | (2.0 A)(5.09 ) 10.2V 10VD DV V V iR− = = = Ω = ≈ . 

 

(c) The power is calculated from Eq. 26-27: 2 10WC CP i R= = . 

 

(d) Similarly, 2 20W D DP i R= = . 

 



  

54. From 2 /P V R= , we have R = (5.0 V)2
/(200 W) = 0.125 Ω.  To meet the conditions 

of the problem statement, we must therefore set 
 

0
5.00  

L

x dx∫ = 0.125 Ω   

Thus, 

     
5

2
 L2 = 0.125    ⇒      L = 0.224 m. 



 

55. (a) The charge that strikes the surface in time ∆t is given by ∆q = i ∆t, where i is the 
current. Since each particle carries charge 2e, the number of particles that strike the 
surface is 

N
q

e

i t

e
= = =

×

×
= ×

−

−

∆ ∆
2 2

0 25 10 30

2 16 10
2 3 10

6

19

12
. .

.
. .

A s

C

c hb g
c h  

 
(b) Now let N be the number of particles in a length L of the beam. They will all pass 
through the beam cross section at one end in time t = L/v, where v is the particle speed. 
The current is the charge that moves through the cross section per unit time. That is,  
 

i = 2eN/t = 2eNv/L. 
 
Thus N = iL/2ev. To find the particle speed, we note the kinetic energy of a particle is 
 

        K = = × × = ×− −20 20 10 160 10 32 106 19 12MeV eV J / eV J .c hc h. .  

 

Since K mv= 1
2

2 ,then the speed is v K m= 2 . The mass of an alpha particle is (very 

nearly) 4 times the mass of a proton, or m = 4(1.67 × 10–27 kg) = 6.68 × 10–27 kg, so 
 

v =
×

×
= ×

−

−

2 3 2 10
31 10

12

27

7
.

.
J

6.68 10 kg
m / s

c h
 

and 

N
iL

ev
= =

× ×

× ×
= ×

− −

−2

0 25 10 20 10

2 160 10 31 10
50 10

6 2

19 7

3
.

. .
. .

c hc h
c hc h

m

C m / s
 

 
(c) We use conservation of energy, where the initial kinetic energy is zero and the final 

kinetic energy is 20 MeV = 3.2 × 10–12 J. We note, too, that the initial potential energy is 
Ui = qV = 2eV, and the final potential energy is zero. Here V is the electric potential 
through which the particles are accelerated. Consequently, 
 

( )
12

7

19

3.2 10 J
2     1.0 10 V.

2 2 1.60 10 C

f

f i

K
K U eV V

e

−

−

×
= = ⇒ = = = ×

×
 



 
56. (a) Current is the transport of charge; here it is being transported “in bulk” due to the 
volume rate of flow of the powder. From Chapter 14, we recall that the volume rate of 
flow is the product of the cross-sectional area (of the stream) and the (average) stream 

velocity. Thus, i = ρAv where ρ is the charge per unit volume. If the cross-section is that 

of a circle, then i = ρπR
2
v. 

 
(b) Recalling that a Coulomb per second is an Ampere, we obtain 
 

i = × = ×− −11 10 2 0 17 103 3 2 5. . .C / m m m / s A.c h b g b gπ 0.050  

 
(c) The motion of charge is not in the same direction as the potential difference computed 
in problem 68 of Chapter 24. It might be useful to think of (by analogy) Eq. 7-48; there, 

the scalar (dot) product in P F v= ⋅
f f

 makes it clear that P = 0 if 
f f
F v⊥ . This suggests that 

a radial potential difference and an axial flow of charge will not together produce the 
needed transfer of energy (into the form of a spark). 
 
(d) With the assumption that there is (at least) a voltage equal to that computed in 
problem 68 of Chapter 24, in the proper direction to enable the transference of energy 
(into a spark), then we use our result from that problem in Eq. 26-26: 
 

P iV= = × × =−17 10 7 8 10 135 4. . . .A V Wc hc h  

 
(e) Recalling that a Joule per second is a Watt, we obtain (1.3 W)(0.20 s) = 0.27 J for the 
energy that can be transferred at the exit of the pipe. 
 
(f) This result is greater than the 0.15 J needed for a spark, so we conclude that the spark 
was likely to have occurred at the exit of the pipe, going into the silo. 



 

57. (a) We use P = V 
2/R ∝ V 

2, which gives ∆P ∝ ∆V 
2 ≈ 2V ∆V. The percentage change 

is roughly  

∆P/P = 2∆V/V = 2(110 – 115)/115 = –8.6%. 
 
(b) A drop in V causes a drop in P, which in turn lowers the temperature of the resistor in 

the coil. At a lower temperature R is also decreased. Since P ∝ R
–1 a decrease in R will 

result in an increase in P, which partially offsets the decrease in P due to the drop in V. 
Thus, the actual drop in P will be smaller when the temperature dependency of the 
resistance is taken into consideration. 



(b) The magnitude of the current density vector is 
 

6 2

2 2 2

4 4(1.74 A)
| | 2.15 10 A/m .

in.)(2.54 10 m/in.)]

i i
J

A dπ π −= = = = ×
[(0.0400 ×

f
 

 

(c) E = V/L = 1.20 V/33.0 m = 3.63 × 10–2 V/m. 
 
(d) P = Vi = (1.20 V)(1.74 A) = 2.09 W. 

 
58. (a) The current is 
 

2 2 2

8

V)[(0.0400in.)(2.54 10 m/in.)]
1.74 A.

/ 4 4(1.69 10 m)(33.0m)

V V Vd
i

R L A Lρ ρ

−

−

π π(1.20 ×
= = = = =

× Ω⋅
 

 



 
59. Let RH be the resistance at the higher temperature (800°C) and let RL be the resistance 
at the lower temperature (200°C). Since the potential difference is the same for the two 
temperatures, the power dissipated at the lower temperature is PL = V 

2/RL, and the power 

dissipated at the higher temperature is 2 / ,H HP V R=  so ( / )L H L HP R R P= . Now 

 

L H HR R R Tα= + ∆ , 

 

where ∆T is the temperature difference TL – TH = –600 C° = –600 K. Thus, 
 

P
R

R R T
P

P

T
L

H

H H

H
H=

+
=

+
=

+ × −
=−α α∆ ∆1

500

4 0 10 600
660

4

W

1 K)( K)
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( . /
 

 



60. We denote the copper rod with subscript c and the aluminum rod with subscript a. 
 
(a) The resistance of the aluminum rod is 
 

R
L

A
a= =

× ⋅

×
= ×

−

−

−ρ
2 75 10 13

5 2 10
13 10

8

3 2

3
. .
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Ω
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m m
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c hb g
c h

 

 

(b) Let R = ρcL/(πd 
2/4) and solve for the diameter d of the copper rod: 

 

d
L

R

c= =
× ⋅

×
= ×

−
−4 4 169 10 13

4 6 10

8

3ρ
π π 1.3 10−3

. .
.

Ω

Ω

m m
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c hb g
c h  



  

61. (a) Since  
 

2 3 3 2
8( / 4) (1.09 10 ) (5.50 10 m) / 4

1.62 10  m
1.60 m

RA R d

L L

π πρ
− −

−× Ω ×
= = = = × Ω⋅ , 

 
the material is silver. 
 
(b) The resistance of the round disk is 
 

R
L

A

L

d
= = =

× ⋅ ×
×

= ×
− −

−ρ ρ4 4 162 10
516 10

2

8
8

π π(2.00 10−2

( .
. .

Ω
Ω

m)(1.00 10 m)

m)

3

2
 



 
62. (a) Since P = i

2 R = J 
2 A2 R, the current density is 

 

( )( )( )2
5 2 3

5 2

1 1 1.0 W

/ 3.5 10 m 2.0 10 m 5.0 10 m

1.3 10 A/m .

P P P
J

A R A L A LAρ ρ − − −
= = = =

π × Ω⋅ × ×

= ×

 

 
(b) From P = iV = JAV we get 
 

V
P

AJ

P

r J
= = =

× ×
= ×

−

−

π π
2 3 2 5 2

210

50 10 13 10
9 4 10

.

. .
.

W

m A / m
V.

c h c h
 



 

63. We use P = i
2 
R = i

2ρL/A, or L/A = P/i2ρ.  
 
(a) The new values of L and A satisfy 
 

L

A

P

i

P

i

L

A

F
HG
I
KJ =
F
HG
I
KJ =

F
HG
I
KJ = F

HG
I
KJ

new new old old
2 2 2

30

4

30

16ρ ρ
.  

 
Consequently, (L/A)new = 1.875(L/A)old, and   
 

 new
new old old

old

1.875 1.37       1.37
L

L L L
L

= = ⇒ = . 

 
(b) Similarly, we note that (LA)new = (LA)old, and   
 

new
new old old

old

1/1.875 0.730     0.730
A

A A A
A

= = ⇒ = . 



 
64. The horsepower required is 
 

(10A)(12 V)
0.20 hp.

0.80 (0.80)(746 W/hp)

iV
P = = =  



 
65. We find the current from Eq. 26-26:  i = P/V = 2.00 A.  Then, from Eq. 26-1 (with 
constant current), we obtain 

∆q =  i∆t = 2.88 × 104 C   . 



  

 
6 2

4

28 3 19

| | 2.0 10 A/m
1.47 10 m/s .

(8.49 10 /m )(1.6 10 C)
d

J
v

ne

−
−

×
= = = ×

× ×

f
 

 
At this (average) rate, the time required to travel L = 5.0 m is 
 

4

4

5.0 m
3.4 10 s.

1.47 10 m/sd

L
t

v −= = = ×
×

 

 
66. We find the drift speed from Eq. 26-7: 



 
67. We find the rate of energy consumption from Eq. 26-28: 
 

2 2(90 V)
20.3 W

400

V
P

R
= = =

Ω
 

 

Assuming a steady rate, the energy consumed is (20.3 J/s)(2.00 × 3600 s) = 1.46 × 105 J. 



 

68. We use Eq. 26-28: 

 
2 2(200 V)

13.3
3000 W

V
R

P
= = = Ω . 



 
69. The rate at which heat is being supplied is P = iV = (5.2 A)(12 V) = 62.4 W.  
Considered on a one-second time-frame, this means 62.4 J of heat are absorbed the liquid 
each second.  Using Eq. 18-16, we find the heat of transformation to be 
 

 6

6

62.4 J
3.0 10 J/kg

21 10 kg

Q
L

m −= = = ×
×

. 



 

70. (a) The current is 4.2 × 1018 
e divided by 1 second.  Using e = 1.60 × 10−19 C we 

obtain 0.67 A for the current. 
 
(b) Since the electric field points away from the positive terminal (high potential) and 
towards the negative terminal (low potential), then the current density vector (by Eq. 26-
11) must also point towards the negative terminal.  



 

71. Combining Eq. 26-28 with Eq. 26-16 demonstrates that the power is inversely 
proportional to the length (when the voltage is held constant, as in this case).  Thus, a 
new length equal to 7/8 of its original value leads to 
 

P = 
8

7
 (2.0 kW) = 2.4 kW . 



T T= + −
F
HG
I
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×
−

F
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I
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1
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Ω
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We are assuming that ρ/ρ0 = R/R0. 

 

72. We use Eq. 26-17: ρ – ρ0 = ρα(T – T0), and solve for T: 
 



 
73. The power dissipated is given by the product of the current and the potential 
difference:  

P iV= = × × =−( .7 0 10 5603 A)(80 10 V) W.3  



 
74. (a) The potential difference between the two ends of the caterpillar is 
 

V iR i
L

A
= = =

× ⋅ ×

×
= ×

− −

−

−ρ
12 169 10 4 0 10

5 2 10
38 10

8 2

3 2

4
A m m

m / 2
V.

b gc hc h
c h

. .

.
.

Ω

π
 

 
(b) Since it moves in the direction of the electron drift which is against the direction of 
the current, its tail is negative compared to its head. 
 
(c) The time of travel relates to the drift speed: 
 

( )( ) ( )( )2
2 3 28 3 192 1.0 10 m 5.2 10 m 8.47 10 / m 1.60 10 C

4 4(12 A)

238s 3min 58s.

d

L lAne Ld ne
t

v i i

π − − −× × × ×π
= = = =

= =

 



 

75. (a) In Eq. 26-17, we let ρ = 2ρ0 where ρ0 is the resistivity at T0 = 20°C: 
 

ρ ρ ρ ρ ρ α− = − = −0 0 0 0 02 T Tb g,  

 
and solve for the temperature T: 
 

T T= + = ° +
×

≈ °−0 3

1
20

1

4 3 10
250

α
C

K
C.

. /
 

 
(b) Since a change in Celsius is equivalent to a change on the Kelvin temperature scale, 

the value of α used in this calculation is not inconsistent with the other units involved. It 
is worth noting that this agrees well with Fig. 26-10. 



 
76. Since 100 cm = 1 m, then 104 cm2 = 1 m2. Thus, 
 

R
L

A
= =

× ⋅ ×

×
=

−

−

ρ 300 10 10 0 10
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Chapter 27 
 



 

 

 
 
1. (a) The energy transferred is 
 

U Pt
t

r R
= =

+
=

+
=

ε 2 22 0 2 0 60

50
80

( . ( . min) (

.
.

V) s / min)

1.0
J

Ω Ω
 

 
(b) The amount of thermal energy generated is 
 

′ = =
+
F
HG
I
KJ =

+
F
HG

I
KJ =U i Rt

r R
Rt2

2 2

2 0

50
50 2 0 60 67

ε .

.
( . ) ( . min) (

V

1.0
s / min) J.

Ω Ω
Ω  

 
(c) The difference between U and U', which is equal to 13 J, is the thermal energy that is 
generated in the battery due to its internal resistance. 
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2. If P is the rate at which the battery delivers energy and ∆t is the time, then ∆E = P ∆t is 

the energy delivered in time ∆t. If q is the charge that passes through the battery in time 

∆t and ε is the emf of the battery, then ∆E = qε. Equating the two expressions for ∆E and 

solving for ∆t, we obtain 
 

(120A h)(12.0V)
14.4h.

100W

q
t

P

ε ⋅
∆ = = =  



 

3. The chemical energy of the battery is reduced by ∆E = qε, where q is the charge that 

passes through in time ∆t = 6.0 min, and ε is the emf of the battery. If i is the current, 

then q = i ∆t and  
 

∆E = iε ∆t = (5.0 A)(6.0 V) (6.0 min) (60 s/min) = 1.1 × 104 J. 
 
We note the conversion of time from minutes to seconds. 



 

4. (a) The cost is (100 W · 8.0 h/2.0 W · h) ($0.80) = $3.2 × 102. 
 
(b) The cost is (100 W · 8.0 h/103 W · h) ($0.06) = $0.048 = 4.8 cents. 



 

(d) In this case V = ε – ir = 12 V – (50 A)(0.040 Ω) = 10 V. 
 

(e) Pr = i
2
r =(50 A)2(0.040 Ω) = 1.0×102 W. 

 

5. (a) The potential difference is V = ε + ir = 12 V + (50 A)(0.040 Ω) = 14 V. 
 

(b) P = i
2
r = (50 A)2(0.040 Ω) = 1.0×102 W. 

 
(c) P' = iV = (50 A)(12 V) = 6.0×102 W. 



 
6. The current in the circuit is  
 

i = (150 V – 50 V)/(3.0 Ω + 2.0 Ω) = 20 A. 
 

So from VQ + 150 V – (2.0 Ω)i = VP, we get VQ = 100 V + (2.0 Ω)(20 A) –150 V = –10 V. 



 
7. (a) Let i be the current in the circuit and take it to be positive if it is to the left in R1. 

We use Kirchhoff’s loop rule: ε1 – iR2 – iR1 – ε2 = 0. We solve for i: 
 

i
R R

=
−
+

=
−
+

=
ε ε1 2

1 2

12 6 0

8 0
050

V V

4.0
A

.

.
. .

Ω Ω
 

 
A positive value is obtained, so the current is counterclockwise around the circuit. 
 
If i is the current in a resistor R, then the power dissipated by that resistor is given by 

2P i R= .  

 

(b) For R1, P1 = 2

1i R = (0.50 A)2(4.0 Ω) = 1.0 W,  

 

(c) and for R2, P2 = 2

2i R =  (0.50 A)2 (8.0 Ω) = 2.0 W. 

 

If i is the current in a battery with emf ε, then the battery supplies energy at the rate P =iε 
provided the current and emf are in the same direction. The battery absorbs energy at the 

rate P = iε if the current and emf are in opposite directions.  
 

(d) For ε1, P1 = 1iε =  (0.50 A)(12 V) = 6.0 W  

 

(e) and for ε2, P2 = 2iε =  (0.50 A)(6.0 V) = 3.0 W.  

 
(f) In battery 1 the current is in the same direction as the emf. Therefore, this battery 
supplies energy to the circuit; the battery is discharging.  
 
(g) The current in battery 2 is opposite the direction of the emf, so this battery absorbs 
energy from the circuit. It is charging. 



 
8. (a) The loop rule leads to a voltage-drop across resistor 3 equal to 5.0 V (since the total 
drop along the upper branch must be 12 V).  The current there is consequently  

i = (5.0 V)/(200 Ω) = 25 mA.  Then the resistance of resistor 1 must be (2.0 V)/i  = 80 Ω. 
 

(b) Resistor 2 has the same voltage-drop as resistor 3; its resistance is 200 Ω. 
 



  

9. (a) Since Req < R, the two resistors (R = 12.0 Ω and Rx) must be connected in parallel: 
 

R
R R

R R

R

R

x

x

x

x

eq = =
+

=
+

300
12 0

12 0
.

.

.
.Ω

Ω
Ω
b g

 

 

We solve for Rx: Rx = ReqR/(R – Req) = (3.00 Ω)(12.0 Ω)/(12.0 Ω – 3.00 Ω) = 4.00 Ω. 
 
(b) As stated above, the resistors must be connected in parallel. 



 
10. (a) The work done by the battery relates to the potential energy change: 
 

( )12.0V 12.0 eV.q V eV e∆ = = =  

 

(b) P = iV = neV = (3.40 × 1018/s)(1.60 × 10–19 C)(12.0 V) = 6.53 W. 



 

11. Since the potential differences across the two paths are the same, 1 2V V=  ( 1V  for the 

left path, and 2V  for the right path), we have 

 

1 1 2 2i R i R= , 

 

where 1 2 5000 Ai i i= + = . With /R L Aρ=  (see Eq. 26-16), the above equation can be 

rewritten as  

1 2 2 1( / )i d i h i i d h= ⇒ = . 

 

With / 0.400d h = , we get 1 3571 Ai =  and 2 1429 Ai = . Thus, the current through the 

person is 1 3571 Ai = , or approximately 3.6 kA . 



 

12. (a) We solve i = (ε2 – ε1)/(r1 + r2 + R) for R: 
 

R
i

r r=
−

− − =
−

×
− − = ×−

ε ε2 1
1 2 3

230 2 0
30 30 9 9 10

. .
. . . .

V V

1.0 10 A
Ω Ω Ω  

 

(b) P = i
2
R = (1.0 × 10–3 A)2(9.9 × 102 Ω) = 9.9 × 10–4 W. 



Since the energy of the charge decreases, point A is at a higher potential than point B; 
that is, VA – VB = 50 V. 
 

(b) The end-to-end potential difference is given by VA – VB = +iR + ε, where ε is the emf 
of element C and is taken to be positive if it is to the left in the diagram. Thus,  
 

ε = VA – VB – iR = 50 V – (1.0 A)(2.0 Ω) = 48 V. 
 

(c) A positive value was obtained for ε, so it is toward the left. The negative terminal is at 
B. 

 

13. (a) If i is the current and ∆V is the potential difference, then the power absorbed is 

given by P = i ∆V. Thus, 

∆V
P

i
= = =

50

10
50

W

A
V.

.
 

 



 
14. The part of R0 connected in parallel with R is given by R1 = R0x/L, where L = 10 cm. 

The voltage difference across R is then VR = εR'/Req, where R' = RR1/(R + R1) and Req = 
R0(1 – x/L) + R'. Thus 
 

( )
( ) ( )

( )
( )

2 22
1 1 0

2
2

0 1 1 0

1001
,

1 100 10

R
R

RR R R R x RV
P

R R R x L RR R R R R x x

ε ε⎛ ⎞+
= = =⎜ ⎟⎜ ⎟− + + + −⎝ ⎠

 

 
where x is measured in cm. 



 

15. (a) We denote L = 10 km and α = 13 Ω/km. Measured from the east end we have  
 

R1 = 100 Ω = 2α(L – x) + R, 
 

and measured from the west end R2 = 200 Ω = 2αx + R. Thus,  
 

x
R R L

=
−

+ =
−

+ =2 1

4 2

200 100

4 13

10

2
6 9

α
Ω Ω

Ω km

km
km.b g .  

(b) Also, we obtain 
 

R
R R

L=
+

− =
+

− =1 2

2

100 200

2
13 10 20α Ω Ω

Ω Ωkm kmb gb g . 



 

16. Line 1 has slope R1 = 6.0 kΩ.  Line 2 has slope R2 = 4.0 kΩ.  Line 3 has slope R3 = 

2.0 kΩ.  The parallel pair equivalence is R12 = R1R2/(R1+R2) = 2.4 kΩ.  That in series with 

R3 gives an equivalence of 123 12 3 2.4 k 2.0 k 4.4 k .R R R= + = Ω + Ω = Ω  The current 

through the battery is therefore 123/i Rε= = (6 V)/(4.4 kΩ) and the voltage drop across R3 

is (6 V)(2 kΩ)/(4.4 kΩ) = 2.73 V.  Subtracting this (because of the loop rule) from the 
battery voltage leaves us with the voltage across R2.  Then Ohm’s law gives the current 

through R2: (6 V – 2.73 V)/(4 kΩ) = 0.82 mA . 



  

across the battery is R' = R1 + R = 12 Ω.  Thus, the current through R' is (12V)/R' = 1.0 A, 
which is the current through R.  By symmetry, we see one-third of that passes through 

any one of those 18 Ω resistors; therefore, i1 = 0.333 A. 
 
(b) The direction of  i1 is clearly rightward. 
 

(c) We use Eq. 26-27:  P = i
2
R' = (1.0 A)2(12 Ω) = 12 W.  Thus, in 60 s, the energy 

dissipated is (12 J/s)(60 s) = 720 J. 

 

17. (a)  The parallel set of three identical R2 = 18 Ω resistors reduce to R= 6.0 Ω, which is 

now in series with the R1 = 6.0 Ω resistor at the top right, so that the total resistive load 



 

18. (a) For each wire, Rwire = ρL/A where A = πr
2.  Consequently, we have  

 

Rwire =  (1.69 × 10−8 mΩ⋅ )(0.200 m)/π(0.00100 m)2 = 0.0011 Ω. 
 
The total resistive load on the battery is therefore  
 

totR = 2Rwire + R = 2(0.0011 Ω) + 6.00 Ω = 6.0022  Ω. 

 
Dividing this into the battery emf gives the current  
 

 
tot

12.0 V
1.9993 A

6.0022
i

R

ε
= = =

Ω
. 

 

The voltage across the R = 6.00 Ω resistor is therefore  
 

 V iR= = (1.9993 A)(6.00 Ω) = 11.996 V ≈ 12.0 V. 

 
(b) Similarly, we find the voltage-drop across each wire to be  
 

wire wireV iR= = (1.9993 A)(0.0011 Ω) = 2.15 mV. 

 

(c) P = i2
R = (1.9993 A)(6.00 Ω)2 = 23.98 W ≈ 24.0 W. 

 
(d) Similarly, we find the power dissipated in each wire to be 4.30 mW. 



 

19. Let the emf be V. Then V = iR = i'(R + R'), where i = 5.0 A, i' = 4.0 A and R' = 2.0 Ω. 
We solve for R: 

(4.0 A) (2.0 )
8.0 .

5.0 A 4.0 A

i R
R

i i

′ ′ Ω
= = = Ω

′− −
 



The terminal voltage of battery 1 is V1T  and (see Fig. 27-4(a)) is easily seen to be equal to 

V1 − ir1 ; similarly for battery 2.  Thus,  
 

  V1T  = V1  –
1 2 1

1 2

( )r V V

r r R

+
+ +

,   V2T  = V2  – 1 2 1

1 2

( )r V V

r r R

+
+ +

  . 

 
The problem tells us that V1 and V2 each equal 1.20 V.  From the graph in Fig. 27-36(b) 

we see that V2T  = 0 and V1T  = 0.40 V for R = 0.10 Ω.  This supplies us (in view of the 
above relations for terminal voltages) with simultaneous equations, which, when solved, 

lead to r1 = 0.20 Ω. 
 

(b) The simultaneous solution also gives r2 = 0.30 Ω. 

 
20. (a) Here we denote the battery emf’s as V1 and V2 .  The loop rule gives 
 

               V2 – ir2 + V1 – ir1 – iR  =  0     ⇒   2 1

1 2

V V
i

r r R

+
=

+ +
  . 

 



 

21. To be as general as possible, we refer to the individual emf’s as ε1 and ε2 and wait 

until the latter steps to equate them (ε1 = ε2 = ε). The batteries are placed in series in such 
a way that their voltages add; that is, they do not “oppose” each other. The total 
resistance in the circuit is therefore Rtotal = R + r1 + r2 (where the problem tells us r1 > r2), 

and the “net emf” in the circuit is ε1 + ε2. Since battery 1 has the higher internal resistance, 
it is the one capable of having a zero terminal voltage, as the computation in part (a) 
shows. 
 
(a) The current in the circuit is 

i
r r R

=
+

+ +
ε ε1 2

1 2

,  

 

and the requirement of zero terminal voltage leads to 1 1irε = , or 

 

2 1 1 2

1

(12.0 V)(0.016 ) (12.0 V)(0.012 )
0.0040 

12.0 V

r r
R

ε ε
ε
− Ω − Ω

= = = Ω  

 

Note that R = r1 – r2 when we set ε1 = ε2. 
 
(b) As mentioned above, this occurs in battery 1. 



  

(a) r = 1.0×103 Ω. 
 

(b) ε = 0.30 V. 
 
(c) The efficiency is 
 

( ) ( ) ( )
2

3

2 3 2
received

/ 0.15V
2.3 10 0.23%.

1000 5.0cm 2.0 10 W/cm

V R

P

−
−

= = × =
Ω ×

 

 

22. (a) Let the emf of the solar cell be ε and the output voltage be V. Thus, 
 

V ir
V

R
r= − = − FHG
I
KJε ε  

for both cases. Numerically, we get  
 

0.10 V = ε – (0.10 V/500 Ω)r 

   0.15 V = ε – (0.15 V/1000 Ω)r. 

We solve for ε and r.   
 



 
23. We note that two resistors in parallel, R1 and R2, are equivalent to 
 

1 2
12

12 1 2 1 2

1 1 1
.

R R
R

R R R R R
= + ⇒ =

+
 

 
This situation (Figure 27-38) consists of a parallel pair which are then in series with a 

single R3 = 2.50 Ω resistor. Thus, the situation has an equivalent resistance of 
 

eq 3 12

(4.00 ) (4.00 )
2.50 4.50 .

4.00 4.00
R R R

Ω Ω
= + = Ω + = Ω

Ω + Ω
 



 
24. Let the resistances of the two resistors be R1 and R2, with R1 < R2. From the 
statements of the problem, we have 
 

R1R2/(R1 + R2) = 3.0 Ω and R1 + R2 = 16 Ω. 
 

So R1 and R2 must be 4.0 Ω and 12 Ω, respectively. 
 

(a) The smaller resistance is R1 = 4.0 Ω. 
 
(b) The larger resistance is R2 = 12 Ω. 



 
25. The potential difference across each resistor is V = 25.0 V. Since the resistors are 

identical, the current in each one is i = V/R = (25.0 V)/(18.0 Ω) = 1.39 A. The total 
current through the battery is then itotal = 4(1.39 A) = 5.56 A. One might alternatively use 
the idea of equivalent resistance; for four identical resistors in parallel the equivalent 
resistance is given by 

1 1 4

R R Req

= =∑ .  

 
When a potential difference of 25.0 V is applied to the equivalent resistor, the current 
through it is the same as the total current through the four resistors in parallel. Thus  
 

itotal = V/Req = 4V/R = 4(25.0 V)/(18.0 Ω) = 5.56 A. 
 



26. (a) Req (FH) = (10.0 Ω)(10.0 Ω)(5.00 Ω)/[(10.0 Ω)(10.0 Ω) + 2(10.0 Ω)(5.00 Ω)] = 

2.50 Ω. 
 

(b) Req (FG) = (5.00 Ω) R/(R + 5.00 Ω), where  
 

R = 5.00 Ω + (5.00 Ω)(10.0 Ω)/(5.00 Ω + 10.0 Ω) = 8.33 Ω. 
 

So Req (FG) = (5.00 Ω)(8.33 Ω)/(5.00 Ω + 8.33 Ω) = 3.13 Ω. 



 
27. Let i1 be the current in R1 and take it to be positive if it is to the right. Let i2 be the 
current in R2 and take it to be positive if it is upward.  
 
(a) When the loop rule is applied to the lower loop, the result is 
 

2 1 1 0i Rε − = . 

The equation yields 

i
R

1
2

1

50
0 050= = =

ε .
.

 V

100
 A.

Ω
 

 
(b) When it is applied to the upper loop, the result is 
 

ε ε ε1 2 3 2 2 0− − − =i R .  

The equation gives 
 

1 2 3
2

2

6.0 V 5.0 V 4.0 V
0.060 A

50
i

R

ε ε ε− − − −
= = = −

Ω
, 

 

or 2| | 0.060 A.i = The negative sign indicates that the current in R2 is actually downward.  

 

(c) If Vb is the potential at point b, then the potential at point a is Va = Vb + ε3 + ε2, so  
 

Va – Vb = ε3 + ε2 = 4.0 V + 5.0 V = 9.0 V. 



  

 
Vd – Vc can now be calculated by taking various paths. Two examples: from Vd – i2R2 = 
Vc we get  

Vd – Vc = i2R2 = (0.0250 A) (10 Ω) = +0.25 V; 
 

from Vd + i3R3 + ε2 = Vc we get  
 

Vd – Vc = i3R3 – ε2 = – (– 0.250 A) (5.0 Ω) – 1.0 V = +0.25 V. 

 
28. The currents i1, i2 and i3 are obtained from Eqs. 27-18 through 27-20: 
 

1 2 3 2 3
1

1 2 2 3 1 3

1 3 2 1 2
2

1 2 2 3 1 3

( ) (4.0 V)(10 5.0 ) (1.0 V)(5.0 )
0.275 A ,

(10 )(10 ) (10 )(5.0 ) (10 )(5.0 )

( ) (4.0 V)(5.0 ) (1.0 V)(10 5.0 )

(10 )(10 ) (10 )(5.0 ) (10 )(5.0 )

R R R
i

R R R R R R

R R R
i

R R R R R R

ε ε

ε ε

+ − Ω + Ω − Ω
= = =

+ + Ω Ω + Ω Ω + Ω Ω
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29. Let r be the resistance of each of the narrow wires. Since they are in parallel the 
resistance R of the composite is given by 
 

1 9

R r
= ,  

 

or R = r/9. Now r d= 4 2ρ` / π  and R D= 4 2ρ` / π  , where ρ is the resistivity of copper. A 

= πd 
2/4 was used for the cross-sectional area of a single wire, and a similar expression 

was used for the cross-sectional area of the thick wire. Since the single thick wire is to 
have the same resistance as the composite, 
 

 
2 2

4 4
3 .D d

D d

ρ ρ
= ⇒ =

π 9π
` `

 



 
30. (a) By the loop rule, it remains the same.  This question is aimed at student 
conceptualization of voltage; many students apparently confuse the concepts of voltage 
and current and speak of “voltage going through” a resistor – which would be difficult to 
rectify with the conclusion of this problem. 
 
(b) The loop rule still applies, of course, but (by the junction rule and Ohm’s law) the 
voltages across R1 and R3 (which were the same when the switch was open) are no longer 
equal.  More current is now being supplied by the battery which means more current is in 
R3, implying its voltage-drop has increased (in magnitude).  Thus, by the loop rule (since 
the battery voltage has not changed) the voltage across R1 has decreased a corresponding 
amount.  When the switch was open, the voltage across R1 was 6.0 V (easily seen from 
symmetry considerations).  With the switch closed, R1 and R2 are equivalent (by Eq. 27-

24) to 3.0 Ω, which means the total load on the battery is 9.0 Ω.  The current therefore is 
1.33 A which implies the voltage-drop across R3 is 8.0 V.  The loop rule then tells us that 
voltage-drop across R1 is 12 V – 8.0 V = 4.0 V.  This is a decrease of 2.0 volts from the 
value it had when the switch was open. 



 
By the junction rule, the current in R2 is  
 

i2 = i4 + i6 =1.05 A + 1.40 A = 2.45 A, 
 

so its voltage is V2 = (2.00 Ω)(2.45 A) = 4.90 V. 
 
The loop rule tells us the voltage across R3 is V3 = V2 + V4 = 21.7 V (implying that the 

current through it is i3 = V3/(2.00 Ω) = 10.85 A). 
 
The junction rule now gives the current in R1 as i1 = i2 + i3= 2.45 A + 10.85 A = 13.3 A, 

implying that the voltage across it is V1 = (13.3 A)(2.00 Ω) = 26.6 V. Therefore, by the 
loop rule,  

ε = V1 + V3 = 26.6 V + 21.7 V = 48.3 V. 

 

31. First, we note V4, that the voltage across R4 is equal to the sum of the voltages across 
R5 and R6:  

V4 = i6(R5 +R6)= (1.40 A)(8.00 Ω + 4.00 Ω) = 16.8 V. 
 

The current through R4 is then equal to i4 = V4/R4 = 16.8 V/(16.0 Ω) = 1.05 A. 



 
32. Using the junction rule (i3 = i1 + i2) we write two loop rule equations: 
 

10.0 V – i1R1 – (i1 + i2) R3 = 0 
 

5.00 V – i2R2 – (i1 + i2) R3 = 0. 
 
(a) Solving, we find i2 = 0, and 
 
(b) i3 = i1 + i2 = 1.25 A (downward, as was assumed in writing the equations as we did). 



 

33. (a) We reduce the parallel pair of identical 2.0 Ω resistors (on the right side) to R' = 

1.0 Ω, and we reduce the series pair of identical 2.0 Ω resistors (on the upper left side) to 

R'' = 4.0 Ω. With R denoting the 2.0 Ω resistor at the bottom (between V2 and V1), we 
now have three resistors in series which are equivalent to  
 

7.0R R R′ ′′+ + = Ω  

 
across which the voltage is 7.0 V (by the loop rule, this is 12 V – 5.0 V), implying that 

the current is 1.0 A (clockwise). Thus, the voltage across R' is (1.0 A)(1.0 Ω) = 1.0 V, 
which means that (examining the right side of the circuit) the voltage difference between 
ground and V1 is 12 – 1 = 11 V. Noting the orientation of the battery, we conclude 

1 11 VV = − . 

 

(b) The voltage across R'' is (1.0 A)(4.0 Ω) = 4.0 V, which means that (examining the left 
side of the circuit) the voltage difference between ground and V2 is 5.0 + 4.0 = 9.0 V. 
Noting the orientation of the battery, we conclude V2 = –9.0 V. This can be verified by 
considering the voltage across R and the value we obtained for V1. 



  

(VA – VB) – V3 = 78 − 36 = 42 V, 
 

which implies the current is i1 = (42 V)/(2.0 Ω) = 21 A.  By the junction rule, then, the 

current in R2 = 4.0 Ω is  

i2 = i1− i  = 21 A − 6.0 A = 15 A. 
 
The total power dissipated by the resistors is (using Eq. 26-27) 
 

2

1i (2.0 Ω) + 2

2i (4.0 Ω) + 2i (6.0 Ω) = 1998 W  ≈  2.0 kW   . 

 
By contrast, the power supplied (externally) to this section is PA = iA (VA - VB) where iA = 
i1 = 21 A.  Thus, PA = 1638 W.  Therefore, the "Box" must be providing energy. 
 

(b) The rate of supplying energy is (1998 − 1638 )W = 3.6×102 W. 

 

34. (a) The voltage across R3 = 6.0 Ω is V3 = iR3= (6.0 A)(6.0 Ω) = 36 V.  Now, the 

voltage across R1 = 2.0 Ω is  



 

35. The voltage difference across R3 is V3 = εR' /(R' + 2.00 Ω), where  
 

R' = (5.00 ΩR)/(5.00 Ω + R3). 
Thus, 
 

( )( )
( )

( )

22 22 2

3
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3 3 3 3 3
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ε
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where we use the equivalence symbol ≡ to define the expression f(R3). To maximize P3 
we need to minimize the expression f(R3). We set 
 

( ) 2
3

2

3 3

4.00 49
0

25

df R

dR R

Ω
= − + =  

 

to obtain ( )( )2

3 4.00 25 49= 1.43 .R = Ω Ω  



 
(c) Looking at the point where the upward-sloping i2 line crosses the axis (at V2 = 4 V), 
we note that i1 = 0.1 A there and that the loop rule around the right-hand loop should give 
 

V1 – i1 R1 = i1 R2 
 

when  i1 = 0.1 A  and i2 = 0. This leads directly to R2 = 40 Ω. 

 
36. (a) For typing convenience, we denote the emf of battery 2 as V2 and the emf of 
battery 1 as V1.   The loop rule (examining the left-hand loop) gives V2 + i1 R1  – V1 = 0.  
Since V1 is held constant while V2 and i1 vary, we see that this expression (for large 
enough V2) will result in a negative value for i1 – so the downward sloping line (the line 
that is dashed in Fig. 27-47(b)) must represent i1.  It appears to be zero when V2 = 6 V.  
With i1  = 0, our loop rule gives V1 = V2 which implies that V1 = 6.0 V. 
 
(b) At V2 = 2 V (in the graph) it appears that i1 = 0.2 A.  Now our loop rule equation (with 

the conclusion about V1 found in part (a)) gives R1 = 20 Ω. 



 

37. (a) We note that the R1 resistors occur in series pairs, contributing net resistance 2R1 

in each branch where they appear. Since ε2 = ε3 and R2 = 2R1, from symmetry we know 

that the currents through ε2 and ε3 are the same: i2 = i3 = i. Therefore, the current through 

ε1 is i1 = 2i. Then from Vb – Va = ε2 – iR2 = ε1 + (2R1)(2i) we get 
 

( )
2 1

1 2

4.0 V 2.0 V
0.33A.

4 4 1.0 2.0
i

R R

ε ε− −
= = =

+ Ω + Ω
 

 

Therefore, the current through ε1 is i1 = 2i = 0.67 A. 
 
(b) The direction of i1 is downward.  
 

(c) The current through ε2 is i2 = 0.33 A. 
 
(d) The direction of i2 is upward. 
 
(e) From part (a), we have i3 = i2 = 0.33 A. 
 

(f) The direction of i3 is also upward. 
 

(g) Va – Vb = –iR2 + ε2 = –(0.333 A)(2.0 Ω) + 4.0 V = 3.3 V. 



  

 
(f) The direction is leftward. See the results in part (a). 
 

(g) The voltage across R1 equals VA: (0.0382 A)(100 Ω) = +3.82 V. 

 
38. (a) Using the junction rule (i1 = i2 + i3) we write two loop rule equations: 
 

ε

ε
1 2 2 2 3 1

2 3 3 2 3 1

0

0

− − + =

− − + =

i R i i R

i R i i R

b g
b g .

 

 
Solving, we find i2 = 0.0109 A (rightward, as was assumed in writing the equations as we 
did), i3 = 0.0273 A (leftward), and i1 = i2 + i3 = 0.0382 A (downward). 
 
(b) The direction is downward. See the results in part (a). 
 
(c) i2 = 0.0109 A . See the results in part (a). 
 
(d) The direction is rightward. See the results in part (a). 
 
(e) i3 = 0.0273 A. See the results in part (a). 



 
39. (a) The symmetry of the problem allows us to use i2 as the current in both of the R2 
resistors and i1 for the R1 resistors. We see from the junction rule that i3 = i1 – i2. There 
are only two independent loop rule equations: 
 

( )
2 2 1 1

1 1 1 2 3

0

2 0

i R i R

i R i i R

ε
ε

− − =

− − − =
 

 
where in the latter equation, a zigzag path through the bridge has been taken. Solving, we 
find i1 = 0.002625 A, i2 = 0.00225 A and i3 = i1 – i2 = 0.000375 A. Therefore, VA – VB = 

i1R1 = 5.25 V. 
 
(b) It follows also that VB – VC = i3R3 = 1.50 V. 
 
(c) We find VC – VD = i1R1 = 5.25 V. 
 
(d) Finally, VA – VC = i2R2 = 6.75 V. 



 
40. (a) Resistors R2, R3 and R4 are in parallel. By finding a common denominator and 
simplifying, the equation 1/R = 1/R2 + 1/R3 + 1/R4 gives an equivalent resistance of 
 

2 3 4

2 3 2 4 3 4

(50.0 )(50.0 )(75.0 )

(50.0 )(50.0 ) (50.0 )(75.0 ) (50.0 )(75.0 )

18.8 .

R R R
R

R R R R R R

Ω Ω Ω
= =

+ + Ω Ω + Ω Ω + Ω Ω
= Ω

 

 
Thus, considering the series contribution of resistor R1, the equivalent resistance for the 

network is Req = R1 + R = 100 Ω + 18.8 Ω = 118.8 Ω ≈ 119 Ω. 
 

(b) i1 = ε/Req = 6.0 V/(118.8 Ω) = 5.05 × 10–2 A.  
 

(c) i2 = (ε – V1)/R2 = (ε – i1R1)/R2 = [6.0V – (5.05 × 10–2 A)(100Ω)]/50 Ω = 1.90 × 10–2 A.  
 

(d) i3 = (ε – V1)/R3 = i2R2/R3 = (1.90 × 10–2 A)(50.0 Ω/50.0 Ω) = 1.90 × 10–2 A.  
 

(e) i4 = i1 – i2 – i3 = 5.05 × 10–2 A – 2(1.90 × 10–2 A) = 1.25 × 10–2 A. 
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The power dissipated in R is 

P i R
R

r R
= =

+
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We find the maximum by setting the derivative with respect to R equal to zero. The 
derivative is 
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The derivative vanishes (and P is a maximum) if R = r/2. With r = 0.300 Ω, we have 
0.150 R = Ω .  

 

(b) We substitute R = r/2 into P = 4ε 2R/(r + 2R)2 to obtain 
 

2 2 2

max 2

4 ( / 2) (12.0 V)
240 W.

[ 2( / 2)] 2 2(0.300 )

r
P

r r r

ε ε
= = = =

+ Ω
 

 
41. (a) The batteries are identical and, because they are connected in parallel, the 
potential differences across them are the same. This means the currents in them are the 
same. Let i be the current in either battery and take it to be positive to the left. According 
to the junction rule the current in R is 2i and it is positive to the right. The loop rule 
applied to either loop containing a battery and R yields 



  

 
(f) In parallel arrangement, since R < r. 

 
42. (a) By symmetry, when the two batteries are connected in parallel the current i going 

through either one is the same. So from ε = ir + (2i)R with r = 0.200 Ω and R = 2.00r, we 
get  

 
2 2(12.0V)

2 24.0 A.
2 0.200 2(0.400 )

Ri i
r R

ε
= = = =

+ Ω + Ω
 

 

(b) When connected in series 2ε – iRr – iRr – iRR = 0, or iR = 2ε/(2r + R). The result is 
 

2 2(12.0V)
2 30.0 A.

2 2(0.200 ) 0.400
Ri i

r R

ε
= = = =

+ Ω + Ω
 

 
(c) In series arrangement, since R > r. 
 
(d) If R = r/2.00, then for parallel connection, 
 

2 2(12.0V)
2 60.0 A.

2 0.200 2(0.100 )
Ri i

r R

ε
= = = =

+ Ω + Ω
 

 
(e) For series connection, we have  
 

2 2(12.0V)
2 48.0 A.

2 2(0.200 ) 0.100
Ri i

r R

ε
= = = =

+ Ω + Ω
 



 

(c) The power dissipated in R3 is ( ) ( )22

3 3 3 0.263A 5.00 0.346 W.P i R= = − Ω =  

 

(d) The power supplied by ε1 is i3ε1 = (0.421 A)(3.00 V) = 1.26 W. 
 

(e) The power “supplied” by ε2 is i2ε2 = (–0.158 A)(1.00 V) = –0.158 W. The negative 

sign indicates that ε2 is actually absorbing energy from the circuit. 

 
43. (a) We first find the currents. Let i1 be the current in R1 and take it to be positive if it 
is to the right. Let i2 be the current in R2 and take it to be positive if it is to the left. Let i3 
be the current in R3 and take it to be positive if it is upward. The junction rule produces 
 

i i i1 2 3 0+ + = .  
 
The loop rule applied to the left-hand loop produces 
 

1 1 1 3 3 0i R i Rε − + =  

 
and applied to the right-hand loop produces 
 

2 2 2 3 3 0.i R i Rε − + =  

 
We substitute i3 = –i2 – i1, from the first equation, into the other two to obtain 
 

1 1 1 2 3 1 3 0i R i R i Rε − − − =  

 
and 

2 2 2 2 3 1 3 0.i R i R i Rε − − − =  

 
Solving the above equations yield 
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2 1 3 1 3
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2 1 1 2
3

1 2 1 3 2 3

(1.00 V)(4.00 ) (3.00 V)(2.00 )
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Note that the current i3 in R3 is actually downward and the current i2 in R2 is to the right. 
The current i1 in R1 is to the right.  
 

(a) The power dissipated in R1 is ( ) ( )22

1 1 1 0.421A 4.00 0.709 W.P i R= = Ω =  

 
(b) The power dissipated in R2 is 2 2

2 2 2 ( 0.158A) (2.00 ) 0.0499 W 0.050 W.P i R= = − Ω = ≈  



 
44. (a) When R3 = 0 all the current passes through R1 and R3 and avoids R2 altogether.  
Since that value of the current (through the battery) is 0.006 A (see Fig. 27-54(b)) for R3 
= 0 then (using Ohm’s law)  
 

R1 = (12 V)/(0.006 A) =  2.0×103 Ω. 
 

(b) When R3 = ∞  all the current passes through R1 and R2 and avoids R3 altogether.  Since 

that value of the current (through the battery) is 0.002 A (stated in problem) for R3 = ∞ 
then (using Ohm’s law)  
 

R2 = (12 V)/(0.002 A) – R1  =  4.0×103 Ω. 



 
45. Let the resistors be divided into groups of n resistors each, with all the resistors in the 
same group connected in series. Suppose there are m such groups that are connected in 
parallel with each other. Let R be the resistance of any one of the resistors. Then the 
equivalent resistance of any group is nR, and Req, the equivalent resistance of the whole 
array, satisfies 

1 1

1R nR

m

nR

m

eq

= =∑ .  

 

Since the problem requires Req = 10 Ω = R, we must select n = m. Next we make use of 
Eq. 27-16. We note that the current is the same in every resistor and there are n · m = n

2 
resistors, so the maximum total power that can be dissipated is Ptotal = n

2
P, where 

1.0 WP =  is the maximum power that can be dissipated by any one of the resistors. The 

problem demands Ptotal ≥ 5.0P, so n2 must be at least as large as 5.0. Since n must be an 
integer, the smallest it can be is 3. The least number of resistors is n2 = 9. 



  

 
If there were n +1 parallel resistors, then  
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V Vn
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R n R
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= =

+
 . 

 
For the relative increase to be 0.0125 ( =  1/80 ), we require 
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 =  
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n n
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1
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This leads to the second-degree equation   
 

n
2 + 2n – 80  = (n + 10)(n – 8) = 0. 

 
Clearly the only physically interesting solution to this is n = 8. Thus, there are eight 
resistors in parallel (as well as that resistor in series shown towards the bottom) in Fig. 
27-55. 

 
46. The equivalent resistance in Fig. 27-55 (with n parallel resistors) is  
 

 eq

1R n
R R R

n n

+⎛ ⎞= + = ⎜ ⎟
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 . 

 
The current in the battery in this case should be  
 

battery battery

eq 1
n

V Vn
i

R n R
= =

+
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(b) Similarly, 
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(c) Consider the copper wire. If V is the potential difference, then the current is given by 

V = iCRC = iCρCL/π a2, so 
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47. (a) The copper wire and the aluminum sheath are connected in parallel, so the 
potential difference is the same for them. Since the potential difference is the product of 
the current and the resistance, iCRC = iARA, where iC is the current in the copper, iA is the 
current in the aluminum, RC is the resistance of the copper, and RA is the resistance of the 

aluminum. The resistance of either component is given by R = ρL/A, where ρ is the 
resistivity, L is the length, and A is the cross-sectional area. The resistance of the copper 

wire is RC = ρCL/πa
2, and the resistance of the aluminum sheath is RA = ρAL/π(b2 – a2). 

We substitute these expressions into iCRC = iARA, and cancel the common factors L and π 
to obtain 

2 2 2
.C C A Ai i

a b a

ρ ρ
=

−
 

 
We solve this equation simultaneously with i = iC + iA, where i is the total current. We 
find 

i
r i

r r r
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− +
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i
r r i

r r r
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The denominators are the same and each has the value 
 



 

48. (a) We use P = ε 2/Req, where 
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Put P = 60.0 W and ε = 24.0 V and solve for R: R = 19.5 Ω. 
 

(b) Since P ∝ Req, we must minimize Req, which means R = 0. 
 

(c) Now we must maximize Req, or set R = ∞. 
 
 

(d) Since Req, min = 7.00 Ω, Pmax = ε 2/Req, min = (24.0 V)2/7.00 Ω = 82.3 W. 
 

(e) Since Req, max = 7.00 Ω + (12.0 Ω)(4.00 Ω)/(12.0 Ω + 4.00 Ω) = 10.0 Ω, 
 

Pmin = ε 2/Req, max = (24.0 V)2/10.0 Ω = 57.6 W. 



 
ε − − − =iR i R ir2 1 1 0.  

 
We apply the loop rule to the right-hand loop to obtain 
 

i R i i RV1 1 1 0− − =b g .  

 
The second equation yields 
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We substitute this into the first equation to obtain 
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This has the solution 
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The reading on the voltmeter is 
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The current in the absence of the voltmeter can be obtained by taking the limit as RV 
becomes infinitely large. Then 
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The fractional error is (1.12 – 1.15)/(1.15) = –0.030, or –3.0%. 

 
49. The current in R2 is i. Let i1 be the current in R1 and take it to be downward. 
According to the junction rule the current in the voltmeter is i – i1 and it is downward. We 
apply the loop rule to the left-hand loop to obtain 



  

 

50. (a) Since i = ε/(r + Rext) and imax = ε/r, we have Rext = R(imax/i – 1) where r = 1.50 

V/1.00 mA = 1.50 × 103 Ω. Thus,  
 

 3 4

ext (1.5 10 )(1/ 0.100 1) 1.35 10R = × Ω − = × Ω  

 

(b) 3 3

ext (1.5 10 )(1/ 0.500 1) 1.5 10R = × Ω − = × Ω . 

 

(c) 3

ext (1.5 10 )(1/ 0.900 1) 167R = × Ω − = Ω . 

 

(d) Since r = 20.0 Ω + R, R = 1.50 × 103 Ω – 20.0 Ω = 1.48 × 103 Ω. 
 



51. (a) The current in R1 is given by 
 

i
R R R R R

1

1 2 3 2 3

5 0

4 0 6 0 4 0 6 0
114=

+ +
=

+ +
=

ε
/

.

( . ) ( . ) / ( . . )
.b g

V

2.0
A.

Ω Ω Ω Ω Ω
 

 
Thus, 

i
V

R

i R

R
3

1

3

1 1

3

50 114 2 0

6 0
0 45=

−
=

−
=

−
=

ε ε . ( . ( . )

.
.

V A)
A.

Ω
Ω

 

 
(b) We simply interchange subscripts 1 and 3 in the equation above. Now 
 

( )( ) ( )( ) ( )( )3

3 2 1 2 1

5.0V
0.6818A

/ 6.0 2.0 4.0 / 2.0 4.0
i

R R R R R

ε
= = =

+ + Ω + Ω Ω Ω + Ω
 

and 

i1
50 0 6818

2 0
0 45=

−
=

. .

.
.

V A 6.0
A,

b gb gΩ
Ω

 

 
the same as before. 



 

52. (a) ε = V + ir = 12 V + (10.0 A) (0.0500 Ω) = 12.5 V. 
 

(b) Now ε = V' + (imotor + 8.00 A)r, where  
 

V' = i'ARlight = (8.00 A) (12.0 V/10 A) = 9.60 V.  
Therefore, 

motor

12.5V 9.60V
8.00A 8.00A 50.0A.

0.0500

V
i

r

ε ′− −
= − = − =

Ω
 



  

 

 
eq

eq

eq 0

(12.0 V)(68.0 )
' 4.86 V.

68.0 100
V

R
V i R

R R

ε Ω
= = = =

+ Ω + Ω
 

(a) The ammeter reading is  
 

' 4.86 V
0.0552 A.

85.0 3.00A

V
i

R R
= = =

+ Ω + Ω
 

 
(b) As shown above, the voltmeter reading is ' 4.86 V.V =  

 

(c) R' = V’/i = 4.86 V/(5.52 × 10–2 A) = 88.0 Ω. 
 

(d) Since ' AR R R= − , if RA is decreased, the difference between R’ and R decreases. In 

fact, when RA = 0, R’=R.  

 
53. Since the current in the ammeter is i, the voltmeter reading is  
 

V’ =V+ i RA= i (R + RA), 
 
or R = V’/i – RA = R' – RA, where R' = V’/i is the apparent reading of the resistance. Now, 
from the lower loop of the circuit diagram, the current through the voltmeter is 

eq 0/( )Vi R Rε= + , where 

  

( ) ( )( )
eq

eq

300 85.0 3.001 1 1
    68.0 .

300 85.0 3.00

V A

V A V A

R R R
R

R R R R R R R

+ Ω Ω + Ω
= + ⇒ = = = Ω

+ + + Ω + Ω + Ω
 

 
The voltmeter reading is then  



 
54. Note that there is no voltage drop across the ammeter. Thus, the currents in the 
bottom resistors are the same, which we call i (so the current through the battery is 2i and 
the voltage drop across each of the bottom resistors is iR). The resistor network can be 
reduced to an equivalence of 

R
R R

R R

R R

R R
Req =

+
+

+
=

2

2

7

6

b gb g b gb g
 

 
which means that we can determine the current through the battery (and also through 
each of the bottom resistors): 

eq eq

3
2 .

2 2(7 / 6) 7
i i

R R R R

ε ε ε ε
= ⇒ = = =  

 
By the loop rule (going around the left loop, which includes the battery, resistor 2R and 
one of the bottom resistors), we have 
 

( )2 22 0 .
2

R R

iR
i R iR i

R

εε −
− − = ⇒ =  

 

Substituting i = 3ε/7R, this gives i2R = 2ε/7R. The difference between i2R and i is the 
current through the ammeter. Thus, 
 

ammeter
ammeter 2

3 2 1
     0.143.

7 7 7 / 7
R

i
i i i

R R R R

ε ε ε
ε

= − = − = ⇒ = =  



i1R1 = i2Rs. The second equation gives i2 = i1R1/Rs, which is substituted into the first 
equation to obtain 

( ) ( ) 21
1 2 1 1

1

.s
x s x

s

R RR
R R i R R i R

R R
+ = + ⇒ =  

 
55. Let i1 be the current in R1 and R2, and take it to be positive if it is toward point a in R1. 
Let i2 be the current in Rs and Rx, and take it to be positive if it is toward b in Rs. The loop 
rule yields (R1 + R2)i1 – (Rx + Rs)i2 = 0. Since points a and b are at the same potential, 



 
56. The currents in R and RV are i and i' – i, respectively. Since V = iR = (i' – i)RV we 
have, by dividing both sides by V, 1 = (i' /V – i/V)RV = (1/R' – 1/R)RV. Thus, 
 

1 1 1
   ' .V

V V

RR
R

R R R R R
= − ⇒ =

′ +
 

 

The equivalent resistance of the circuit is eq 0 0' V
A A

V

RR
R R R R R R

R R
= + + = + +

+
. 

 
(a) The ammeter reading is 
 

( ) ( ) ( ) ( )eq 0

2

12.0V

3.00 100 300 85.0 300 85.0

7.09 10 A.

A V V

i
R R R R R R R

ε ε

−

′ = = =
+ + + Ω + Ω + Ω Ω Ω + Ω

= ×

 

 
(b) The voltmeter reading is  
 

V =ε – i' (RA + R0) = 12.0 V – (0.0709 A) (103.00 Ω) = 4.70 V. 
 

(c) The apparent resistance is R' = V/i' = 4.70 V/(7.09 × 10–2 A) = 66.3 Ω.  
 
(d) If RV is increased, the difference between R and R’ decreases. In fact, 'R R→  as 

VR → ∞ . 



 
57. During charging, the charge on the positive plate of the capacitor is given by 
 

q C e t= − −ε τ1c h,  

 

where C is the capacitance, ε is applied emf, and τ = RC is the capacitive time constant. 

The equilibrium charge is qeq = Cε. We require q = 0.99qeq = 0.99Cε, so 
 

0 99 1. .= − −e t τ  
 

Thus, e t− =τ 0 01. .  Taking the natural logarithm of both sides, we obtain t/τ = – ln 0.01 = 

4.61 or t = 4.61τ. 
 



  

58. (a) We use q = q0e
–t/τ, or t = τ ln (q0/q), where τ = RC is the capacitive time constant. 

Thus,  

0 1/3
1/3

0

3
ln ln 0.41 0.41.

2 / 3 2

q t
t

q
τ τ τ

τ
⎛ ⎞ ⎛ ⎞= = = ⇒ =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

 

(b) 0 2/3
2 /3

0

ln ln3 1.1 1.1.
/ 3

q t
t

q
τ τ τ

τ
⎛ ⎞

= = = ⇒ =⎜ ⎟
⎝ ⎠

 



 

59. (a) The voltage difference V across the capacitor is V(t) = ε(1 – e–t/RC). At t = 1.30 µs 

we have V(t) = 5.00 V, so 5.00 V = (12.0 V)(1 – e–1.30 µs/RC), which gives  
 

τ = (1.30 µ s)/ln(12/7) = 2.41 µs. 
 

(b) The capacitance is C = τ/R = (2.41 µs)/(15.0 kΩ) = 161 pF. 



 

60. (a) τ = RC = (1.40 × 106 Ω)(1.80 × 10–6 F) = 2.52 s. 
 

(b) qo = εC = (12.0 V)(1.80 µ F) = 21.6 µC. 
 
(c) The time t satisfies q = q0(1 – e–t/RC), or 
 

( )0

0

21.6 C
ln 2.52s ln 3.40s.

21.6 C 16.0 C

q
t RC

q q

µ
µ µ

⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟− −⎝ ⎠⎝ ⎠

 



 
61. Here we denote the battery emf as V.  Then the requirement stated in the problem that 
the resistor voltage be equal to the capacitor voltage becomes iR = Vcap, or 

 

Ve−t /RC = V(1 − e−t/RC) 

 
where Eqs. 27-34 and 27-35 have been used.  This leads to t = RC ln2, or  t =  0.208 ms. 



 

62. (a) The potential difference V across the plates of a capacitor is related to the charge q 
on the positive plate by V = q/C, where C is capacitance. Since the charge on a 

discharging capacitor is given by q = q0 e
–t/τ, this means V = V0 e

–t/τ where V0 is the initial 

potential difference. We solve for the time constant τ by dividing by V0 and taking the 
natural logarithm: 

τ = − = − =
t

V Vln

s

ln V V
s.

0

10 0

100 100
217b g b g b g

.

.
.    

 

(b) At t = 17.0 s, t/τ = (17.0 s)/(2.17 s) = 7.83, so 
 

V V e et= = = ×− − −
0

7 83 2100 396 10τ V Vb g . . .  



 
63. The potential difference across the capacitor varies as a function of time t as 

/

0( ) t RCV t V e−= . Using V = V0/4 at t = 2.0 s, we find 

 

R
t

C V V
= =

×
= ×

−ln

s

2.0 10 F ln40
6

52 0
7 2 10b g c h

.
. .Ω  

 



  

( ) ( )
( )

( )
2

3 62
2 2 1.0 s 2.00

22

1.0 10 C 1.0 10
1.0 W ,

1.0s

t t tq R
P e e eτ

τ

−
− − −

× × Ω
= = =  

 
where t is again measured in seconds. 

64. (a) The initial energy stored in a capacitor is given by 2

0 / 2 ,CU q C= where C is the 

capacitance and q0 is the initial charge on one plate. Thus 
 

q CUC0

6 32 2 10 10 0 50 10 10= = × = ×− −. . .F J C .c hb g  

 

(b) The charge as a function of time is given by q q e t= −
0

τ , where τ is the capacitive time 

constant. The current is the derivative of the charge 
 

i
dq

dt

q
e t= − = −0

τ
τ ,  

 

and the initial current is i0 = q0/τ. The time constant is  
 

RCτ = = ( )( )6 61.0 10 F 1.0 10 1.0s−× × Ω = . 

 

Thus i0

3 310 10 10 10 10= × = ×− −. . .C s Ac h b g . 

 

(c) We substitute 0

tq q e τ−=  into VC = q/C to obtain 

 

( )
3

1.0 s 3 1.00

6

1.0 10 C
1.0 10 V ,

1.0 10 F

t t t

C

q
V e e e

C

τ
−

− − −
−

⎛ ⎞×
= = = ×⎜ ⎟×⎝ ⎠

 

 
where t is measured in seconds.  
 

(d) We substitute i q e t= −
0 τ τb g  into VR = iR to obtain  

 

( )( ) ( )
3 6

1.0 s 3 1.00
1.0 10 C 1.0 10

1.0 10 V ,
1.0s

t t t

R

q R
V e e eτ

τ

−
− − −

× × Ω
= = = ×  

 
where t is measured in seconds. 
 

(e) We substitute  i q e t= −
0 τ τb g  into P i R= 2  to obtain 

 



 
65. At t = 0 the capacitor is completely uncharged and the current in the capacitor branch 
is as it would be if the capacitor were replaced by a wire. Let i1 be the current in R1 and 
take it to be positive if it is to the right. Let i2 be the current in R2 and take it to be 
positive if it is downward. Let i3 be the current in R3 and take it to be positive if it is 
downward. The junction rule produces i i i1 2 3= + ,  the loop rule applied to the left-hand 

loop produces 
ε − − =i R i R1 1 2 2 0 ,  

 
and the loop rule applied to the right-hand loop produces 
 

i R i R2 2 3 3 0− = .  
 
Since the resistances are all the same we can simplify the mathematics by replacing R1, 
R2, and R3 with R.  
 
(a) Solving the three simultaneous equations, we find 
 

i
R

1

3

6

32

3

2 12 10

3 0 73 10
11 10= =

×

×
= × −ε .

.
.

V
A

c h
c hΩ

, 

 

(b) 
( )

3
4

2 6

1.2 10 V
5.5 10 A,

3 3 0.73 10
i

R

ε −×
= = = ×

× Ω
 and 

 

(c) 4

3 2 5.5 10 A.i i −= = ×  

 

At t = ∞ the capacitor is fully charged and the current in the capacitor branch is 0. Thus, 
i1 = i2, and the loop rule yields 
 

ε − − =i R i R1 1 1 2 0 . 

 
(d) The solution is 

( )
3

4

1 6

1.2 10 V
8.2 10 A.

2 2 0.73 10
i

R

ε −×
= = = ×

× Ω
 

 

(e) 4

2 1 8.2 10 A.i i −= = ×  

 

(f) As stated before, the current in the capacitor branch is i3 = 0. 
 
We take the upper plate of the capacitor to be positive. This is consistent with current 
flowing into that plate. The junction equation is i1 = i2 + i3, and the loop equations are 
 

1 2

3 2

0

0 .

i R i R

q
i R i R

C

ε − − =

− − + =
 

 



We use the first equation to substitute for i1 in the second and obtain ε – 2i2R – i3R = 0. 

Thus i2 = (ε – i3R)/2R. We substitute this expression into the third equation above to 
obtain  

–(q/C) – (i3R) + (ε/2) – (i3R/2) = 0. 
 
Now we replace i3 with dq/dt to obtain 
 

3

2 2

R dq

dt

q

C
+ =

ε
.  

 

This is just like the equation for an RC series circuit, except that the time constant is τ = 

3RC/2 and the impressed potential difference is ε/2. The solution is 
 

q
C

e t RC= − −ε
2

1 2 3c h .  

 
The current in the capacitor branch is 
 

2 3

3( ) .
3

t RCdq
i t e

dt R

ε −= =  

 
The current in the center branch is 
 

( )2 3 2 33
2 ( ) 3

2 2 2 6 6

t RC t RCi
i t e e

R R R R

ε ε ε ε− −= − = − = −  

 
(i) A plot of V2 as a function of time is shown in the following graph. 
 

 

 
and the potential difference across R2 is 
 

( )2 3

2 2( ) 3 .
6

t RCV t i R e
ε −= = −  

 

(g) For 2 30, 1t RCt e−= =  and  ( )3 2

2 3 1.2 10 V 3 4.0 10 VV ε= = × = × . 

 

(h) For 2 3, 0t RCt e−= ∞ →  and ( )3 2

2 2 1.2 20 V 2 6.0 10 VV ε= = × = × . 



 
66. The time it takes for the voltage difference across the capacitor to reach VL is given 

by V eL

t RC= − −ε 1c h . We solve for R: 

 

R
t

C VL

=
−

=
× −

= ×
−ln

.

. ln . . .
.

ε εb g c h b g
0500

0150 10 950 950 72 0
2 35 10

6

6s

F V V V
Ω  

 
where we used t = 0.500 s given (implicitly) in the problem. 



 
67. In the steady state situation, the capacitor voltage will equal the voltage across R2 = 

15 kΩ: 

( )0 2

1 2

20.0V
15.0k 12.0V.

10.0k 15.0k
V R

R R

ε ⎛ ⎞
= = Ω =⎜ ⎟+ Ω + Ω⎝ ⎠

 

 
Now, multiplying Eq. 27-39 by the capacitance leads to V = V0e

–t/RC describing the 

voltage across the capacitor (and across R2 = 15.0 kΩ) after the switch is opened (at t = 0). 
Thus, with t = 0.00400 s, we obtain 
 

V e= =
− × −

12 616
0 004 15000 0 4 10 6b g b ge j. .

. V.  

 

Therefore, using Ohm’s law, the current through R2 is 6.16/15000 = 4.11 × 10–4 A. 



 

 

4

1 1 4 1 4 1

2 1

ln(3 / 2) ln(3 / 2)
1.62 10 s

1.25 10 s 1.00 10 s
t

τ τ
−

− − − −= = = ×
− × − ×

. 

 
68. We apply Eq. 27-39 to each capacitor, demand their initial charges are in a ratio of 
3:2 as described in the problem, and solve for the time. With 
 

6 4

1 1 1

6 5

2 2 2

(20.0 )(5.00 10 F) 1.00 10 s

(10.0 )(8.00 10 F) 8.00 10 s ,

R C

R C

τ

τ

− −

− −

= = Ω × = ×

= = Ω × = ×
 

 
we obtain 



 

69. (a) The charge on the positive plate of the capacitor is given by 
 

q C e t= − −ε τ1c h,  

 

where ε is the emf of the battery, C is the capacitance, and τ is the time constant. The 

value of τ is  

τ = RC = (3.00 × 106 Ω)(1.00 × 10–6 F) = 3.00 s. 
 

At t = 1.00 s, t/τ = (1.00 s)/(3.00 s) = 0.333 and the rate at which the charge is increasing 
is 

( )( )6

0.333 7
1.00 10 F 4.00V

9.55 10 C s.
3.00s

tdq C
e e

dt

τε
τ

−
− − −

×
= = = ×  

 

(b) The energy stored in the capacitor is given by 
2

,
2

C

q
U

C
=  and its rate of change is 

 

dU

dt

q

C

dq

dt

C = .  

Now 

q C e et= − = × − = ×− − − −ε τ1 100 10 4 00 1 113 106 0 333 6c h c hb gc h. . ..V C,  

 
so 

( )
6

7 6

6

1.13 10 C
9.55 10 C s 1.08 10 W.

1.00 10 F

CdU q dq

dt C dt

−
− −

−

⎛ ⎞×
= = × = ×⎜ ⎟×⎝ ⎠

 

 
(c) The rate at which energy is being dissipated in the resistor is given by P = i

2
R. The 

current is 9.55 × 10–7 A, so 
 

P = × × = ×− −9 55 10 300 10 2 74 107
2

6 6. . .A W.c h c hΩ  

 
(d) The rate at which energy is delivered by the battery is 
 

iε = × = ×− −9 55 10 4 00 382 107 6. . .A V W.c hb g  

 
The energy delivered by the battery is either stored in the capacitor or dissipated in the 

resistor. Conservation of energy requires that iε = (q/C) (dq/dt) + i2
R. Except for some 

round-off error the numerical results support the conservation principle. 



  

 
70. The resistor by the letter i is above three other resistors; together, these four resistors 

are equivalent to a resistor R = 10 Ω (with current i). As if we were presented with a 
maze, we find a path through R that passes through any number of batteries (10, it turns 
out) but no other resistors, which — as in any good maze — winds “all over the place.” 

Some of the ten batteries are opposing each other (particularly the ones along the outside), 

so that their net emf is only ε = 40 V.  
 

(a) The current through R is then i = ε/R = 4.0 A. 
 
(b) The direction is upward in the figure. 



 
71. (a) In the process described in the problem, no charge is gained or lost. Thus, q = 
constant. Hence,  

( ) 31
1 1 2 2 2 1

2

150
200 3.0 10 V.

10

C
q C V C V V V

C

⎛ ⎞= = ⇒ = = = ×⎜ ⎟
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(b) Eq. 27-39, with τ = RC, describes not only the discharging of q but also of V. Thus, 
 

( ) ( )9 120
0

3000
ln 300 10 10 10 F ln

100

t V
V V e t RC

V

τ− −⎛ ⎞ ⎛ ⎞= ⇒ = = × Ω × ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

 
which yields t = 10 s. This is a longer time than most people are inclined to wait before 
going on to their next task (such as handling the sensitive electronic equipment). 
 

(c) We solve  V V e t RC= −
0 for R with the new values V0 = 1400 V and t = 0.30 s. Thus, 

 

R
t

C V V
= =

×
= ×

−ln

.
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. .

0
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10 10 1400 100
11 10b g c h b g
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F
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72. (a) Since ( ) 2

tank 140 , 12 V 10 140 8.0 10 AR i −= Ω = Ω + Ω = × . 

 

(b) Now, Rtank = (140 Ω + 20 Ω)/2 = 80 Ω, so i = 12 V/(10 Ω + 80 Ω) = 0.13 A. 
 

(c) When full, Rtank = 20 Ω so i = 12 V/(10 Ω + 20 Ω) = 0.40 A. 



(b) For tmax = 6.00 ms, 

Rmax

.

.
. . ,=

F
HG

I
KJ = ×

6 00

10 0
24 8 149 104ms

sµ
Ω Ωb g  

 

where in the last equation we used τ = RC. 

 
73. We use the result of Problem 27-63: R = t/[C ln(V0/V)].  
 

(a) Then, for tmin = 10.0 µs 
 

( ) ( )min

10.0 s
24.8 .

0.220 F ln 5.00 0.800
R

µ
µ

= = Ω  

 



 
74. (a) Using Eq. 27-4, we take the derivative of the power P = i

2
R with respect to R and 

set the result equal to zero: 
 

dP

dR

d

dR

R

R r

r R

R r
=

+
F
HG

I
KJ =

−
+

=
ε ε2

2

2

3
0

( )

( )

( )
 

 
which clearly has the solution R = r. 
 
(b) When R = r, the power dissipated in the external resistor equals 
 

P
R

R r r
R r

max
( )

.=
+

=
=

ε ε2

2

2

4
 



 
75. (a) The magnitude of the current density vector is 
 

( ) ( )
( )

( )( )2
3

1 2 1 2

27

4 60.0V4V

0.127 0.729 2.60 10 m

1.32 10 A m .

A

i V
J

A R R A R R D2 −
= = = =

+ + π π Ω + Ω ×

= ×

 

 

(b) VA = V R1/(R1 + R2) = (60.0 V)(0.127 Ω)/(0.127 Ω + 0.729 Ω) = 8.90 V.  
 
(c) The resistivity of wire A is  
 

2 3 2
8(0.127 )(2.60 10 m)

1.69 10 m .
4 4(40.0m)

A A
A

A A

R A R D

L L

π πρ
−

−Ω ×
= = = = × Ω⋅  

 
So wire A is made of copper. 
 

(d) 
271.32 10 A m .B AJ J= = ×  

 
(e) VB = V – VA = 60.0 V – 8.9 V = 51.1 V. 
 

(f) The resistivity of wire B is ρ B = × ⋅−9 68 10 8. Ω m, so wire B is made of iron. 



 
76. Here we denote the battery emf as V.  Eq. 27-30 leads to 

i = 
V
R

 – 
q

RC
 = 

12

4
 –  

8

(4)(4)
 = 2.5 A . 



  

 

 

77. The internal resistance of the battery is r = (12 V –11.4 V)/50 A = 0.012 Ω < 0.020 Ω, 
so the battery is OK. The resistance of the cable is  
 

R = 3.0 V/50 A = 0.060 Ω > 0.040 Ω, 
 
so the cable is defective. 



 

78. The equivalent resistance of the series pair of R3 = R4 = 2.0 Ω is R34= 4.0 Ω, and the 

equivalent resistance of the parallel pair of R1 = R2 = 4.0 Ω is R12= 2.0 Ω. Since the 
voltage across R34 must equal that across R12:  
 

34 12 34 34 12 12 34 12

1
          

2
V V i R i R i i= ⇒ = ⇒ =  

 

This relation, plus the junction rule condition 12 34 6.00 AI i i= + =  leads to the solution 

12 4.0 Ai = . It is clear by symmetry that 1 12 / 2 2.00 Ai i= = . 



 

79. (a) If S1 is closed, and S2 and S3 are open, then  ia = ε/2R1 = 120 V/40.0 Ω = 3.00 A. 
 
(b) If S3 is open while  S1 and S2 remain closed, then   
 

Req = R1 + R1 (R1 + R2) /(2R1 + R2) = 20.0 Ω + (20.0 Ω) × (30.0 Ω)/(50.0 Ω) = 32.0 Ω, 
 

so ia = ε/Req = 120 V/32.0 Ω = 3.75 A. 
 
(c) If all three switches S1, S2 and S3 are closed, then Req = R1 + R1 R'/(R1 + R') where  
 

R' = R2 + R1 (R1 + R2)/(2R1 + R2) = 22.0 Ω, 
i.e.,  

Req = 20.0 Ω + (20.0 Ω) (22.0 Ω)/(20.0 Ω + 22.0 Ω) = 30.5 Ω, 
 

so ia = ε/Req = 120 V/30.5 Ω = 3.94 A. 



(b) The direction of i1 is leftward. 
 
(c) The voltage across the bottom series pair is i1R’ = 30.0 V.  This must be the same as 
the voltage across the two resistors directly above them, one of which has current i2 

through it and the other (by symmetry) has current 
1

2 i2 through it.  Therefore, 

 

30.0 V = i2 (2.00 Ω) + 
1

2 i2 (2.00 Ω) 

leads to i2 = 10.0 A. 
 
(d) The direction of  i2 is also leftward. 
 

(e) We use Eq. 27-17:  P4 = (i1 + i2)ε4 = 87.5 W. 
 
(f) The energy is being supplied to the circuit since the current is in the "forward" 
direction through the battery. 

 

80. (a)  Reducing the bottom two series resistors to a single R’ = 4.00 Ω (with current i1 
through it), we see we can make a path (for use with the loop rule) that passes through R, 

the ε4 = 5.00 V battery,  the ε1 = 20.0 V battery, and the ε3 = 5.00 V.  This leads to 
 

i1 = 1 3 4 20.0 V 5.00 V 5.00 V

40.0R

ε ε ε+ + + +
=

′ Ω
 = 

30.0 V

 4.0 Ω  =  7.50 A. 

 



 

81. The bottom two resistors are in parallel, equivalent to a 2.0R resistance.  This, then, is 
in series with resistor R on the right, so that their equivalence is R' = 3.0R.  Now, near the 
top left are two resistors (2.0R and 4.0R) which are in series, equivalent to R'' = 6.0R.  
Finally, R' and R'' are in parallel, so the net equivalence is 
 

Req = 
(R') (R'')
R' + R''

 = 2.0R = 20 Ω 

 

where in the final step we use the fact that R = 10 Ω. 



  

 
(e) By the loop rule (proceeding clockwise), 
 

30V – i4(1.5 Ω) – i5(2.0 Ω)  =  0 
 
readily yields i5 = 7.5 A. 

 

82. (a)  The four resistors R1, R2, R3 and R4 on the left reduce to  
 

 3 41 2
eq 12 34

1 2 3 4

7.0 3.0 10
R RR R

R R R
R R R R

= + = + = Ω + Ω = Ω
+ +

 

 
With 30 Vε = across Req the current there is i2 = 3.0 A. 

 
(b) The three resistors on the right reduce to  
 

' 5 6
eq 56 7 7

5 6

(6.0 )(2.0 )
1.5 3.0

6.0 2.0

R R
R R R R

R R

Ω Ω
= + = + = + Ω = Ω

+ Ω + Ω
. 

 

With 30 Vε =  across '

eqR the current there is i4 = 10 A. 

 
(c) By the junction rule, i1 = i2 + i4 = 13 A. 
 

(d) By symmetry, i3 = 
1

2 i2 = 1.5 A. 



 

83. (a)  We analyze the lower left loop and find i1 = ε1/R = (12.0 V)/(4.00 Ω) = 3.00 A. 
 
(b) The direction of  i1 is downward. 
 

(c) Letting R = 4.00 Ω, we apply the loop rule to the tall rectangular loop in the center of 
the figure (proceeding clockwise): 
 

 ( ) ( ) ( )2
2 1 2 2 0

2

i
i R i R R i Rε ⎛ ⎞+ + + − + − + − =⎜ ⎟

⎝ ⎠
. 

 
Using the result from part (a), we find i2 = 1.60 A. 
 
(d) The direction of  i2 is downward (as was assumed in writing the equation as we did). 
 
(e) Battery 1 is supplying this power since the current is in the "forward" direction 
through the battery. 
 

(f) We apply Eq. 27-17: The current through the 1ε = 12.0 V battery is, by the junction 

rule, 3.00 A + 1.60 A = 4.60 A and P = (4.60 A)(12.0 V) = 55.2 W.  
 
(g) Battery 2 is supplying this power since the current is in the "forward" direction 
through the battery. 
 
(h) P = i2(4.00 V) = 6.40 W. 



(c) Since the current through the ε1 = 20.0 V battery is “forward”, battery 1 is supplying 
energy. 
 
(d) The rate is P1 = (5.00 A)(20.0 V) = 100 W.  
 

(e) Reducing the parallel pair (which are in parallel to the ε2 = 10.0 V battery) to a single 

R' = 1.00 Ω resistor (and thus with current i' = (10.0 V)/(1.00 Ω) = 10.0 A downward 
through it), we see that the current through the battery (by the junction rule) must be i = i' 

− i1 = 5.00 A upward (which is the "forward" direction for that battery). Thus, battery 2 is 
supplying energy. 
 
(f) Using Eq. 27-17, we obtain P2 = 50.0 W.  
 

(g) The set of resistors that are in parallel with the ε3 = 5 V battery is reduced to R'’' = 

0.800 Ω (accounting for the fact that two of those resistors are actually reduced in series, 

first, before the parallel reduction is made), which has current i''’ = (5.00 V)/(0.800 Ω) = 
6.25 A downward through it.  Thus, the current through the battery (by the junction rule) 
must be i = i''’ + i1 = 11.25 A upward (which is the "forward" direction for that battery). 
Thus, battery 3 is supplying energy. 
 
(h) Eq. 27-17 leads to P3 = 56.3 W.  

 

84. (a)  We reduce the parallel pair of resistors (at the bottom of the figure) to a single R’ 

=1.00 Ω resistor and then reduce it with its series ‘partner’ (at the lower left of the figure) 

to obtain an equivalence of R” = 2.00 Ω +1.00Ω =3.00 Ω.  It is clear that the current 
through R” is the i1 we are solving for.  Now, we employ the loop rule, choose a path that 
includes R” and all the batteries (proceeding clockwise).  Thus, assuming i1 goes leftward 
through R”, we have 

5.00 V + 20.0 V −10.0 V − i1R”  = 0 
 

which yields i1 = 5.00 A. 
 
(b) Since i1 is positive, our assumption regarding its direction (leftward) was correct. 
 



 
85. We denote silicon with subscript s and iron with i. Let T0 = 20°. If  
 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )( ) ( )

0 0 0 0

00

1 1

temperature independent terms

s i s i i

s s i i

R T R T R T R T T T R T T T

R T R T

α α

α α

= + = + − + + −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

= + +
 

 

is to be temperature-independent, we must require that Rs(T0)αs + Ri(T0)αi = 0. Also note 

that Rs(T0) + Ri(T0) = R = 1000 Ω. We solve for Rs(T0) and Ri(T0) to obtain 
 

( )
( ) ( )3

0 3 3

1000 6.5 10
85.0 .

6.5 10 70 10
i

s

i s

R
R T

α
α α

−

− −

Ω ×
= = = Ω

− × + ×
 

 

(b) Ri(T0) = 1000 Ω – 85.0 Ω = 915 Ω. 



 

86. Consider the lowest branch with the two resistors R4 = 3.00 Ω and R5 = 5.00 Ω. The 
voltage difference across R5 is 
 

( )( )5
5 5

4 5

120V 5.00
7.50V.

3.00 5.00

R
V i R

R R

ε Ω
= = = =

+ Ω + Ω
 

 



(b) From i = V/R = (ε – V)/r we find 
 

r R
V

V
=

−F
HG
I
KJ =

−F
HG

I
KJ =

ε
010

15 10

10
0 050.

. .

.
. .Ω Ωb g V V

V
 

87. (a) From P = V 
2/R we find V PR= = =10 010 10W V.b gb g. .Ω  

 



 

88. (a) Req(AB) = 20.0 Ω/3 = 6.67 Ω (three 20.0 Ω resistors in parallel). 
 

(b) Req(AC) = 20.0 Ω/3 = 6.67 Ω (three 20.0 Ω resistors in parallel). 
 
(c) Req(BC) = 0 (as B and C are connected by a conducting wire). 



 

89. When S is open for a long time, the charge on C is qi = ε2C. When S is closed for a 
long time, the current i in R1 and R2 is  
 

i = (ε2 – ε1)/(R1 + R2) = (3.0 V – 1.0 V)/(0.20 Ω + 0.40 Ω) = 3.33 A. 
 
The voltage difference V across the capacitor is then  
 

V = ε2 –  iR2 = 3.0 V – (3.33 A) (0.40 Ω) = 1.67 V. 
 
Thus the final charge on C is qf = VC. So the change in the charge on the capacitor is  
 

∆q = qf – qi = (V – ε2)C = (1.67 V – 3.0 V) (10 µ F) = – 13 µ C. 



 

90. From Va – ε1 = Vc – ir1 – iR and i = (ε1 – ε2)/(R + r1 + r2), we get 
 

( )1 2
1 1 1 1

1 2

( )

4.4V 2.1V
4.4V (2.3 5.5 )

5.5 1.8 2.3

2.5V.

a cV V i r R r R
R r r

ε εε ε
⎛ ⎞−

− = − + = − +⎜ ⎟+ +⎝ ⎠
⎛ ⎞−

= − Ω + Ω⎜ ⎟Ω + Ω + Ω⎝ ⎠
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91. The potential difference across R2 is 
 

V iR
R

R R R
2 2

2

1 2 3

12 4 0

30 4 0 50
4 0= =

+ +
=

+ +
=

ε V
V.

b gb g.
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Ω
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1 2

1 2 1 2
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1
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i i r R R Ri

i i r R R R r R R R

− + +∆ Ω
= = − = =
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=

 
  

 
92. The current in the ammeter is given by  
 

iA = ε/(r + R1 + R2 + RA). 
 

The current in R1 and R2 without the ammeter is i = ε/(r + R1 + R2). The percent error is 
then 



 
93. The maximum power output is (120 V)(15 A) = 1800 W. Since 1800 W/500 W = 3.6, 
the maximum number of 500 W lamps allowed is 3. 



 
94. In the steady state situation, there is no current going to the capacitors, so the resistors 
all have the same current.  By the loop rule, 
 

20.0 V  =  (5.00 Ω)i + (10.0 Ω)i + (15.0 Ω)i 
 

which yields i = 
2

3 A.  Consequently, the voltage across the R1 = 5.00 Ω resistor is (5.00 

Ω)(2/3 A) = 10/3 V, and is equal to the voltage V1 across the C1 = 5.00 µF capacitor.  
Using Eq. 26-22, we find the stored energy on that capacitor: 
 

 

2

2 6 5

1 1 1

1 1 10
(5.00 10  F) V 2.78 10  J

2 2 3
U C V − −⎛ ⎞= = × = ×⎜ ⎟

⎝ ⎠
. 

 

Similarly, the voltage across the R2 = 10.0 Ω resistor is (10.0 Ω)(2/3 A) = 20/3 V and is 

equal to the voltage V2 across the C2 = 10.0 µF capacitor. Hence, 
 

2

2 6 5

2 2 2

1 1 20
(10.0 10  F) V 2.22 10  J

2 2 3
U C V − −⎛ ⎞= = × = ×⎜ ⎟

⎝ ⎠
 

 

Therefore, the total capacitor energy is U1  + U2  = 2.50 × 10−4 J. 



 

95. (a) The charge q on the capacitor as a function of time is q(t) = (εC)(1 – e–t/RC), so the 

charging current is i(t) = dq/dt = (ε/R)e–t/RC. The energy supplied by the emf is then 
 

U i dt
R

e dt C Ut RC

C= = = =−∞∞ zz ε ε ε
2

0

2

0
2  

 

where U CC =
1

2

2ε  is the energy stored in the capacitor. 

 
(b) By directly integrating i2

R we obtain 
 

U i Rdt
R

e dt CR

t RC= = =−∞∞ zz 2
2

2

00

21

2

ε ε .  

 



  

96. When connected in series, the rate at which electric energy dissipates is Ps = ε2/(R1 + 

R2). When connected in parallel, the corresponding rate is Pp = ε2(R1 + R2)/R1R2. Letting 

Pp/Ps = 5, we get (R1 + R2)
2/R1R2 = 5, where R1 = 100 Ω. We solve for R2: R2 = 38 Ω or 

260 Ω. 
 

(a) Thus, the smaller value of R2 is 38 Ω. 
 
(b) The larger value of R2 is 260 Ω. 



 
97. (a) The capacitor is initially uncharged, which implies (by the loop rule) that there is 

zero voltage (at t = 0) across the R2 = 10 kΩ resistor, and that 30 V is across the R1 =20 

kΩ resistor. Therefore, by Ohm;s law, i10 = (30 V)/(20 kΩ) = 1.5 × 10–3 A. 
 
(b) Similarly, i20 = 0. 
 

(c) As t → ∞  the current to the capacitor reduces to zero and the 20 kΩ and 10 kΩ 

resistors behave more like a series pair (having the same current), equivalent to 30 kΩ. 
The current through them, then, at long times, is  
 

i = (30 V)/(30 kΩ) = 1.0 × 10–3 A. 



 
98. Using the junction and the loop rules, we have 
 

 

1 1 3 3

1 1 2 2

2 3 1

20.0 0

20.0 50 0

i R i R

i R i R

i i i

− − =
− − − =

+ =
 

 
Requiring no current through the battery 1 means that i1= 0, or i2 = i3. Solving the above 

equations with 1 10.0R = Ω  and 2 20.0R = Ω , we obtain  

 

 3
1 3

3

40 3 40
0      13.3

20 3 3

R
i R

R

−
= = ⇒ = = Ω

+
 



where V = 12 V. We attempt to extremize the expression by working through the dP/dR3 
= 0 condition and do not find a value of R3 that satisfies it.  
 
(a) We note, then, that the function is a monotonically decreasing function of R3, with R3 
= 0 giving the maximum possible value (since R3 < 0 values are not being allowed).  
 
(b) With the value R3 = 0, we obtain P = 14.4 W. 

 

99. With the unit Ω understood, the equivalent resistance for this circuit is 
 

3
eq

3

20 100
.

10

R
R

R

+
=

+
 

 
Therefore, the power supplied by the battery (equal to the power dissipated in the 
resistors) is 

2
2 3

3 3

10

20 100

RV
P V

R R

+
= =

+
 

 



 
100. (a) From symmetry we see that the current through the top set of batteries (i) is the 
same as the current through the second set. This implies that the current through the R = 

4.0 Ω resistor at the bottom is iR = 2i. Thus, with r denoting the internal resistance of each 

battery (equal to 4.0 Ω) and ε denoting the 20 V emf, we consider one loop equation (the 
outer loop), proceeding counterclockwise: 
 

3 2 0ε − − =ir i Rb g b g .  

 
This yields i = 3.0 A. Consequently, iR = 6.0 A. 
 

(b) The terminal voltage of each battery is ε – ir = 8.0 V. 
 

(c) Using Eq. 27-17, we obtain P = iε = (3)(20) = 60 W. 
 
(d) Using Eq. 26-27, we have P = i

2
r = 36 W. 



 
101. When all the batteries are connected in parallel, each supplies a current i; thus, iR = 

Ni. Then from ε = ir + iRR = ir + Nir, we get iR = Nε/[(N + 1)r]. When all the batteries 
are connected in series, ir = iR and  
 

εtotal = Nε = Nirr + iRR = NiRr + iRr, 
 

so iR = Nε/[(N + 1)r]. 



 

102. (a) Here we denote the battery emf as V.  See Fig. 27-4(a): VT  = V − ir. 
 
(b) Doing a least squares fit for the VT  versus i values listed, we obtain  
 

VT = 13.61  − 0.0599i 

which implies V = 13.6 V. 
 

(c) It also implies the internal resistance is 0.060 Ω. 



  

 
(c) The loop rule (counterclockwise around the left loop) gives 
 

( ) ( ) ( )1 1 1 2 2 0i R i Rε+ + + + − =  

 
where i2 has been assumed leftward. This yields i3 = 0.180 A. 
 
(d) A positive value of i3 implies that our assumption on the direction is correct, i.e., it 
flows leftward. 
 
(e) The junction rule tells us that the current through the 12 V battery is 0.180 + 0.0600 = 
0.240 A. 
 
(f) The direction is upward. 

 

103. (a) The loop rule (proceeding counterclockwise around the right loop) leads to ε2 – 
i1R1 = 0 (where i1 was assumed downward). This yields i1 = 0.0600 A. 
 
(b) The direction of i1 is downward. 



 

104. (a) Since P = ε 2/Req, the higher the power rating the smaller the value of Req. To 
achieve this, we can let the low position connect to the larger resistance (R1), middle 
position connect to the smaller resistance (R2), and the high position connect to both of 
them in parallel. 
 

(b) For P = 300 W, Req = R1R2/(R1 + R2) = (144 Ω)R2/(144 Ω + R2) = (120 V)2/(300 W). 

We obtain R2 = 72 Ω. 
 

(c) For P = 100 W, Req = R1 = ε 2/P = (120 V)2/100 W = 144 Ω;  



(d) The direction of i2 is clearly downward. 
 
(e) Using our conclusion from part (a) in Eq. 27-17, we have  
 

P = i1ε1 = (4.0 A)(16 V) = 64 W. 
 

(f) Using results from part (a) in Eq. 27-17, we obtain P = i'ε2 = (2.0 A)(8.0 V) = 16 W. 
 
(g) Energy is being supplied in battery 1. 
 
(h) Energy is being absorbed in battery 2. 

 

105. (a) The six resistors to the left of ε1 = 16 V battery can be reduced to a single resistor 

R = 8.0 Ω, through which the current must be iR = ε1/R = 2.0 A. Now, by the loop rule, 

the current through the 3.0 Ω and 1.0 Ω resistors at the upper right corner is 
 

′ =
−
+

=i
16 0 8 0

10
2 0

. .

.
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V V

3.0
A

Ω Ω
 

 

in a direction that is “backward” relative to the ε2 = 8.0 V battery. Thus, by the junction 
rule, 

i i iR1 4 0= + ′ = . A . 

 

(b) The direction of i1 is upward (that is, in the “forward” direction relative to ε1). 
 
(c) The current i2 derives from a succession of symmetric splittings of iR (reversing the 
procedure of reducing those six resistors to find R in part (a)). We find 
 

2

1 1
0. 50A

2 2
Ri i

⎛ ⎞= =⎜ ⎟
⎝ ⎠

. 

 



 
106. (a) R2 and R3 are in parallel; their equivalence is in series with R1. Therefore, 
 

2 3
eq 1

2 3

300 .
R R

R R
R R

= + = Ω
+

 

 

(b) The current through the battery is ε/Req = 0.0200 A, which is also the current through 

R1. Hence, the voltage across R1 is V1 = (0.0200 A)(100 Ω) = 2.00 V. 
 
(c) From the loop rule, 

ε − − =V i R1 3 3 0  

 

which yields i3 = 6.67 × 10–3 A. 



 
107. (a) By symmetry, we see that i3 is half the current that goes through the battery. The 

battery current is found by dividing ε by the equivalent resistance of the circuit, which is 

easily found to be 6.00 Ω. Thus, 
 

3 bat

1 1 12V
1.00A

2 2 6.0
i i

⎛ ⎞
= = =⎜ ⎟Ω⎝ ⎠

 

 
and is clearly downward (in the figure). 
 

(b) We use Eq. 27-17: P = ibatε = 24.0 W. 



  

ln(VC) = –1.2994 t + 2.525 

 
Thus, we have the emf equal to V0 = e2.525 = 12.49 V 12 V≈ ; 

 

(c) This also tells us that the time constant is τ =  1/1.2994 = 0.77 s. 
 

(d) Since τ = RC then we find C = 3.8 µF. 

 
108. (a) Dividing Eq. 27-39 by capacitance turns it into an equation that describes the 

dependence of the voltage on time: VC = V0 
/te τ− ; 

 
(b) Taking logarithms of this equation produces a form amenable to a least squares fit: 
 

ln(VC) = – 
1

τ
  t + ln(V0) 

 



 
109. Here we denote the supply emf as V (understood to be in volts).  The situation is 
much like that shown in Fig. 27-4, with r now interpreted as the resistance of the 
transmission line and R interpreted as the resistance of the “consumer” (the reason the 
circuit has been turned on in the first place – to supply power to some resistive load R).   
From Eq. 27-4 and Eq. 26-27 (remembering that we are asked to find the power 
dissipated in the transmission line) we obtain 
 

 

2

line

V
P r

R r

⎛ ⎞= ⎜ ⎟+⎝ ⎠
. 

 
Now r is considered constant, certainly, but what about R?  The load will not be the same 
in the two cases (where V = 110000 and V' =110) because the problem requires us to 
consider the total power supplied to be constant, so 
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which implies  
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Now, as the problem directs, we take ratio of Pline to P'line  and obtain  
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(a) The larger i is 3.41 A. 
 

(b) We use V = ε – ir = 2.00 V – i(0.500 Ω). We substitute value of i obtained in part (a) 
into the above formula to get V = 0.293 V. 
 
(c) The smaller i is 0.586 A. 
 
(d) The corresponding V is 1.71 V. 

 
110. The power delivered by the motor is P = (2.00 V)(0.500 m/s) = 1.00 W. From P = 

i
2
Rmotor and ε = i(r + Rmotor) we then find i2

r –iε + P = 0 (which also follows directly from 
the conservation of energy principle). We solve for i: 
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The answer is either 3.41 A or 0.586 A. 
 



 
111. (a) Placing a wire (of resistance r) with current i running directly from point a to 
point b in Fig. 27-61 divides the top of the picture into a left and a right triangle. If we 
label the currents through each resistor with the corresponding subscripts (for instance, is 
goes toward the lower right through Rs and ix goes toward the upper right through Rx), 
then the currents must be related as follows: 
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where the last relation is not independent of the previous three. The loop equations for the 
two triangles and also for the bottom loop (containing the battery and point b) lead to 
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We incorporate the current relations from above into these loop equations in order to 
obtain three well-posed “simultaneous” equations, for three unknown currents (is, i1 and 
i): 
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i R i R i r R R

i R R R i R iR

s s

s x x

s s x x

− − =

− − + + =

− + + − − =

1 1

1 2 2

0 1 0

0

0

0

b g
b gε

 

 
The problem statement further specifies R1 = R2 = R and R0 = 0, which causes our 
solution for i to simplify significantly. It becomes 
 

i
R R

rR R R R R rR R R

s x

s x s s x x

=
−

+ + + +
ε b g

2 2 2
 

 
which is equivalent to the result shown in the problem statement. 
 
(b) Examining the numerator of our final result in part (a), we see that the condition for i 
= 0 is Rs = Rx. Since R1 = R2 = R, this is equivalent to Rx = RsR2/R1.  



Chapter 28 
 



 

 

 

1. (a) The force on the electron is 

 

( ) ( ) ( )
( ) ( )( ) ( )( )

( )

19 6 6

14

ˆ ˆ ˆ ˆi j i k

= 1.6 10 C 2.0 10 m s 0.15 T 3.0 10 m s 0.030 T

ˆ6.2 10 N k.

B x y x y x y y xF qv B q v v B B j q v B v B

−

−

= × = + × + = −

⎡ ⎤− × × − − ×⎣ ⎦

= ×

f f ff

 

 

Thus, the magnitude of 
f
FB  is 6.2 × 10

14
 N, and 

f
FB  points in the positive z direction. 

 

(b) This amounts to repeating the above computation with a change in the sign in the 

charge. Thus,
f
FB  has the same magnitude but points in the negative z direction, namely,  

( )14 ˆ6.2 10 N k.BF −= − ×
f
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2. (a) We use Eq. 28-3:  

 

FB = |q| vB sin φ = (+ 3.2 × 10
–19

 C) (550 m/s) (0.045 T) (sin 52°) = 6.2 × 10
–18

 N. 

 

(b) a = FB/m = (6.2 × 10
– 18

 N) / (6.6 × 10
– 27

 kg) = 9.5 × 10
8
 m/s

2
. 

 

(c) Since it is perpendicular to 
f f
v FB,  does not do any work on the particle. Thus from the 

work-energy theorem both the kinetic energy and the speed of the particle remain 

unchanged. 



 

3. (a) Eq. 28-3 leads to 

 

v
F

eB

B= =
×

× × °
= ×

−

− −sin

.

. . sin .
. .

φ
650 10

160 10 2 60 10 230
4 00 10

17

19 3

5N

C T
m sc hc h  

 

(b) The kinetic energy of the proton is 

 

( )( )2
2 27 5 161 1

1.67 10 kg 4.00 10 m s 1.34 10 J
2 2

K mv − −= = × × = × , 

 

which is equivalent to K = (1.34 × 10
– 16

 J) / (1.60 × 10
– 19

 J/eV) = 835 eV. 



− "k  direction (since " " "i k j× − =e j ). Note that the charge is positive; also note that we need 

to assume By = 0. The magnitude |Bz| is given by Eq. 28-3 (with φ = 90°). Therefore, with 
21.0 10 kgm −= × , 42.0 10 m/sv = ×  and 58.0 10 Cq −= × , we find 

 

ˆ ˆ ˆk k ( 0.061 T)kz

mg
B B

qv

⎛ ⎞
= = − = −⎜ ⎟

⎝ ⎠

f
 

 

4. The force associated with the magnetic field must point in the "j  direction in order to 

cancel the force of gravity in the −"j  direction. By the right-hand rule, 
f
B  points in the 



 

5. Using Eq. 28-2 and Eq. 3-30, we obtain 

 f
F q v B v B q v B v Bx y y x x x y x= − = −d i b gd i" "k k3  

 

where we use the fact that By = 3Bx. Since the force (at the instant considered) is Fz
"k  

where Fz = 6.4 × 10
–19

 N, then we are led to the condition 

 

( ) ( )3 .
3

z
x y x z x

x y

F
q v v B F B

q v v
− = ⇒ =

−
 

 

Substituting vx = 2.0 m/s, vy = 4.0 m/s and q = –1.6 × 10
–19

 C, we obtain  

 
19

19

6.4 10 N
2.0 T.

(3 ) ( 1.6 10 C)[3(2.0 m/s) 4.0 m]

z
x

x y

F
B

q v v

−

−

×
= = = −

− − × −
 



 

6. The magnetic force on the proton is 

 

 F qv B= ×
f ff

 

 

where  q = +e . Using Eq. 3-30 this becomes 

 

(4 × 10
−17 

)i
^
  + (2 × 10

−17
)j

^
  = e[(0.03vy + 40)i

^
  + (20 – 0.03vx)j

^
  – (0.02vx + 0.01vy)k

^
]   

 

with SI units understood.  Equating corresponding components, we find  

 

(a) vx = −3.5×10
3
 m/s, and 

 

(b) vy = 7.0×10
3
 m/s. 



( ) ( ) ( )
3

4

3 19 31

100 V /(20 10 m)
2.67 10 T.

2 / 2 1.0 10 V 1.60 10 C / 9.11 10 kge

E E
B

v K m

−
−

− −

×
= = = = ×

× × ×
 

 

In unit-vector notation, 4 ˆ(2.67 10  T)kB −= − ×
f

. 

 

7. Straight line motion will result from zero net force acting on the system; we ignore 

gravity. Thus, 
f f f f
F q E v B= + × =d i 0 . Note that 

f f
v B⊥  so 

f f
v B vB× = . Thus, obtaining the 

speed from the formula for kinetic energy, we obtain  

 



 

8. Letting 
f f f f
F q E v B= + × =d i 0 , we get sinvB Eφ = . We note that (for given values of 

the fields) this gives a minimum value for speed whenever the sin φ factor is at its 

maximum value (which is 1, corresponding to φ = 90°). So  

 

 
3

3

min

1.50 10 V/m
3.75 10 m/s

0.400 T

E
v

B

×
= = = × . 

 



9. We apply 
f f f f f
F q E v B m ae= + × =d i  to solve for 

f
E : 

 
f f f f
E

m a

q
B ve= + ×

=
× ×

− ×
+ × +

= − − +

−

−

9 11 10 2 00 10

160 10
400 12 0 15 0

114 6 00 4 80

31 12 2

19

. . "

.
" . " . "

. " . " . " .

kg m s i

C
T i km s j km s k

i j k V m

c hd i b g b g b g

e j

µ  



  

 

10. (a) The net force on the proton is given by 

 

( ) ( ) ( ) ( )
( )

19 3

18

ˆ ˆ ˆ1.60 10 C 4.00V m k+ 2000m s j 2.50 10 T i

ˆ1.44 10 N k.

E BF F F qE qv B − −

−

⎡ ⎤= + = + × = × × − ×⎣ ⎦

= ×

f f f f ff

 

(b) In this case 

 

( ) ( ) ( ) ( )

( )

19

19

ˆ ˆ ˆ1.60 10 C 4.00 V m k 2000 m s j 2.50 mT i

ˆ1.60 10 N k.

E BF F F qE qv B

−

−

= + = + ×

⎡ ⎤= × − + × −⎣ ⎦

= ×

f f f f ff

 

 

(c) In the final case, 

 

( ) ( ) ( ) ( )

( ) ( )

19

19 19

ˆ ˆ ˆ1.60 10 C 4.00V m i+ 2000m s j 2.50 mT i

ˆ ˆ6.41 10 N i+ 8.01 10 N k.

E BF F F qE qv B

−

− −

= + = + ×

⎡ ⎤= × × −⎣ ⎦

= × ×

f f f f ff

 



 

11. Since the total force given by 
f f f f
F e E v B= + ×d i  vanishes, the electric field 

f
E  must be 

perpendicular to both the particle velocity 
f
v  and the magnetic field 

f
B . The magnetic 

field is perpendicular to the velocity, so 
f f
v B×  has magnitude vB and the magnitude of 

the electric field is given by E = vB. Since the particle has charge e and is accelerated 

through a potential difference V , 2 / 2mv eV=  and 2 .v eV m=  Thus, 

 

( ) ( )( )
( )

19 3

5

27

2 1.60 10 C 10 10 V2
1.2 T 6.8 10 V m.

9.99 10 kg

eV
E B

m

−

−

× ×
= = = ×

×
 



 

12. (a) The force due to the electric field  ( F qE=
f f

)  is distinguished from that associated 

with the magnetic field ( F qv B= ×
f ff

)  in that the latter vanishes at the speed is zero and 

the former is independent of speed. The graph (Fig.28-36) shows that the force (y-

component) is negative at v = 0 (specifically, its value is –2.0 × 10
–19 

N there) which 

(because q = –e) implies that the electric field points in the +y direction.  Its magnitude is   

 

 
19

net ,

19

2.0 10 N
1.25 N/C 1.25 V/m

| | 1.6 10 C

yF
E

q

−

−

×
= = = =

×
. 

 

(b) We are told that the x and z components of the force remain zero throughout the 

motion, implying that the electron continues to move along the x axis, even though 

magnetic forces generally cause the paths of charged particles to curve (Fig. 28-11).  The 

exception to this is discussed in section 28-3, where the forces due to the electric and 

magnetic fields cancel.  This implies (Eq. 28-7) B = E/v = 2.50 × 10
−2 

T.  

 

For F qv B= ×
f ff

to be in the opposite direction of F qE=
f f

 we must have v B×
ff

 in the 

opposite direction from E
f

 which points in the +y direction, as discussed in part (a).   

Since the velocity is in the +x direction, then (using the right-hand rule) we conclude that 

the magnetic field must point in the +z direction ( i
^
 × k

^
  = −j

^
 ). In unit-vector notation, we 

have 2 ˆ(2.50 10  T)kB −= ×
f

. 



 

13. We use Eq. 28-12 to solve for V: 

 

( )( )
( )( )( )

6

28 3 19

23A 0.65 T
7.4 10 V.

8.47 10 m 150 m 1.6 10 C

iB
V

nle µ
−

−
= = = ×

× ×
 



 

14. For a free charge q inside the metal strip with velocity 
f
v  we have 

f f f f
F q E v B= + ×d i . 

We set this force equal to zero and use the relation between (uniform) electric field and 

potential difference. Thus, 

 

v
E

B

V V d

B

x y xy= =
−

=
×

× ×
=

−

− −

390 10

120 10 0850 10
0 382

9

3 2

.

. .
. .

V

T m
m s

c h
c hc h  



  

 

15. (a) We seek the electrostatic field established by the separation of charges (brought on 

by the magnetic force). With Eq. 28-10, we define the magnitude of the electric field as 

 

( )( )| | | | 20.0 m/s 0.030 T 0.600 V/mE v B= = =
f f

. 

 

Its direction may be inferred from Figure 28-8; its direction is opposite to that defined by f f
v B× . In summary,  

ˆ(0.600V m)kE = −
f

 

 

which insures that 
f f f f
F q E v B= + ×d i  vanishes. 

 

(b) Eq. 28-9 yields (0.600 V/m)(2.00 m) 1.20 VV Ed= = = . 



 

16. We note that B 
→

 must be along the x axis because when the velocity is along that axis 

there is no induced voltage.  Combining Eq. 28-7 and Eq. 28-9 leads to  

 

V V
d

E vB
= =  

 

where one must interpret the symbols carefully to ensure that ,d v
f f

 and B
f

 are mutually 

perpendicular.  Thus, when the velocity if parallel to the y axis the absolute value of the 

voltage (which is considered in the same “direction” as d
f

) is 0.012 V, and  

 

0.012 V
0.20 m

(3.0 m/s)(0.020 T)
zd d= = = . 

 

On the other hand, when the velocity if parallel to the z-axis the absolute value of the 

appropriate voltage is 0.018 V, and  

 

0.018 V
0.30 m

(3.0 m/s)(0.020 T)
yd d= = = . 

Thus, our answers are 

 

(a) dx = 25 cm (which we arrive at “by elimination” – since we already have figured out 

dy and dz ), 

 

(b) dy = 30 cm, and 

 

(c) dz  = 20 cm . 



 

17. (a) From K m ve=
1

2

2  we get 

 

v
K

me

= =
× ×

×
= ×

−

−

2 2 120 10 160 10

9 11 10
2 05 10

3 19

31

7
. .

.
. .

eV eV J

kg
m s

c hc h
 

 

(b) From /er m v qB=  we get 

 

B
m v

qr

e= =
× ×

× ×
= ×

−

− −
−

911 10 2 05 10

160 10 250 10
4 67 10

31 7

19 2

4
. .

. .
.

kg m s

C m
T.

c hc h
c hc h  

 

(c) The “orbital” frequency is 

 

f
v

r
= =

×
×

= ×
−2

2 07 10

2 10
131 10

7

2

7

π π 25.0
.

.
m s

m
Hz.c h  

 

(d) T = 1/f = (1.31 × 10
7
 Hz)

–1
 = 7.63 × 10

–8
 s. 



 

18. (a) The accelerating process may be seen as a conversion of potential energy eV into 

kinetic energy. Since it starts from rest, 
1

2

2m v eVe =  and 

 

( )( )19

7

31

2 1.60 10 C 350 V2
1.11 10 m s.

9.11 10 kge

eV
v

m

−

−

×
= = = ×

×
 

 

(b) Eq. 28-16 gives 

 

( )( )
( )( )

31 7

4

19 3

9.11 10 kg 1.11 10 m s
3.16 10 m.

1.60 10 C 200 10 T

em v
r

eB

−
−

− −

× ×
= = = ×

× ×
 



 

19. From Eq. 28-16, we find 

 

( )( )
( )( )

31 6

5

19

9.11 10 kg 1.30 10 m s
2.11 10 T.

1.60 10 C 0.350 m

em v
B

er

−
−

−

× ×
= = = ×

×
 



  

2mv mK
r

qB qB
= =  

 

where 2 / 2K mv=  is the kinetic energy of the particle. Thus, we see that K = (rqB)
2
/2m 

∝ q
2
m

–1
.  

 

(a) ( ) ( ) ( ) ( )2 2
2 1 4 1.0MeV;p p p p pK q q m m K K Kα α α= = = =  

 

(b) ( ) ( ) ( ) ( )2 2
1 1 2 1.0 MeV 2 0.50MeV.d d p p d p pK q q m m K K= = = =  

 

20. Using Eq. 28-16, the radius of the circular path is 

 



 

21. (a) The frequency of revolution is 

 

f
Bq

me

= =
× ×

×
= ×

− −

−2

350 10 160 10

2 911 10
9 78 10

6 19

31

5

π π

. .

.
.

T C

kg
Hz.

c hc h
c h  

 

(b) Using Eq. 28-16, we obtain 

 

r
m v

qB

m K

qB

e e= = =
× ×

× ×
=

− −

− −

2 2 911 10 100 160 10

160 10 350 10
0 964

31 19

19 6

. .

. .
. .

kg eV J eV

C T
m

c hb gc h
c hc h  

 



22. Combining Eq. 28-16 with energy conservation (eV = 
1

2
 mev

2
 in this particular 

application) leads to the expression 

 

r = 
me

e B
 

2eV

 me
 

 

which suggests that the slope of the r versus V  graph should be 22 /em eB . From Fig. 

28-39, we estimate the slope to be 5 × 10
−5 

in SI units. Setting this equal to 22 /em eB  

and solving we find B = 6.7 × 10
−2 

T. 



 

23. Let ξ stand for the ratio ( / | |m q ) we wish to solve for. Then Eq. 28-17 can be written 

as T = 2πξ/B.   Noting that the horizontal axis of the graph (Fig. 28-40) is inverse-field 

(1/B) then we conclude (from our previous expression) that the slope of the line in the 

graph must be equal to 2πξ.  We estimate that slope as 7.5 × 10
−9 

T
.
s, which implies   

 

 9/ | | 1.2 10  kg/Cm qξ −= = × . 
 



24. With the 
f
B  pointing “out of the page,” we evaluate the force (using the right-hand 

rule) at, say, the dot shown on the left edge of the particle’s path, where its velocity is 

down. If the particle were positively charged, then the force at the dot would be toward 

the left, which is at odds with the figure (showing it being bent towards the right). 

Therefore, the particle is negatively charged; it is an electron. 

 

(a) Using Eq. 28-3 (with angle φ equal to 90°), we obtain 

 

6| |
4.99 10 m s.

| |

F
v

e B
= = ×

f
f  

 

(b) Using either Eq. 28-14 or Eq. 28-16, we find r = 0.00710 m. 

 

(c) Using Eq. 28-17 (in either its first or last form) readily yields T = 8.93 × 10
–9

 s. 



 

25. (a) Using Eq. 28-16, we obtain 

 

v
rqB

m

eB
= = =

× ×

×
= ×

− −

−
α

2

4 00

2 4 50 10 160 10 120

4 00 166 10
2 60 10

2 19

27

6

.

. . .

. .
. .

u

m C T

u kg u
m s

c hc hb g
b gc h  

 

(b) T = 2πr/v = 2π(4.50 × 10
–2

 m)/(2.60 × 10
6
 m/s) = 1.09 × 10

–7
 s. 

 

(c) The kinetic energy of the alpha particle is 

 

K m v= =
× ×

×
= ×

−

−

1

2

4 00 166 10 2 60 10

2 160 10
140 102

27 6
2

19

5

α

. . .

.
. .

u kg u m s

J eV
eV

b gc hc h
c h  

 

(d) ∆V = K/q = 1.40 × 10
5
 eV/2e = 7.00 × 10

4
 V. 

 



26. Using 2 /F mv r=  (for the centripetal force) and 2 / 2K mv= , we can easily derive 

the relation 

K = 
1

2
 Fr . 

 

With the values given in the problem, we thus obtain K = 2.09 × 10
−22 

J. 



 

27. Reference to Fig. 28-11 is very useful for interpreting this problem.  The distance 

traveled parallel to B 
→

 is  d|| =  v||T  = v||(2πme /|q|B) using Eq. 28-17.  Thus, 

 

v|| =  
d|| e B

 2 π me
  = 50.3 km/s 

 

using the values given in this problem.  Also, since the magnetic force is |q|Bv⊥, then we 

find v⊥ = 41.7 km/s.  The speed is therefore v = v⊥
2
 + v||

2 
  = 65.3 km/s.  

 



28. We consider the point at which it enters the field-filled region, velocity vector 

pointing downward. The field points out of the page so that 
f f
v B×  points leftward, which 

indeed seems to be the direction it is “pushed’’; therefore, q > 0 (it is a proton). 

 

(a) Eq. 28-17 becomes p2 / | |T m e Bπ=
f

, or  

 

( ) ( )
( )

27

9

19

2 1.67 10
2 130 10

1.60 10 | |B

−
−

−

π ×
× =

×
f  

which yields 
f
B = 0 252. T . 

 

(b) Doubling the kinetic energy implies multiplying the speed by 2 . Since the period T 

does not depend on speed, then it remains the same (even though the radius increases by a 

factor of 2 ). Thus, t = T/2 = 130 ns. 



  

 

29. (a) If v is the speed of the positron then v sin φ is the component of its velocity in the 

plane that is perpendicular to the magnetic field. Here φ is the angle between the velocity 

and the field (89°). Newton’s second law yields eBv sin φ = me(v sin φ)
2
/r, where r is the 

radius of the orbit. Thus r = (mev/eB) sin φ. The period is given by 

 

( )
( )( )

31

10

19

2 9.11 10 kg22
3.58 10 s.

sin 1.60 10 C 0.100T

emr
T

v eBφ

−
−

−

π ×ππ
= = = = ×

×
 

 

The equation for r is substituted to obtain the second expression for T. 

 

(b) The pitch is the distance traveled along the line of the magnetic field in a time interval 

of one period. Thus p = vT cos φ. We use the kinetic energy to find the speed: K m ve= 1
2

2  

means 

( )( )3 19

7

31

2 2.00 10 eV 1.60 10 J eV2
2.65 10 m s .

9.11 10 kge

K
v

m

−

−

× ×
= = = ×

×
 

 

Thus, 

( )( )7 10 42.65 10 m s 3.58 10 s cos 89 1.66 10 m .p − −= × × ° = ×  

 

(c) The orbit radius is 

 

( )( )
( )( )

31 7

3

19

9.11 10 kg 2.65 10 m s sin 89sin
1.51 10 m .

1.60 10 C 0.100 T

em v
R

eB

φ
−

−
−

× × °
= = = ×

×
 



 

30. (a)  Eq. 3-20 gives φ = cos
−1

(2/19) = 84°. 

 

(b) No, the magnetic field can only change the direction of motion of a free 

(unconstrained) particle, not its speed or its kinetic energy. 

 

(c) No, as reference to to Fig. 28-11 should make clear. 

 

(d) We find v⊥ = v sin φ = 61.3 m/s, so r = mv⊥ /eB =  5.7 nm. 



 

31. (a) We solve for B from m = B
2
qx

2
/8V (see Sample Problem 28-3): 

 

B
Vm

qx
=

8
2

.  

 

We evaluate this expression using x = 2.00 m: 

 

B =
× ×

×
=

−

−

8 100 10 3 92 10

3 20 10 2 00
0 495

3 25

19 2

V kg

C m
T

c hc h
c hb g

.

. .
. .  

 

(b) Let N be the number of ions that are separated by the machine per unit time. The 

current is i = qN and the mass that is separated per unit time is M = mN, where m is the 

mass of a single ion. M has the value 

 

M =
×

= ×
−

−100 10

3600
2 78 10

6
8kg

s
kg s. .  

Since N = M/m we have 

 

i
qM

m
= =

× ×

×
= ×

− −

−
−

320 10 2 78 10

392 10
2 27 10

19 8

25

2
. .

.
. .

C kg s

kg
A

c hc h
 

 

(c) Each ion deposits energy qV in the cup, so the energy deposited in time ∆t is given by 

 

E NqV t
iqV

q
t iV t= = =∆ ∆ ∆ .  

For ∆t = 1.0 h, 

 

E = × × = ×−2 27 10 100 10 3600 817 102 3 6. . .A V s Jc hc hb g  

 

To obtain the second expression, i/q is substituted for N. 

 



  

32. Eq. 28-17 gives T = 2πme /eB.  Thus, the total time is 

 

⎝⎜
⎛

⎠⎟
⎞T 

 2 1
 + tgap + ⎝⎜

⎛
⎠⎟
⎞T 

 2 2
 = 

πme 

e ⎝⎜
⎛

⎠⎟
⎞1

B1
 + 

1

B2
  +  tgap . 

 

The time spent in the gap (which is where the electron is accelerating in accordance with 

Eq. 2-15) requires a few steps to figure out: letting t = tgap then we want to solve 

 

 2 20
0

21 1
0.25 m

2 2e e

K e V
d v t at t t

m m d

⎛ ⎞∆
= + ⇒ = + ⎜ ⎟

⎝ ⎠
 

  

for t.  We find in this way that the time spent in the gap is t ≈ 6 ns. Thus, the total time is 

8.7 ns.   



 

33. Each of the two particles will move in the same circular path, initially going in the 

opposite direction. After traveling half of the circular path they will collide. Therefore, 

using Eq. 28-17, the time is given by  

 

 
( )

( )
31

9

3 19

9.11 10 kg
5.07 10 s.

2 (3.53 10 T) 1.60 10 C

T m
t

Bq

ππ
−

−
− −

×
= = = = ×

× ×
 



 

34. Let cosv v θ=E . The electron will proceed with a uniform speed v||  in the direction of 
f
B  while undergoing uniform circular motion with frequency f in the direction 

perpendicular to B:  f = eB/2πme. The distance d is then 

 

( ) ( )( )( )
( )( )

7 31

||

|| 19 3

2 1.5 10 m s 9.11 10 kg cos10cos 2
0.53m.

1.60 10 C 1.0 10 T

e
v v m

d v T
f eB

θ −

− −

π × × °π
= = = = =

× ×
 



Its average energy during the accelerating process is 8.3 MeV. The radius of the orbit is 

given by r = mv/qB, where v is the deuteron’s speed. Since this is given by v K m= 2 , 

the radius is 

r
m

qB

K

m qB
Km= =

2 1
2 .  

 

For the average energy 

 

r =
× × ×

×
=

− −

−

2 8 3 10 160 10 334 10

160 10 157
0 375

6 19 27

19

. . .

. .
.

eV J eV kg

C T
m .

c hc hc h
c hb g  

 

The total distance traveled is about  

 

n2πr = (104)(2π)(0.375) = 2.4 × 10
2
 m. 

 

35. We approximate the total distance by the number of revolutions times the 

circumference of the orbit corresponding to the average energy. This should be a good 

approximation since the deuteron receives the same energy each revolution and its period 

does not depend on its energy. The deuteron accelerates twice in each cycle, and each 

time it receives an energy of qV = 80 × 10
3
 eV. Since its final energy is 16.6 MeV, the 

number of revolutions it makes is 

 

n =
×
×

=
16 6 10

2 80 10
104

6

3

.
.

eV

eVc h  

 



 

36. (a) Using Eq. 28-23 and Eq. 28-18, we find 

 

( )( )
( )

19

7

osc 27

1.60 10 C 1.20T
1.83 10 Hz.

2 2 1.67 10 kgp

qB
f

m

−

−

×
= = = ×

π π ×
 

 

(b) From r m v qB m k qBp P= = 2  we have  

 

( ) ( )( )( )
( )( )

2
192

7

27 19

0.500m 1.60 10 C 1.20T
1.72 10 eV.

2 2 1.67 10 kg 1.60 10 J eVp

rqB
K

m

−

− −

⎡ ⎤×⎣ ⎦= = = ×
× ×

 



 

37. (a)  By conservation of energy (using qV for the potential energy which is converted 

into kinetic form) the kinetic energy gained in each pass is 200 eV. 

 

(b) Multiplying the part (a) result by n = 100 gives ∆K = n(200 eV) = 20.0 keV. 

 

(c) Combining Eq. 28-16 with the kinetic energy relation (n(200 eV) = mpv
2
/2 in this 

particular application) leads to the expression 

 

r = 
mp

e B
 

2n(200 eV)

mp
 . 

 

which shows that r is proportional to n . Thus, the percent increase defined in the 

problem in going from n = 100 to n = 101 is 101/100  – 1  = 0.00499 or 0.499%.  



( )6 27

19

2  Hz) 1.67 10 kg2
0.787T.

1.60 10 C

pfm
B

q

π −

−

π(12.0×10 ×
= = =

×
 

 

(b) The kinetic energy is given by 

 

( ) ( )22 27 2 2 6 21
2

12 6

1 1
2 1.67 10 kg 4 (0.530 m) (12.0 10  Hz)

2 2

1.33 10 J 8.34 10 eV.

K mv m Rf π−

−

= = π = × ×

= × = ×
 

 

(c) The required frequency is 

 

( )( )
( )

19

7

27

1.60 10 C 1.57T
2.39 10 Hz.

2 2 1.67 10 kgp

qB
f

m

−

−

×
= = = ×

π π ×
 

 

(d) The kinetic energy is given by 

 

( ) ( )22 27 2 2 7 21
2

12 7

1 1
2 1.67 10 kg 4 (0.530 m) (2.39 10  Hz)

2 2

5.3069 10 J 3.32 10 eV.

K mv m Rf π−

−

= = π = × ×

= × = ×
 

 

38. (a) The magnitude of the field required to achieve resonance is 

 



 

39. (a) The magnetic force on the wire must be upward and have a magnitude equal to the 

gravitational force mg on the wire. Since the field and the current are perpendicular to 

each other the magnitude of the magnetic force is given by FB = iLB, where L is the 

length of the wire. Thus, 

 

( )( )
( )( )

20.0130kg 9.8m s
0.467 A.

0.620m 0.440T

mg
iLB mg i

LB
= ⇒ = = =  

 

(b) Applying the right-hand rule reveals that the current must be from left to right. 



  

 

40. (a) From symmetry, we conclude that any x-component of force will vanish 

(evaluated over the entirety of the bent wire as shown). By the right-hand rule, a field in 

the "k  direction produces on each part of the bent wire a y-component of force pointing in 

the −"j  direction; each of these components has magnitude 

 

| | | | sin 30 (2.0 A)(2.0 m)(4.0 T)sin 30 8 N.yF i B= ° = ° =
f

`  

 

Therefore, the force on the wire shown in the figure is ˆ( 16j) N− . 

 

(b) The force exerted on the left half of the bent wire points in the − "k  direction, by the 

right-hand rule, and the force exerted on the right half of the wire points in the + "k  

direction. It is clear that the magnitude of each force is equal, so that the force (evaluated 

over the entirety of the bent wire as shown) must necessarily vanish. 

 



41. (a) The magnitude of the magnetic force on the wire is given by FB = iLB sin φ, 

where i is the current in the wire, L is the length of the wire, B is the magnitude of the 

magnetic field, and φ is the angle between the current and the field. In this case φ = 70°. 

Thus, 

FB = × °=−5000 100 60 0 10 70 28 26A m T Nb gb gc h. sin . . 

 

(b) We apply the right-hand rule to the vector product 
f f f
F iL BB = ×  to show that the force 

is to the west. 



 

42. The magnetic force on the (straight) wire is 

 

( ) ( ) ( ) ( )sin 13.0A 1.50T 1.80m sin 35.0 20.1N.BF iBL θ= = ° =  



 

43. The magnetic force on the wire is 

 

( ) ( )
( ) ( ) ( ) ( )

( )3 3

ˆ ˆ ˆ ˆ ˆi j k j k

ˆ ˆ0.500A 0.500m 0.0100T j 0.00300T k

ˆ ˆ2.50 10 j 0.750 10 k N.

B y z z yF iL B iL B B iL B B

− −

= × = × + = − +

⎡ ⎤= − +⎣ ⎦

= − × + ×

f f f

 



 

44. (a) The magnetic force on the wire is FB = idB, pointing to the left. Thus  

 

 

3 2 2

5

2

(9.13 10 A)(2.56 10 m)(5.63 10 T)(0.0611s)

2.41 10 kg

3.34 10 m/s.

BF t idBt
v at

m m

− − −

−

−

× × ×
= = = =

×

= ×

 

 

(b) The direction is to the left (away from the generator). 



  

Then, by the right-hand rule, a downward component (Bd) of 
f
B  will produce the 

eastward Fx, and a westward component (Bw) will produce the upward Fy. Specifically, 

 

, .x d y wF iLB F iLB= =  

 

Considering forces along a vertical axis, we find 

 

N y wF mg F mg iLB= − = −  

 

so that 

f f mg iLBs s w= = −, .max µ b g  
 

It is on the verge of motion, so we set the horizontal acceleration to zero: 

 

( )0 .x d s wF f iLB mg iLBµ− = ⇒ = −  

 

The angle of the field components is adjustable, and we can minimize with respect to it. 

Defining the angle by Bw = B sinθ and Bd = B cosθ (which means θ is being measured 

from a vertical axis) and writing the above expression in these terms, we obtain 

 

( ) ( )
cos sin

cos sin

s
s

s

mg
iLB mg iLB B

iL

µθ µ θ
θ µ θ

= − ⇒ =
+

 

 

which we differentiate (with respect to θ) and set the result equal to zero. This provides a 

determination of the angle: 

 

θ µ= = = °− −tan tan . .1 1 0 60 31sb g b g  

Consequently, 

( )( )
( )( )( )

2

min

0.60 1.0 kg 9.8m s
0.10T.

50 A 1.0 m cos31 0.60sin 31
B = =

° + °
 

 

(b) As shown above, the angle is ( ) ( )1 1tan tan 0.60 31 .sθ µ− −= = = °  

 

45. (a) The magnetic force must push horizontally on the rod to overcome the force of 

friction, but it can be oriented so that it also pulls up on the rod and thereby reduces both 

the normal force and the force of friction. The forces acting on the rod are: 
f
F ,  the force 

of the magnetic field; mg, the magnitude of the (downward) force of gravity; NF
f

, the 

normal force exerted by the stationary rails upward on the rod; and 
f
f ,  the (horizontal) 

force of friction. For definiteness, we assume the rod is on the verge of moving eastward, 

which means that 
f
f  points westward (and is equal to its maximum possible value µsFN). 

Thus, 
f
F  has an eastward component Fx and an upward component Fy, which can be 

related to the components of the magnetic field once we assume a direction for the 

current in the rod. Thus, again for definiteness, we assume the current flows northward. 



 

46. We use dF idL BB

f f f
= × , where dL dx

f
= "i and

f
B B Bx y= +" "i j . Thus,  

 

( )
( ) ( ) ( )( )3.0

2

1.0

ˆ ˆ ˆ ˆi i j k

ˆ ˆ5.0A 8.0 m mT k ( 0.35N)k.

f f

i i

x x

B x y y
x x

F idL B idx B B i B dx

x dx

= × = × + =

= − ⋅ = −

∫ ∫ ∫

∫

f f f

 

 



47. The applied field has two components: Bx > 0  and Bz > 0. Considering each straight-

segment of the rectangular coil, we note that Eq. 28-26 produces a non-zero force only 

for the component of 
f
B  which is perpendicular to that segment; we also note that the 

equation is effectively multiplied by N = 20 due to the fact that this is a 20-turn coil. 

Since we wish to compute the torque about the hinge line, we can ignore the force acting 

on the straight-segment of the coil which lies along the y axis (forces acting at the axis of 

rotation produce no torque about that axis). The top and bottom straight-segments 

experience forces due to Eq. 28-26 (caused by the Bz component), but these forces are (by 

the right-hand rule) in the ±y directions and are thus unable to produce a torque about the 

y axis. Consequently, the torque derives completely from the force exerted on the 

straight-segment located at x = 0.050 m, which has length L = 0.10 m and is shown in 

Figure 28-47 carrying current in the –y direction. Now, the Bz component will produce a 

force on this straight-segment which points in the –x direction (back towards the hinge) 

and thus will exert no torque about the hinge. However, the Bx component (which is equal 

to B cosθ where B = 0.50 T and θ = 30°) produces a force equal to NiLBx which points 

(by the right-hand rule) in the +z direction. Since the action of this force is perpendicular 

to the plane of the coil, and is located a distance x away from the hinge, then the torque 

has magnitude 

 

( )( ) ( )( )( )( )( )cos 20 0.10 A 0.10 m 0.050 m 0.50 T cos30

0.0043 N m .
xNiLB x NiLxBτ θ= = = °

= ⋅
 

 

Since ,r Fτ = ×
f ff

 the direction of the torque is –y. In unit-vector notation, the torque is 
3 ˆ( 4.3 10  N m)jτ −= − × ⋅

f
 

 

An alternative way to do this problem is through the use of Eq. 28-37. We do not show 

those details here, but note that the magnetic moment vector (a necessary part of Eq. 28-

37) has magnitude 
f
µ = =NiA 20 010 0 0050b gb gc h. .A m2  

 

and points in the –z direction. At this point, Eq. 3-30 may be used to obtain the result for 

the torque vector. 



  

axis. We take 
f
B  to be in the same direction as that of the current flow in the hypotenuse. 

Then, with B B= =
f

0 0750. T,  

 

cos 0.0692T , sin 0.0288T.x yB B B Bθ θ= − = − = =  

 

(a) Eq. 28-26 produces zero force when 
f f
L B||  so there is no force exerted on the 

hypotenuse of length 130 cm.  

 

(b) On the 50 cm side, the Bx component produces a force i By x` "k,  and there is no 

contribution from the By component. Using SI units, the magnitude of the force on the ` y  

side is therefore 

4 00 0500 0 0692 0138. . . .A m T N.b gb gb g =  

 

(c) On the 120 cm side, the By component produces a force i Bx y` "k,  and there is no 

contribution from the Bx component. The magnitude of the force on the `x  side is also  

 

4 00 120 0 0288 0138. . . .A m T N.b gb gb g =  

 

(d) The net force is 

i B i By x x y` `" " ,k k+ = 0  

 

keeping in mind that Bx < 0 due to our initial assumptions. If we had instead assumed 
f
B  

went the opposite direction of the current flow in the hypotenuse, then Bx > 0  but By < 0 

and a zero net force would still be the result. 

 

48. We establish coordinates such that the two sides of the right triangle meet at the 

origin, and the ` y = 50  cm side runs along the +y axis, while the `x = 120  cm side runs 

along the +x axis. The angle made by the hypotenuse (of length 130 cm) is  

 

θ = tan
–1

 (50/120) = 22.6°, 

 

relative to the 120 cm side. If one measures the angle counterclockwise from the +x 

direction, then the angle for the hypotenuse is 180° – 22.6° = +157°. Since we are only 

asked to find the magnitudes of the forces, we have the freedom to assume the current is 

flowing, say, counterclockwise in the triangular loop (as viewed by an observer on the +z 



3 3

7

sin 2 sin 2 (0.018 m)(4.6 10  A)(3.4 10  T)sin 20

6.0 10  N.

vF iB ds aiBθ θ π − −

−

= = = × × °

= ×
∫ π

 

 

We note that i, B, and θ have the same value for every segment and so can be factored 

from the integral. 

 

49. Consider an infinitesimal segment of the loop, of length ds. The magnetic field is 

perpendicular to the segment, so the magnetic force on it has magnitude dF = iB ds. The 

horizontal component of the force has magnitude  

 

 ( cos )hdF iB dsθ=  

 

and points inward toward the center of the loop. The vertical component has magnitude 

 

( sin )ydF iB dsθ=  

 

and points upward. Now, we sum the forces on all the segments of the loop. The 

horizontal component of the total force vanishes, since each segment of wire can be 

paired with another, diametrically opposite, segment. The horizontal components of these 

forces are both toward the center of the loop and thus in opposite directions. The vertical 

component of the total force is 

 



 

50. The insight central to this problem is that for a given length of wire (formed into a 

rectangle of various possible aspect ratios), the maximum possible area is enclosed when 

the ratio of height to width is 1 (that is, when it is a square). The maximum possible value 

for the width, the problem says, is x =  4 cm (this is when the height is very close to zero, 

so the total length of wire is effectively 8 cm).  Thus, when it takes the shape of a square 

the value of x must be ¼ of 8 cm; that is, x = 2 cm when it encloses maximum area 

(which leads to a maximum torque by Eq. 28-35 and Eq. 28-37) of A = (0.020 m)
2
 = 

0.00040 m
2
.  Since N = 1 and the torque in this case is given as 4.8 × 10

−4 
N

.
m, then the 

aforementioned equations lead immediately to i = 0.0030 A. 



 

51. (a) The current in the galvanometer should be 1.62 mA when the potential difference 

across the resistor-galvanometer combination is 1.00 V. The potential difference across 

the galvanometer alone is  

 

iRg = × =−162 10 753 01223. . .A V,c hb gΩ  

 

so the resistor must be in series with the galvanometer and the potential difference across 

it must be 1.00 V – 0.122 V = 0.878V. The resistance should be  

 

R = × =−0878 162 10 5423. . .V Ab g c h Ω  

 

(b) As stated above, the resistor is in series with the galvanometer. 

 

(c) The current in the galvanometer should be 1.62 mA when the total current in the 

resistor and galvanometer combination is 50.0 mA. The resistor should be in parallel with 

the galvanometer, and the current through it should be 50.0 mA – 1.62 mA = 48.38 mA. 

The potential difference across the resistor is the same as that across the galvanometer, 

0.122 V, so the resistance should be R = × =−0122 48 38 10 2 523. . . .V Ab g c h Ω  

 

(d) As stated in (c), the resistor is in parallel with the galvanometer. 



 

52. We use 2

max max| | ,B B i r Bτ µ µ= × = =
ff

π  and note that i = qf = qv/2πr. So 

 

2 19 6 11 3

max

26

1 1
(1.60 10 C)(2.19 10 m/s)(5.29 10 m)(7.10 10 T)

2 2 2

6.58 10 N m.

qv
r B qvrB

r
τ − − −

−

⎛ ⎞= = = × × × ×⎜ ⎟
⎝ ⎠

= × ⋅

π
π  



  

 

53. We use Eq. 28-37 where 
f
µ  is the magnetic dipole moment of the wire loop and 

f
B  is 

the magnetic field, as well as Newton’s second law. Since the plane of the loop is parallel 

to the incline the dipole moment is normal to the incline. The forces acting on the 

cylinder are the force of gravity mg, acting downward from the center of mass, the 

normal force of the incline FN, acting perpendicularly to the incline through the center of 

mass, and the force of friction f, acting up the incline at the point of contact. We take the 

x axis to be positive down the incline. Then the x component of Newton’s second law for 

the center of mass yields 

mg f masin .θ − =  

 

For purposes of calculating the torque, we take the axis of the cylinder to be the axis of 

rotation. The magnetic field produces a torque with magnitude µB sinθ, and the force of 

friction produces a torque with magnitude fr, where r is the radius of the cylinder. The 

first tends to produce an angular acceleration in the counterclockwise direction, and the 

second tends to produce an angular acceleration in the clockwise direction. Newton’s 

second law for rotation about the center of the cylinder, τ = Iα, gives 

 

fr B I− =µ θ αsin .  

 

Since we want the current that holds the cylinder in place, we set a = 0 and α = 0, and use 

one equation to eliminate f from the other. The result is .mgr Bµ=  The loop is 

rectangular with two sides of length L and two of length 2r, so its area is A = 2rL and the 

dipole moment is (2 ).NiA Ni rLµ = =  Thus, 2mgr NirLB=  and 

 

i
mg

NLB
= = =

2

0 250 9 8

2 10 0 0100 0500
2 45

. .

. . .
.

kg m s
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A.

2b gc h
b gb gb g  



 

54. (a) µ = = = = ⋅NAi r iπ π 0.1502 2
2 60 0184m A A m2b g b g. . .  

 

(b) The torque is 

 

( )( )2sin 0.184 A m 12.0T sin 41.0 1.45 N m.B Bτ µ µ θ= × = = ⋅ ° = ⋅
ff

 



(b) The maximum torque occurs when the dipole moment is perpendicular to the field (or 

the plane of the loop is parallel to the field). It is given by 

 

( )( )2 3 2

max 2.30 A m 35.0 10 T 8.05 10 N m.Bτ µ − −= = ⋅ × = × ⋅  

 

55. (a) The magnitude of the magnetic dipole moment is given by NiAµ = , where N is 

the number of turns, i is the current in each turn, and A is the area of a loop. In this case 

the loops are circular, so A = πr
2
, where r is the radius of a turn. Thus 

 

i
N r

= =
⋅

=
µ
π π2 2

2 30

160 0 0190
12 7

.

.
.

A m

m
A .

2

b gb gb g  

 



 

56. From µ = NiA = iπr
2
 we get 

 

i
r

= =
×

×
= ×

µ
π π 3500 1032

22

2

98 00 10
2 08 10

.
.

J T

m
A.

c h
 



 

57. (a) The area of the loop is A = = ×1
2

230 40 6 0 10cm cm cm2b gb g . , so 

 

µ = = × = ⋅−iA 50 6 0 10 0 302. . . .A m A m2 2b gc h  

 

(b) The torque on the loop is 

 

τ µ θ= = ⋅ × °= × ⋅−B sin . sin .0 30 80 10 90 2 4 103 2A m T N m.2c hc h  



 

58. (a) The kinetic energy gained is due to the potential energy decrease as the dipole 

swings from a position specified by angle θ to that of  being aligned (zero angle) with the 

field. Thus, 

K U U B Bi f= − = − − − °µ θ µcos cos .0b g  

 

Therefore, using SI units, the angle is 

 

θ
µ

= −
F
HG
I
KJ = −

F
HG

I
KJ = °− −cos cos

.

. .
.1 11 1

0 00080

0 020 0 052
77

K

B b gb g  

 

(b) Since we are making the assumption that no energy is dissipated in this process, then 

the dipole will continue its rotation (similar to a pendulum) until it reaches an angle θ = 

77° on the other side of the alignment axis. 



 

59. (a) The magnitude of the magnetic moment vector is 

 

( ) ( ) ( )2 22 2 2

1 1 2 2 7.00A 0.200m 0.300m 2.86A m .n n

n

i A r i r iµ ⎡ ⎤= = π + π = π + = ⋅⎣ ⎦∑  

 

(b) Now, 

( ) ( ) ( )2 22 2 2

2 2 1 1 7.00A 0.300m 0.200m 1.10A m .r i r iµ ⎡ ⎤= π − π = π − = ⋅⎣ ⎦  

 



  

60. Eq. 28-39 gives U = − µ 
→

· B 
→

 = −µB cos φ, so at φ = 0 (corresponding to the lowest 

point on the graph in Fig. 28-52) the mechanical energy is  

 

K + U = Ko + (−µB) = 6.7 × 10
−4 

J + (−5 × 10
−4 

J) = 1.7 × 10
−4 

J. 

 

The turning point occurs where K = 0, which implies Uturn = 1.7 × 10
−4 

J.  So the angle 

where this takes place is given by 

 

 
4

1 1.7 10  J
cos 110

B
φ

µ

−
− ⎛ ⎞×

= − = °⎜ ⎟
⎝ ⎠

 

 

where we have used the fact (see above) that  µB = 5 × 10
−4 

J. 



 

61. The magnetic dipole moment is 
f
µ µ= −0 60 080. " . "i je j , where  

 

µ = NiA = Niπr
2
 = 1(0.20 A)π(0.080 m)

2
 = 4.02 × 10

–4
 A·m

2
. 

 

Here i is the current in the loop, N is the number of turns, A is the area of the loop, and r 

is its radius. 

 

(a) The torque is 

 
f f f
τ µ µ

µ

µ

= × = − × +

= × − × − ×

= − + −

B 0 60 080 0 25 0 30

0 60 0 30 080 0 25 080 0 30

018 0 20 0 24

. " . " . " . "

. . " " . . " " . . " "

. " . " . " .

i j i k

i k j i j k

j k i

e j e j
b gb ge j b gb ge j b gb ge j  

 

Here " " " " " "i k j, j i k,× = − × = −  and " " "j k i× =  are used. We also use " "i i = 0× . Now, we 

substitute the value for µ to obtain 

 

( )4 4 4ˆ ˆ ˆ9.7 10 i 7.2 10 j 8.0 10 k N m.τ − − −= − × − × + × ⋅
f

 

 

(b) The potential energy of the dipole is given by 

 

U B= − ⋅ = − − ⋅

= − = − = − × −

f f
µ µ

µ µ

0 60 0 80 0 25

0 60 0 25 015 6 0 10 4

. " . " . " "

. . . .

i j i + 0.30k

J.

e j e j
b gb g

 

 

Here " " , " " , " "i i i k j i = 0,⋅ = ⋅ = ⋅1 0  and " "j k⋅ = 0  are used. 



 

( ) ( ) ( ) ( )( ) ( ) ( )

( )
1 2

2

ˆ ˆ ˆ ˆ ˆ ˆk j j k 5.00A 0.300m 0.100m j 0.200m k

ˆ ˆ0.150j 0.300k A m .

iab iac ia c bµ µ µ ⎡ ⎤= + = − + = − = −⎣ ⎦

= − ⋅

f f f

 

 

62. Let a = 30.0 cm, b = 20.0 cm, and c = 10.0 cm. From the given hint, we write 



 

63. If N closed loops are formed from the wire of length L, the circumference of each 

loop is L/N, the radius of each loop is R = L/2πN, and the area of each loop is 

A R L N L N= = =π π π π2 2 2 22 4b g .   

 

(a) For maximum torque, we orient the plane of the loops parallel to the magnetic field, 

so the dipole moment is perpendicular (i.e., at a 90° angle) to the field.  

 

(b) The magnitude of the torque is then 

 

τ = =
F
HG
I
KJ =NiAB Ni

L

N
B

iL B

N
b g

2

2

2

4 4π π
.  

 

To maximize the torque, we take the number of turns N to have the smallest possible 

value, 1. Then τ = iL
2
B/4π. 

 

(c) The magnitude of the maximum torque is 

 

 
2 3 2 3

7(4.51 10  A)(0.250 m) (5.71 10 T)
1.28 10  N m

4 4

iL Bτ
π π

− −
−× ×

= = = × ⋅  



 

64. Looking at the point in the graph (Fig. 28-54(b)) corresponding to i2 = 0 (which 

means that coil 2 has no magnetic moment) we are led to conclude that the magnetic 

moment of coil 1 must be 5 2

1 2.0 10 A m .µ −= × ⋅  Looking at the point where the line 

crosses the axis (at i2 = 5.0 mA) we conclude (since the magnetic moments cancel there) 

that the magnitude of coil 2’s moment must also be 5 2

2 2.0 10 A mµ −= × ⋅  when 

2 0.0050 Ai =  which means (Eq. 28-35)  

 
5 2

3 22
2 2

2

2.0 10 A m
4.0 10 m

0.0050 A
N A

i

µ −
−× ⋅

= = = × . 

 

Now the problem has us consider the direction of coil 2’s current changed so that the net 

moment is the sum of two (positive) contributions – from coil 1 and coil 2 – specifically 

for the case that i2 = 0.007 A.  We find that total moment is  

 

µ = (2.0 × 10
−5 

A·m
2
) + (N2A2 i2) = 4.8 × 10

−5 
A·m

2
. 



 

 2ˆ ˆ( )( j) (0.0240 A m ) jNiAµ = − = − ⋅
f

. 

Then, Eq. 28-38 gives  

 
2 3 5( 0.0240 A m )( 3.00 10  T) 7.20 10  JU Bµ − −= − ⋅ = − − ⋅ − × = − ×

ff
. 

 

(b) Using the fact that j
^
 × j

^
 = 0, Eq. 28-37 leads to 

 

τ 
→

  = µ 
→

× B 
→

= (–0.0240j
^
) × (2.00 × 10

−3 
i
^
)  +  (–0.0240j

^
) × (–4.00 × 10

−3 
k
^
) 

= (4.80 × 10
−5

 k
^
  + 9.60 × 10

−5
 i
^
 ) N·m. 

 

65. (a)  Using Eq. 28-35 and Figure 28-23, we have 



 

66. The unit vector associated with the current element (of magnitude d` ) is −"j . The 

(infinitesimal) force on this element is 

 

dF i d y y
f

`= − ×" . " "j i + 0.4 je j e j0 3  

 

with SI units (and 3 significant figures) understood. Since " " "j i k× = −  and " "j j× = 0 , we 

obtain 

( )4 2ˆ ˆ0.3 k 6.00 10 N m k.dF iy d y d−= = ×
f

` `  

 

We integrate the force element found above, using the symbol ξ to stand for the 

coefficient 6.00 × 10
–4

 N/m
2
, and obtain 

 
2

0.25
5

0

0.25ˆ ˆ ˆk k (1.88 10 N)k .
2

F dF ydyξ ξ −⎛ ⎞
= = = = ×⎜ ⎟

⎝ ⎠
∫ ∫

f f
 



 

67. The period of revolution for the iodine ion is T = 2πr/v = 2πm/Bq, which gives 

 

m
BqT

= =
× × ×

×
=

− − −

−2

450 10 160 10 129 10

7 2 166 10
127

3 19 3

27π π

. . .

.

T C s

kg u
u.

c hc hc h
b gb gc h  



 

θ =
F
HG
I
KJ =

× ×

× × ×

L

N
MM

O

Q
PP = °− −

−

− −
sin sin

. .

. . .
. .1 1

31 14 2

16 6 3

911 10 4 90 10

160 10 7 20 10 830 10
0 267

m a

q vB

e
kg m s

C m s T

c hd i
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68. (a) The largest value of force occurs if the velocity vector is perpendicular to the field. 

Using Eq. 28-3,  

 

FB,max = |q| vB sin (90°) = ev B = (1.60 × 10
– 19

 C) (7.20 × 10
6
 m/s) (83.0 × 10

– 3
 T) 

= 9.56 × 10
– 14

 N. 

 

(b) The smallest value occurs if they are parallel: FB,min = |q| vB sin (0) = 0. 

 

(c) By Newton’s second law, a = FB/me = |q| vB sin θ /me, so the angle θ between 
f
v  and  f

B  is 



 

69. (a) We use 
f f f
τ µ= × B,  where 

f
µ  points into the wall (since the current goes clockwise 

around the clock). Since 
f
B  points towards the one-hour (or “5-minute’’) mark, and (by 

the properties of vector cross products) 
f
τ  must be perpendicular to it, then (using the 

right-hand rule) we find 
f
τ  points at the 20-minute mark. So the time interval is 20 min. 

 

(b) The torque is given by 

 

( )( ) ( )22 3

2

| | sin 90 6 2.0A 0.15m 70 10 T

5.9 10 N m.

B B NiAB Nir Bτ µ µ −

−

= × = ° = = π = π ×

= × ⋅

ff
 



 

70. (a) We use Eq. 28-10: vd = E/B = (10 × 10
–6

V/1.0 × 10
–2

 m)/(1.5 T) = 6.7 × 10
–4

 m/s. 

 

(b) We rewrite Eq. 28-12 in terms of the electric field: 

 

n
Bi

V e

Bi

Ed e

Bi

EAe
= = =

` `b g  

 

which we use A d= ` . In this experiment, A = (0.010 m)(10 × 10
–6

 m) = 1.0 × 10
–7

 m
2
. By 

Eq. 28-10, vd equals the ratio of the fields (as noted in part (a)), so we are led to 

 

( )( )( )
29 3

4 7 2 19

3.0 A
2.8 10 m .

6.7 10 m s 1.0 10 m 1.6 10 Cd

Bi i
n

E Ae v Ae − − −
= = = = ×

× × ×
 

 

(c) Since a drawing of an inherently 3-D situation can be misleading, we describe it in 

terms of horizontal north, south, east, west and vertical up and down directions. We 

assume 
f
B  points up and the conductor’s width of 0.010 m is along an east-west line. We 

take the current going northward. The conduction electrons experience a westward 

magnetic force (by the right-hand rule), which results in the west side of the conductor 

being negative and the east side being positive (with reference to the Hall voltage which 

becomes established). 



Thus, the distance between the spots made on the photographic plate is 

 

( )( ) ( )
( )( )( )

27 3

27 19

3

2

37 u 35u 1.66 10 kg u 2 7.3 10 V

0.50T 36u 1.66 10 kg u 1.60 10 C

8.2 10 m.

m V
x

B mq

−

− −

−

∆
∆ =

− × ×
=

× ×

= ×

 

 

71. From m = B
2
qx

2
/8V we have ∆m = (B

2
q/8V)(2x∆x). Here x Vm B q= 8 2 , which we 

substitute into the expression for ∆m to obtain 

 

∆ ∆ ∆m
B q

V

mV

B q
x B

mq

V
x=

F
HG
I
KJ =

2

28
2

8

2
.  

 



 

72. (a) Equating the magnitude of the electric force (Fe = eE) with that of the magnetic 

force (Eq. 28-3), we obtain B = E / v sin φ. The field is smallest when the sin φ factor is at 

its largest value; that is, when φ = 90°. Now, we use K mv=
1

2

2  to find the speed: 

 

v
K

me

= =
× ×

×
= ×

−

−

2 2 2 5 10 160 10

9 11 10
2 96 10

3 19

31

7
. .

.
. .

eV J eV

kg
m s

c hc h
 

Thus, 

B
E

v
= =

×
×

= × −10 10

2 96 10
34 10

3

7

4V m

m s
T.

.
.  

 

The direction of the magnetic field must be perpendicular to both the electric field ( ĵ− ) 

and the velocity of the electron ( î+ ). Since the electric force ( )eF e E= −
f f

points in the ĵ+  

direction, the magnetic force ( )BF e v B= − ×
f ff

 points in the ĵ− direction. Hence, the 

direction of the magnetic field is k̂− . In unit-vector notation, 4 ˆ( 3.4 10 T)k.B −= − ×
f

  



 

73. The fact that the fields are uniform, with the feature that the charge moves in a 

straight line, implies the speed is constant (if it were not, then the magnetic force would 

vary while the electric force could not — causing it to deviate from straight-line motion). 

This is then the situation leading to Eq. 28-7, and we find 

 

| | | |
f f
E v B= = 500V m.  

 

Its direction (so that
f f f f
F q E v B= + ×d i  vanishes) is downward, or ĵ− , in the “page” 

coordinates. In unit-vector notation, ˆ( 500 V/m)jE = −
f

 



radius of the circle is given by r = mev/eB in agreement with Eq. 28-16. The kinetic 

energy of the electron is K m ve= 1
2

2 , so v K me= 2 . Thus, 

 

r
m

eB

K

m

m K

e B

e

e

e= =
2 2

2 2
.  

 

This must be less than d, so 
2

2 2

m K

e B
de ≤ , or B

m K

e d

e≥
2

2 2
.  

 

(b) If the electrons are to travel as shown in Fig. 28-57, the magnetic field must be out of 

the page. Then the magnetic force is toward the center of the circular path, as it must be 

(in order to make the circular motion possible). 

 

  

 

74. (a) For the magnetic field to have an effect on the moving electrons, we need a non-

negligible component of 
f
B  to be perpendicular to 

f
v  (the electron velocity). It is most 

efficient, therefore, to orient the magnetic field so it is perpendicular to the plane of the 

page. The magnetic force on an electron has magnitude FB = evB, and the acceleration of 

the electron has magnitude a = v
2
/r. Newton’s second law yields evB = mev

2
/r, so the 



75. (a) Since K = qV we have ( )1
2

as 2 ,p pK K q Kα α= = or / 0.50.pK Kα =  

 

(b) Similarly, 2 ,  / 0.50.d dq K K Kα α= =  

 

(c) Since r mK qB mK q= ∝2 , we have 

 

( )
( )
2.00u

10 2cm 14cm.
1.00u

p p pd d
d p

p p d p

q r Km K
r r

m K q K
= = = =  

 

(d) Similarly, for the alpha particle, we have 

 

 
( )

( ) ( )
4.00u

10 2cm=14cm.
1.00u 2 2

p p p

p p

q r erKm K
r

m K q K e

αα α
α

α α

= = =  



 

76. The equation of motion for the proton is 

 
f f f

f

F qv B q v v v B qB v v

m a m
dv

dt

dv

dt

dv

dt

x y z z y

p p
x y z

= × = + + × = −

= = F
HG
I
KJ +
F
HG
I
KJ + FHG

I
KJ

L
NM

O
QP

" " " " " "

" " " .

i j k i j k

i j k

e j e j
 

Thus, 

0,   ,   ,
yx z

z y

dvdv dv
v v

dt dt dt
ω ω= = = −  

 

where ω = eB/m. The solution is vx = v0x, vy = v0y cos ωt and vz = –v0y sin ωt. In summary, 

we have  
f
v t v v t v tx y yb g b g b g= + −0 0 0

" cos " sin "i j kω ω . 



  

 

77. By the right-hand rule, we see that 
f f
v B×  points along −

f
k . From Eq. 28-2 f f f

F qv B= ×d i , we find that for the force to point along k̂+ , we must have q < 0. Now, 

examining the magnitudes in Eq. 28-3, we find | | | | | | sinF q v B φ=
f f

, or 

 

( ) ( )0.48 N | | 4000 m/s 0.0050 T sin 35q= °  

 

which yields |q| = 0.040 C. In summary, then, q = –40 mC. 

 



78. Using Eq. 28-16, the charge-to-mass ratio is 
q v

m B r
=

′
. With the speed of the ion 

giving by /v E B= (using Eq. 28-7), the expression becomes 

 

/q E B E

m B r BB r
= =

′ ′
. 



 

79. (a) We use Eq. 28-2 and Eq. 3-30: 

 

( ) ( ) ( ) ( )( )
)( ( )( ) ( ) ( )( )(

( )( ) ( ) ( )( ) ( )( ) ( )( )( ) )
( ) ( )

19

21 22

ˆ ˆ ˆi j k

ˆ1.60 10 4 0.008 6 0.004 i+

ˆ ˆ6 0.002 2 0.008 j 2 0.004 4 0.002 k

ˆ ˆ1.28 10 i 6.41 10 j

y z z y z x x z x y y xF qv B e v B v B v B v B v B v B

−

− −

= × = + − + − + −

= × − − −

− − − + − − −

= × + ×

f ff

 

 

with SI units understood. 

 

(b) By definition of the cross product, 
f f
v F⊥ . This is easily verified by taking the dot 

(scalar) product of 
f
v  with the result of part (a), yielding zero, provided care is taken not 

to introduce any round-off error.  

 

(c) There are several ways to proceed. It may be worthwhile to note, first, that if Bz were 

6.00 mT instead of 8.00 mT then the two vectors would be exactly antiparallel. Hence, 

the angle θ between 
f
B  and 

f
v  is presumably “close” to 180°. Here, we use Eq. 3-20: 

 

 1 1 68ș cos cos 173
| || | 56 84

v B

v B

− −⎛ ⎞⋅ −⎛ ⎞
= = = °⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠

f if
ff  



E nevC d= ρ .  

 

Now, regarding the Hall effect, we use Eq. 28-10 to write E = vdB. Dividing one equation 

by the other, we get E/Ec = B/neρ. 

 

(b) Using the value of copper’s resistivity given in Chapter 26, we obtain 

 

( )( )( )
3

28 3 19 8

0.65 T
2.84 10 .

8.47 10 m 1.60 10 C 1.69 10 mc

E B

E neρ
−

− −
= = = ×

× × × Ω⋅
 

 

80. (a) In Chapter 27, the electric field (called EC in this problem) which “drives” the 

current through the resistive material is given by Eq. 27-11, which (in magnitude) reads 

EC = ρJ. Combining this with Eq. 27-7, we obtain 

 



 

81. (a) The textbook uses “geomagnetic north” to refer to Earth’s magnetic pole lying in 

the northern hemisphere. Thus, the electrons are traveling northward. The vertical 

component of the magnetic field is downward. The right-hand rule indicates that 
f f
v B×  is 

to the west, but since the electron is negatively charged (and 
f f f
F qv B= × ), the magnetic 

force on it is to the east. 

 

We combine F = mea with F = evB sin φ. Here, B sin φ represents the downward 

component of Earth’s field (given in the problem). Thus, a = evB / me. Now, the electron 

speed can be found from its kinetic energy. Since K mv=
1

2

2 ,   

 

v
K

me

= =
× ×

×
= ×

−

−

2 2 12 0 10 160 10

9 11 10
6 49 10

3 19

31

7
. .

.
. .

eV J eV

kg
m s

c hc h
 

Therefore,  

 

( ) ( ) ( )19 7 6

2 214 14

31

1.60 10 C 6.49 10 m s 55.0 10 T
6.27 10 m s 6.3 10 m s .

9.11 10 kge

evB
a

m

− −

−

× × ×
= = = × ≈ ×

×
 

(b) We ignore any vertical deflection of the beam which might arise due to the horizontal 

component of Earth’s field. Technically, then, the electron should follow a circular arc. 

However, the deflection is so small that many of the technicalities of circular geometry 

may be ignored, and a calculation along the lines of projectile motion analysis (see 

Chapter 4) provides an adequate approximation: 

 

9

7

0.200m
3.08 10 s

6.49 10 m s

x
x vt t

v

−∆
∆ = ⇒ = = = ×

×
. 

 

Then, with our y axis oriented eastward, 

 

( ) ( )2
2 14 91 1

6.27 10 3.08 10 0.00298m 0.0030 m.
2 2

y at −∆ = = × × = ≈  

 



  

82. (a) We are given 5ˆ ˆi (6 10 T)ixB B −= = ×
f

, so that 
f f
v B v By x× = − "k  where vy = 4×10

4
 m/s. 

We note that the magnetic force on the electron is − −e v By xb ge j"k  and therefore points in 

the + "k  direction, at the instant the electron enters the field-filled region. In these terms, 

Eq. 28-16 becomes 

r
m v

e B

e y

x

= = 0 0038. m.  

 

(b) One revolution takes T = 2πr/vy = 0.60 µs, and during that time the “drift” of the 

electron in the x direction (which is the pitch of the helix) is ∆x = vxT = 0.019 m where vx 

= 32 × 10
3
 m/s. 

 

(c) Returning to our observation of force direction made in part (a), we consider how this 

is perceived by an observer at some point on the –x axis. As the electron moves away 

from him, he sees it enter the region with positive vy (which he might call “upward’’) but 

“pushed” in the +z direction (to his right). Hence, he describes the electron’s spiral as 

clockwise. 



 

83. Using Eq. 28-16, the radius of the circular path is 

 

2mv mK
r

qB qB
= =  

 

where 2 / 2K mv=  is the kinetic energy of the particle. Thus, we see that r mK qB∞ .  

 

(a) 
2.0u

2 1.4 ,
1.0u

pd d d

p p p d

qr m K e

r m K q e
= = = ≈ and  

 

(b) 
4.0u

1.0.
1.0u 2

p

p p p

qr m K e

r m K q e

α α α

α

= = =  



 

84. Letting Bx = By = B1 and Bz = B2 and using Eq. 28-2 ( F qv B= ×
f ff

) and Eq. 3-30, we 

obtain (with SI units understood) 

 

( ) ( ) ( )( )2 1 1 2 1 1
ˆ ˆ ˆ ˆ ˆ ˆ4i 20j 12k 2 4 6 i 6 2 j 2 4 k .B B B B B B− + = − + − + −  

 

Equating like components, we find B1 = –3 and B2 = –4. In summary, 

 

( )ˆ ˆ ˆ3.0i 3.0 j 4.0k T.B = − − −
f

 

 



85. The contribution to the force by the magnetic field ( )ˆ ˆi ( 0.020 T)ixB B= = −
f

 is given 

by Eq. 28-2: 

 

( ) ( ) ( )( )
( )

ˆ ˆ ˆ ˆ ˆ ˆ17000i i 11000j i 7000k i

ˆ ˆ220k 140j

B x x xF qv B q B B B

q

= × = × + − × + ×

= − −

f ff

 

 

in SI units. And the contribution to the force by the electric field ( )ˆ ˆj 300j V/myE E= =
if

 is 

given by Eq. 23-1:
f
F qEE y= "j . Using q = 5.0 × 10

–6
 C, the net force on the particle is  

 
ˆ ˆ(0.00080j 0.0011k) N.F = −

f
 

 

 

 



 

86. The current is in the +"i  direction. Thus, the "i  component of 
f
B  has no effect, and 

(with x in meters) we evaluate 

 

( ) ( ) ( )
3

1
2 2

0

1ˆ ˆ ˆ ˆ3.00A 0.600T m i j 1.80 A T m k ( 0.600N)k.
3

F x dx
⎛ ⎞

= − × = − ⋅ ⋅ = −⎜ ⎟
⎝ ⎠

∫
f

 



 

87. We replace the current loop of arbitrary shape with an assembly of small adjacent 

rectangular loops filling the same area which was enclosed by the original loop (as nearly 

as possible). Each rectangular loop carries a current i flowing in the same sense as the 

original loop. As the sizes of these rectangles shrink to infinitesimally small values, the 

assembly gives a current distribution equivalent to that of the original loop. The 

magnitude of the torque ∆
f
τ  exerted by 

f
B  on the nth rectangular loop of area ∆An is given 

by ∆ ∆τ θn nNiB A= sin .  Thus, for the whole assembly 

 

sin .n n

n n

NiB A NiABτ τ θ= ∆ = ∆ =∑ ∑  

 

 

 



Chapter 29 
 



 

 

 

 

 

1. (a) The field due to the wire, at a point 8.0 cm from the wire, must be 39 µT and must 

be directed due south. Since B i r= µ 0 2 π ,  

 

i
rB

= =
×

× ⋅
=

−
2 2 39 10

4
16

0

6
π π 0.080

π 10−7µ
m T

T m A
A.

b gc h
 

 

(b) The current must be from west to east to produce a field which is directed southward 

at points below it. 
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2. The straight segment of the wire produces no magnetic field at C (see the straight 

sections discussion in Sample Problem 29-1). Also, the fields from the two semi-circular 

loops cancel at C (by symmetry). Therefore, BC = 0. 



 

3. (a) The magnitude of the magnetic field due to the current in the wire, at a point a 

distance r from the wire, is given by 

B
i

r
=

µ 0

2π
.  

With r = 20 ft = 6.10 m, we have 

 

B =
× ⋅

= × =−
4 100

2
33 10 336

π 10

π 6.10

−7 T m A A

m
T T.

c hb g
b g . . µ  

 

(b) This is about one-sixth the magnitude of the Earth’s field. It will affect the compass 

reading. 



 

4. Eq. 29-1 is maximized (with respect to angle) by setting θ = 90º ( = π/2 rad). Its value 

in this case is  

 0
max 24

i ds
dB

R

µ
π

= . 

 

From Fig. 29-36(b), we have 12

max 60 10  T.B −= ×  We can relate this Bmax to our dBmax by 

setting “ds” equal to 1 ×  10
−6 

m and R = 0.025 m.  This allows us to solve for the current: 

i = 0.375 A.  Plugging this into Eq. 29-4 (for the infinite wire) gives B∞ = 3.0 µT. 



the current in the large radius arc contributes µ θ0 4i aπ  (into the page) to the field there. 

Thus, the net field at P is 

 

0 1 1 (4 T m A)(0.411A)(74 /180 ) 1 1

4 4 0.107m 0.135m

1.02 T.

i
B

b a

µ θ π
π

× ⋅ °⋅ °⎛ ⎞ ⎛ ⎞= − = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= ×

−7

−7

π 10

10

 

 

(b) The direction is out of the page. 

 

5. (a) Recalling the straight sections discussion in Sample Problem 29-1, we see that the 

current in the straight segments collinear with P do not contribute to the field at that point. 

Using Eq. 29-9 (with φ = θ) and the right-hand rule, we find that the current in the 

semicircular arc of radius b contributes µ θ0 4i bπ  (out of the page) to the field at P. Also, 



 

6. (a) Recalling the straight sections discussion in Sample Problem 29-1, we see that the 

current in segments AH and JD do not contribute to the field at point C. Using Eq. 29-9 

(with φ = π) and the right-hand rule, we find that the current in the semicircular arc H J 

contributes µ 0 14i R  (into the page) to the field at C. Also, arc D A contributes µ 0 24i R  

(out of the page) to the field there. Thus, the net field at C is  

 

0

1 2

1 1 (4 T m A)(0.281A) 1 1
1.67 T.

4 4 0.0315m 0.0780m

i
B

R R

µ ⎛ ⎞ × ⋅ ⎛ ⎞= − = − = ×⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

−7
−6π 10

10  

 

(b) The direction of the field is into the page. 



 

7. (a) The currents must be opposite or antiparallel, so that the resulting fields are in the 

same direction in the region between the wires. If the currents are parallel, then the two 

fields are in opposite directions in the region between the wires. Since the currents are the 

same, the total field is zero along the line that runs halfway between the wires. 

 

(b) At a point halfway between they have the same magnitude, µ0i/2πr. Thus the total 

field at the midpoint has magnitude B = µ0i/πr and  
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8. (a) Recalling the straight sections discussion in Sample Problem 29-1, we see that the 

current in the straight segments collinear with C do not contribute to the field at that point. 

 

Eq. 29-9 (with φ = π) indicates that the current in the semicircular arc contributes µ 0 4i R  

to the field at C. Thus, the magnitude of the magnetic field is 

 

0 (4 T m A)(0.0348A)
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i
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µ × ⋅
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(b) The right-hand rule shows that this field is into the page. 

 



  

9. (a) 
1 0 1 1/ 2PB i rµ π=  where i1 = 6.5 A and r1 = d1 + d2 = 0.75 cm + 1.5 cm = 2.25 cm, 

and 
2 0 2 2/ 2PB i rµ π=  where r2 = d2 = 1.5 cm. From BP1 = BP2 we get 
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1

1.5 cm
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r
i i

r
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⎝ ⎠⎝ ⎠
 

 

(b) Using the right-hand rule, we see that the current i2 carried by wire 2 must be out of 

the page. 



 

10. (a) Since they carry current in the same direction, then (by the right-hand rule) the 

only region in which their fields might cancel is between them. Thus, if the point at 

which we are evaluating their field is r away from the wire carrying current i and is d – r 

away from the wire carrying current 3.00i, then the canceling of their fields leads to 

 

0 0 (3 ) 16.0 cm
 4.0 cm.

2 2 ( ) 4 4

i i d
r

r d r

µ µ
π π

= ⇒ = = =
−

 

 

(b) Doubling the currents does not change the location where the magnetic field is zero. 



 

11. (a) We find the field by superposing the results of two semi-infinite wires (Eq. 29-7) 

and a semicircular arc (Eq. 29-9 with φ = π rad). The direction of 
f
B  is out of the page, as 

can be checked by referring to Fig. 29-6(c). The magnitude of 
f
B  at point a is therefore 
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upon substituting i = 10 A and R = 0.0050 m.  

 

(b) The direction of this field is out of the page, as Fig. 29-6(c) makes clear. 

 

(c) The last remark in the problem statement implies that treating b as a point midway 

between two infinite wires is a good approximation. Thus, using Eq. 29-4, 
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(d) This field, too, points out of the page. 



 0

2 2 3/ 24 ( )

iR ds
dB

s R

µ
π

=
+

. 

 

 (a) Clearly, considered as a function of s  (but thinking of “ds” as some finite-sized 

constant value), the above expression is maximum for s = 0.  Its value in this case is 
2

max 0 / 4dB i ds Rµ π= .  

 

(b) We want to find the s value such that max /10dB dB= . This is a non-trivial algebra 

exercise, but is nonetheless straightforward. The result is s = 10
2/3

 − 1 R. If we set 

2.00 cm,R =  then we obtain s = 3.82 cm. 

 

12. With the “usual” x and y coordinates used in Fig. 29-43, then the vector  r  
→

  pointing 

from a current element to P is ˆ ˆi j .r s R= − +
f

 Since îds ds=
f

, then | | .ds r Rds× =
f f

 

Therefore, with 2 2r s R= + ,  Eq. 29-3 gives 

 



 

13. We assume the current flows in the +x direction and the particle is at some distance d 

in the +y direction (away from the wire). Then, the magnetic field at the location of a 

proton with charge q is 0
ˆ( / 2 ) k.B i dµ π=

f
 Thus, 

 
f f f f
F qv B

iq

d
v= × = ×

µ 0

2π
" .ke j  

 

In this situation, 
f
v v= −"je j  (where v is the speed and is a positive value), and  q > 0. Thus, 
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(c) and  (d) Fig. 29-45(b) shows that as we get very close to wire 2 (where its field 

strongly dominates over that of the more distant wire 1) By points along the –y direction. 

The right-hand rule leads us to conclude that wire 2’s current is consequently is into the 

page.  We previously observed that the currents were in opposite directions, so wire 1’s 

current is out of the page. 

 

14. The fact that By = 0 at x = 10 cm implies the currents are in opposite directions.  Thus 

 

 0 1 0 2 0 2 4 1

2 ( ) 2 2
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i i i
B

L x x L x x
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π π π
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using Eq. 29-4 and the fact that 1 24i i= . To get the maximum, we take the derivative with 

respect to x and set equal to zero.  This leads to 3x
2
 – 2Lx – L

2
 = 0 which factors and 

becomes (3x + L)(x − L) = 0, which has the physically acceptable solution: x = L .  This 

produces the maximum By:  µo i2 /2πL. To proceed further, we must determine L.   

Examination of the datum at x = 10 cm in Fig. 29-45(b) leads (using our expression 

above for By and setting that to zero) to L = 30 cm. 

 

(a) The maximum value of By occurs at x = L = 30 cm. 

 

(b) With i2 = 0.003 A we find µo i2 /2πL = 2.0 nT. 

 



 

15. Each of the semi-infinite straight wires contributes µ 0 4i Rπ  (Eq. 29-7) to the field at 

the center of the circle (both contributions pointing “out of the page”). The current in the 

arc contributes a term given by Eq. 29-9 pointing into the page, and this is able to 

produce zero total field at that location if arc semiinfinite2.00B B= , or 

 

 0 02.00
i i

R R

µ φ µ
π π

⎛ ⎞= ⎜ ⎟4 4⎝ ⎠
 

which yields φ = 2.00 rad. 



 

16. Initially, we have Bnet,y = 0, and Bnet,x = B2 + B4 = 2(µo i /2πd) using Eq. 29-4, where 

0.15 md = . To obtain the 30º condition described in the problem, we must have  

 

 0
net , net, 1 3tan(30 ) 2 tan(30 )

2
y x

i
B B B B

d

µ
π

⎛ ⎞′= ° ⇒ − = °⎜ ⎟
⎝ ⎠

 

 

where B3 = µo i /2πd and 1 0 / 2 .B i dµ π′ ′=  Since tan(30º) = 1/ 3 , this leads to 

 

 
3

0.464
3 2

d d d′ = =
+

. 

 

(a) With d = 15.0 cm, this gives d′  = 7.0 cm.  Being very careful about the geometry of 

the situation, then we conclude that we must move wire 1 to x = −7.0 cm.  

 

(b) To restore the initial symmetry, we would have to move wire 3 to x = +7.0 cm.   
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17. Our x axis is along the wire with the origin at the midpoint. The current flows in the 

positive x direction. All segments of the wire produce magnetic fields at P1 that are out of 

the page. According to the Biot-Savart law, the magnitude of the field any (infinitesimal) 

segment produces at P1 is given by 

 

dB
i

r
dx=

µ θ0

24π
sin

 

 

where θ (the angle between the segment and a line drawn from the segment to P1) and r 

(the length of that line) are functions of x. Replacing r with x R2 2+  and sin θ with 

R r R x R= +2 2 ,  we integrate from x = –L/2 to x = L/2. The total field is 



 

18. We consider Eq. 29-6 but with a finite upper limit (L/2 instead of ∞).  This leads to  

 

 0

2 2

/ 2

2 ( / 2)

i L
B

R L R

µ
=

+π
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In terms of this expression, the problem asks us to see how large L must be (compared 

with R) such that the infinite wire expression B∞ (Eq. 29-4) can be used with no more 

than a 1% error.  Thus we must solve 

 

B∞ – B

B
 = 0.01 . 

 

This is a non-trivial algebra exercise, but is nonetheless straightforward. The result is  

 

200
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201

R L
L R

R
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19. Each wire produces a field with magnitude given by B = µ0i/2πr, where r is the 

distance from the corner of the square to the center. According to the Pythagorean 

theorem, the diagonal of the square has length 2a , so r a= 2  and B i a= µ 0 2π . 

The fields due to the wires at the upper left and lower right corners both point toward the 

upper right corner of the square. The fields due to the wires at the upper right and lower 

left corners both point toward the upper left corner. The horizontal components cancel 

and the vertical components sum to 
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In the calculation cos 45° was replaced with 1 2 . The total field points upward, or in 

the +y direction. Thus, 5

total
ˆ(8.0 10 T)j.B −= ×

f
 



 

20. Using the law of cosines and the requirement that B = 100 nT, we have 

 

 
2 2 2

1 1 2

1 2

cos 144
2

B B B

B B
θ − ⎛ ⎞+ −

= = °⎜ ⎟−⎝ ⎠
, 

 

where Eq. 29-10 has been used to determine B1
 
(168 nT) and B2 (151 nT). 

 



  

21. Our x axis is along the wire with the origin at the right endpoint, and the current is in 

the positive x direction. All segments of the wire produce magnetic fields at P2 that are 

out of the page. According to the Biot-Savart law, the magnitude of the field any 

(infinitesimal) segment produces at P2 is given by  

 

dB
i

r
dx=

µ θ0

24π
sin

 

 

where θ (the angle between the segment and a line drawn from the segment to P2) and r 

(the length of that line) are functions of x. Replacing r with x R2 2+  and sin θ with 

R r R x R= +2 2 ,  we integrate from x = –L to x = 0. The total field is 
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22. Using the Pythagorean theorem, we have 
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π π

⎛ ⎞ ⎛ ⎞= + = +⎜ ⎟ ⎜ ⎟4⎝ ⎠ ⎝ ⎠
 

 

which, when thought of as the equation for a line in a B
2  

versus  i2
2
 graph, allows us to 

identify the first term as the “y-intercept” (1 ×  10
−10

)  and the part of the second term 

which multiplies i2
2
 as the “slope” (5 ×  10

−10
).  The latter observation leads to the 

conclusion that R = 8.9 mm, and then our observation about the “y-intercept” determines 

the angle subtended by the arc: φ = 1.8 rad.  



or 6| | 1.7 10 TB −= ×
f

. 

 

(b) The direction is k̂− , or into the page. 

 

(c) If the direction of i1 is reversed, we then have 
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or 6| | 6.7 10 T.B −= ×
f

  

 

(d) The direction is k̂− , or into the page. 

 

23. (a) As illustrated in Sample Problem 29-1, the radial segments do not contribute to f
BP  and the arc-segments contribute according to Eq. 29-9 (with angle in radians). If "k  

designates the direction “out of the page” then 
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24. In the one case we have Bsmall + Bbig = 47.25 µT, and the other case gives Bsmall – Bbig 

= 15.75 µT (cautionary note about our notation: Bsmall refers to the field at the center of 

the small-radius arc, which is actually a bigger field than Bbig!).  Dividing one of these 

equations by the other and canceling out common factors (see Eq. 29-9) we obtain 
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(1/ ) (1/ ) 1 ( / )
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+ +
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− −
 . 

 

The solution of this is straightforward: rsmall =  rbig /2. Using the given fact that the 

big 4.00 cm,r =  then we conclude that the small radius is small 2.00 cm.r =  



 

25. We use Eq. 29-4 to relate the magnitudes of the magnetic fields B1 and B2 to the 

currents (i1 and i2, respectively) in the two long wires.  The angle of their net field is 

 

θ = tan
−1

(B2 /B1) = tan
−1

(i2 /i1) = 53.13º. 

 

The accomplish the net field rotation described in the problem, we must achieve a final 

angle θ′ = 53.13º  – 20º  = 33.13º.  Thus, the final value for the current i1 must be i2 /tanθ′ 
= 61.3 mA.  



 

26. Letting “out of the page” in Fig. 29-55(a) be the positive direction, the net field is 
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µ φ µ
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4

 

 

from Eqs. 29-9 and 29-4. Referring to Fig. 29-55, we see that B = 0 when  i2 = 0.5 A, so 

(solving the above expression with B set equal to zero) we must have 

 

φ =  4(i2 /i1)  = 4(0.5/2) = 1.00 rad (or 57.3º). 

 



  

27. The contribution to netB
f

 from the first wire is (using Eq. 29-4) 
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The distance from the second wire to the point where we are evaluating netB
f

 is r2 = 4 m − 

2 m = 2 m.  Thus, 
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and consequently is perpendicular to 1B
f

.  The magnitude of netB
f

 is therefore 

 

 6 2 6 2 6
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f

. 



In unit-vector notation,  
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28. (a) The contribution to BC from the (infinite) straight segment of the wire is 

 

B
i

R
C1

0

2
=

µ
π

.  

 

The contribution from the circular loop is B
i

R
C2

0

2
=

µ
.  Thus, 

 

( )( )
( )

3

70
1 2

4 T m A 5.78 10 A1 1
1 1 2.53 10 T.

2 2 m
C C C

i
B B B

R

µ
−

−
× ⋅ ×⎛ ⎞ ⎛ ⎞= + = + = + = ×⎜ ⎟ ⎜ ⎟π π⎝ ⎠ ⎝ ⎠

−7π 10

0.0189
 

 f
BC  points out of the page, or in the +z direction. In unit-vector notation, 

7 ˆ(2.53 10 T)kCB −= ×
f

 

 

(b) Now 
f f
B BC C1 2⊥  so 
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and 
f
BC  points at an angle (relative to the plane of the paper) equal to 
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29. Using the right-hand rule (and symmetry), we see that B 
→

net points along what we will 

refer to as the y axis (passing through P), consisting of two equal magnetic field y-

components.  Using Eq. 29-17, 

0
net| | 2 sin
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=
f

 

where i = 4.00 A, r = 2 2

2 1 / 4 5.00 m,r d d= + =  and 

 1 1 12

1

4.00 m 4
tan tan tan 53.1

/ 2 6.00 m / 2 3

d

d
θ − − −⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = = = °⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
. 

Therefore, 

0
net

(4 T m A)(4.00 A)
| | sin sin 53.1 2.56  T

( m)

i
B

r

µ θ
π π

−7
−7π×10 ⋅

= = ° = ×10
5.00

f
. 



 

30. Initially we have 
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4
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using Eq. 29-9.  In the final situation we use Pythagorean theorem and write 
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If we square Bi and divide by Bf

2
, we obtain  
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From the graph (see Fig. 29-58(c) – note the maximum and minimum values) we estimate 

Bi /Bf = 12/10 = 1.2, and this allows us to solve for r in terms of R: 

 

r = R 
1 ± 1.2 2 – 1.2

2
 

 1.2
2
 – 1

   =  2.3 cm   or   43.1 cm. 

 

Since we require r < R, then the acceptable answer is r = 2.3 cm.  



  

 

dB
di

x

idx

xw
P = =

µ µ0 0

2 2π π
.  

Thus, 
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and 
f
BP  points upward. In unit-vector notation, 11 ˆ(2.23 10 T) jPB −= ×

f
 

 

31. Consider a section of the ribbon of thickness dx located a distance x away from point 

P. The current it carries is di = i dx/w, and its contribution to BP is 



 

32. By the right-hand rule (which is “built-into” Eq. 29-3) the field caused by wire 1’s 

current, evaluated at the coordinate origin, is along the +y axis.  Its magnitude B1 is given 

by Eq. 29-4.  The field caused by wire 2’s current will generally have both an x and a y 

component which are related to its magnitude B2 (given by Eq. 29-4) and sines and 

cosines of some angle.  A little trig (and the use of the right-hand rule) leads us to 

conclude that when wire 2 is at angle θ2 (shown in Fig. 29-60) then its components are  

 

 2 2 2 2 2 2sin , cos .x yB B B Bθ θ= = −  

 

The magnitude-squared of their net field is then  (by Pythagoras’ theorem) the sum of the 

square of their net x-component and the square of their net y-component: 

 
2 2 2 2 2

2 2 1 2 2 1 2 1 2 2( sin ) ( cos ) 2 cos .B B B B B B B Bθ θ θ= + − = + −  

 

(since sin
2θ + cos

2θ =1), which we could also have gotten directly by using the law of 

cosines.  We have  
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With the requirement that the net field have magnitude B = 80 nT, we find 
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where the positive value has been chosen. 
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(b) The direction of the field is into the page. 

 

33. (a) Recalling the straight sections discussion in Sample Problem 29-1, we see that the 

current in the straight segments collinear with P do not contribute to the field at that point. 

We use the result of Problem 29-21 to evaluate the contributions to the field at P, noting 

that the nearest wire-segments (each of length a) produce magnetism into the page at P 

and the further wire-segments (each of length 2a) produce magnetism pointing out of the 

page at P. Thus, we find (into the page) 



 

34. We note that when there is no y-component of magnetic field from wire 1 (which, by 

the right-hand rule, relates to when wire 1 is at 90º = π/2 rad), the total y-component of 

magnetic field is zero (see Fig. 29-62(c)).  This means wire #2 is either at  +π/2 rad or  

−π/2 rad.  

 

(a) We now make the assumption that wire #2 must be at −π/2 rad (−90º, the bottom of 

the cylinder) since it would pose an obstacle for the motion of wire #1 (which is needed 

to make these graphs) if it were anywhere in the top semicircle.   

 

(b) Looking at the θ1 = 90º datum in Fig. 29-62(b)) – where there is a maximum in Bnet x 

(equal to +6 µT) – we are led to conclude that 1 6.0 T 2.0 T 4.0 TxB µ µ µ= − =  in that 

situation.  Using Eq. 29-4, we obtain  
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4.0 A

4 10 T m/A

xRB
i

π π
µ π

−

−

×
= = =

× ⋅
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(c) The fact that Fig. 29-62(b) increases as θ1 progresses from 0 to 90º implies that wire 

1’s current is out of the page, and this is consistent with the cancellation of Bnet y at 

1 90θ = ° , noted earlier (with regard to Fig. 29-62(c)).   

 

(d) Referring now to Fig. 29-62(b) we note that there is no x-component of magnetic field 

from wire 1 when θ1 = 0, so that plot tells us that B2x = +2.0 µT. Using Eq. 29-4, we find 

the magnitudes of the current to be 
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×
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(e) We can conclude (by the right-hand rule) that wire 2’s current is into the page.   



 

35. Eq. 29-13 gives the magnitude of the force between the wires, and finding the x-

component of it amounts to multiplying that magnitude by cosφ = 
d2

d1
2 + d2

2 .  Therefore, 

the x-component of the force per unit length is 
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L d d

µ
π π

− − −

−

π× ⋅ × ×
= =

+ +

= ×
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36. Using Eq. 29-13, the force on, say, wire 1 (the wire at the upper left of the figure) is 

along the diagonal (pointing towards wire 3 which is at the lower right). Only the forces 

(or their components) along the diagonal direction contribute. With θ = 45°, we find the 

force per unit meter on wire 1 to be 
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The direction of 1F
f

 is along ˆ ˆˆ (i j) / 2r = − . In unit-vector notation, we have  

 

 1

(1.12 N/m) ˆ ˆ ˆ ˆ(i j) (7.94 N/m)i ( 7.94 N/m)j
2

F
×

= − = × + − ×
f −3

−4 −410
10 10  



 

37. Using a magnifying glass, we see that all but i2 are directed into the page. Wire 3 is 

therefore attracted to all but wire 2. Letting d = 0.500  m, we find the net force (per meter 

length) using Eq. 29-13, with positive indicated a rightward force: 

 

| |
f

`
F i i

d

i

d

i

d

i

d
= − + + +F
HG

I
KJ

µ 0 3 1 2 4 5

2 2 2π
 

 

which yields 7| | / 8.00 10 N/mF −= ×
f

` . 
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(c) F3 = 0 (because of symmetry). 

 

(d) 4

4 2
ˆ( 1.88 10 N)jF F −= − = − ×

f f
, and 

 

(e) 4

5 1
ˆ(4.69 10 N)jF F −= − = − ×

f f
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38. We label these wires 1 through 5, left to right, and use Eq. 29-13. Then, 

 

(a) The magnetic force on wire 1 is 
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(b) Similarly, for wire 2, we have 

 



 

39. We use Eq. 29-13 and the superposition of forces: 
f f f f
F F F F4 14 24 34= + + . With θ = 45°, 

the situation is as shown on the right. 

 

The components of 
f
F4  are given by 
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and 
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sin .

2 42 2
y

i i i
F F F

a aa

µ µ µθ °
= − = − =

π ππ
 

Thus, 
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and 
f
F4  makes an angle φ with the positive x axis, where 

 

φ =
F
HG
I
KJ = −FHG

I
KJ = °− −tan tan .1 4

4

1 1

3
162

F

F

y

x

 

 

In unit-vector notation, we have 

 

1
ˆ ˆ ˆ ˆ(1.32 N/m)[cos162 i sin162 j] ( 1.25 N/m)i (4.17 N/m)jF = × ° + ° = − × + ×

f
−4 −4 −510 10 10  



  

current: out of the page.  With wire 3 infinitely far away, the force per unit length is given 

(in magnitude) as 6.27 ×  10
−7 

N/m.  We set this equal to 12 0 1 2 / 2F i i dµ π= . When wire 3 

is at x = 0.04 m the curve passes through the zero point previously mentioned, so the 

force between 2 and 3 must equal F12 there.  This allows us to solve for the distance 

between wire 1 and wire 2:  

 

d = (0.04 m)(0.750 A)/(0.250 A) = 0.12 m. 

 

Then we solve 6.27 ×  10
−7 

N/m= µo i1 i2 /2πd and obtain i2 = 0.50 A.  

 

(b) The direction of i2 is out of the page. 

 

40. (a) The fact that the curve in Fig. 29-65(b) passes through zero implies that the 

currents in wires 1 and 3 exert forces in opposite directions on wire 2.  Thus, current i1 

points out of the page.  When wire 3 is a great distance from wire 2, the only field that 

affects wire 2 is that caused by the current in wire 1; in this case the force is negative 

according to Fig. 29-65(b).  This means wire 2 is attracted to wire 1, which implies (by 

the discussion in section 29-2) that wire 2’s current is in the same direction as wire 1’s 



 

41. The magnitudes of the forces on the sides of the rectangle which are parallel to the 

long straight wire (with i1 = 30.0 A) are computed using Eq. 29-13, but the force on each 

of the sides lying perpendicular to it (along our y axis, with the origin at the top wire and 

+y downward) would be figured by integrating as follows: 

 

F
i i

y
dy

a

a b

⊥

+
= zsides

2 0 1

2

µ
π

.  

 

Fortunately, these forces on the two perpendicular sides of length b cancel out. For the 

remaining two (parallel) sides of length L, we obtain 
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and 
f
F  points toward the wire, or ĵ+ . That is, 3 ˆ(3.20 10 N) jF −= ×

f
 in unit-vector notation.  

 



42. We use Ampere’s law: 
f f
B ds i⋅ =z µ 0 , where the integral is around a closed loop and i 

is the net current through the loop.  

 

(a) For path 1, the result is 

 

( ) ( )7 6

0
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5.0A 3.0A (4 10 T m/A) 2.0A 2.5 10 T m.B ds µ − −⋅ = − + = π× ⋅ − = − × ⋅∫
f f¶  

 

(b) For path 2, we find 

 

( ) ( )7 5

0
2

5.0A 5.0A 3.0A (4 10 T m/A) 13.0A 1.6 10 T m.B ds µ − −⋅ = − − − = π× ⋅ − = − × ⋅∫
f f¶  

 



43. (a) Two of the currents are out of the page and one is into the page, so the net current 

enclosed by the path is 2.0 A, out of the page. Since the path is traversed in the clockwise 

sense, a current into the page is positive and a current out of the page is negative, as 

indicated by the right-hand rule associated with Ampere’s law. Thus, 

 

( )7 6

0 (4 10 T m/A) 2.0A 2.5 10 T m.B ds iµ − −⋅ = − = − π× ⋅ = − × ⋅∫
f f¶  

 

(b) The net current enclosed by the path is zero (two currents are out of the page and two 

are into the page), so 
f f
B ds i⋅ = =z µ 0 0enc . 



 

44. A close look at the path reveals that only currents 1, 3, 6 and 7 are enclosed. Thus, 

noting the different current directions described in the problem, we obtain 
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45. We use Eq. 29-20 2

0 / 2B ir aµ π=  for the B-field inside the wire ( r a< ) and Eq. 29-17 

0 / 2B i rµ π=  for that outside the wire (r > a).  

 

(a) At 0,r =  0B = . 
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(c) At 0.0200mr a= = , 
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(d) At 0.0400mr = , 
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8.50 10 T.
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µ
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−
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46. The area enclosed by the loop L is A d d d= =1
2

24 3 6( )( ) . Thus 
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( )
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(c) At ,r a=  
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47. For r a≤ , 
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(a) At 0,r =  0B = . 

 

(b) At / 2r a= , we have  



 

48. (a) The field at the center of the pipe (point C) is due to the wire alone, with a 

magnitude of 

( )
0 wire 0 wire .

2 3 6
C

i i
B

R R

µ µ
= =

π π
 

 

For the wire we have BP, wire > BC, wire. Thus, for BP = BC = BC, wire, iwire must be into the 

page: 

B B B
i

R

i

R
P P P= − = −, , .wire pipe

wire

2

µ µ0 0

2 2π πb g  

 

Setting BC = –BP we obtain iwire = 3i/8 = 3 33(8.00 10 A) / 8 3.00 10 A− −× = × . 

 

(b) The direction is into the page. 



 

49. It is possible (though tedious) to use Eq. 29-26 and evaluate the contributions (with 

the intent to sum them) of all 200 loops to the field at, say, the center of the solenoid. 

This would make use of all the information given in the problem statement, but this is not 

the method that the student is expected to use here. Instead, Eq. 29-23 for the ideal 

solenoid (which does not make use of the coil diameter) is the preferred method: 

 

B in i
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= = F
HG
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KJµ µ0 0 `

 

 

where i = 0.30 A, ` = 0 25. m and N = 200. This yields 43.0 10  TB −= × . 



 

50. We find N, the number of turns of the solenoid, from the magnetic field 

0 /oB in iNµ µ= = ` : 0/ .N B iµ= `  Thus, the total length of wire used in making the 

solenoid is 
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(b) The outer radius is r = 20.0 cm. The field there is 
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51. (a) We use Eq. 29-24. The inner radius is r = 15.0 cm, so the field there is 

 



 

52. It is possible (though tedious) to use Eq. 29-26 and evaluate the contributions (with 

the intent to sum them) of all 1200 loops to the field at, say, the center of the solenoid. 

This would make use of all the information given in the problem statement, but this is not 

the method that the student is expected to use here. Instead, Eq. 29-23 for the ideal 

solenoid (which does not make use of the coil radius) is the preferred method: 

 

B in i
N

= = F
HG
I
KJµ µ0 0 `

 

 

where i = 3.60 A, ` = 0 950. m  and N = 1200. This yields B = 0.00571 T. 



 

53. (a) We denote the 
f
B -fields at point P on the axis due to the solenoid and the wire as f

Bs  and 
f
Bw , respectively. Since 

f
Bs  is along the axis of the solenoid and 

f
Bw  is 

perpendicular to it, 
f f
B Bs w⊥  respectively. For the net field 

f
B  to be at 45° with the axis 

we then must have Bs = Bw. Thus, 
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which gives the separation d to point P on the axis: 
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(b) The magnetic field strength is 

 

( )( )( )7 3 52 2 4 10 T m A 20.0 10 A 10turns 0.0100m 3.55 10 T.sB B − − −= = π× ⋅ × = ×  



  

 

Now, the time to travel the length of the solenoid is /t L v= E  where v|| is the component 

of the velocity in the direction of the field (along the coil axis) and is equal to v cos θ   

where θ  = 30º.  Using Eq. 29-23 (B = µ0in) with n = N/L, we find the number of 

revolutions made is t /T = 1.6 × 10
6
. 

 

54. As the problem states near the end, some idealizations are being made here to keep 

the calculation straightforward (but are slightly unrealistic).  For circular motion (with 

speed v⊥ which represents the magnitude of the component of the velocity perpendicular 

to the magnetic field [the field is shown in Fig. 29-19]), the period is (see Eq. 28-17) 

 

T = 2πr/v⊥ = 2πm/eB. 



 

55. The orbital radius for the electron is 

 

r
mv

eB

mv

e ni
= =

µ0

 

which we solve for i: 
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56. (a) We set z = 0 in Eq. 29-26 (which is equivalent using to Eq. 29-10 multiplied by 

the number of loops). Thus, B(0) ∝ i/R. Since case b has two loops, 
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= = = . 

 

(b) The ratio of their magnetic dipole moments is 
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57. The magnitude of the magnetic dipole moment is given by µ = NiA, where N is the 

number of turns, i is the current, and A is the area. We use A = πR
2
, where R is the radius. 

Thus, 

µ = = ⋅200 0 30 0 47
2 2b gb g b g. . .A m A mπ 0.050  



 

58. We use Eq. 29-26 and note that the contributions to 
f
BP  from the two coils are the 

same. Thus, 
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 f
BP  is in the positive x direction. 

 



59. (a) The magnitude of the magnetic dipole moment is given by µ = NiA, where N is the 

number of turns, i is the current, and A is the area. We use A = πR
2
, where R is the radius. 

Thus, 

µ = = = ⋅Ni Rπ π2 2 2300 4 0 0 025 2 4b gb g b g. . . .A m A m  

 

(b) The magnetic field on the axis of a magnetic dipole, a distance z away, is given by Eq. 

29-27: 

B
z

=
µ µ0

32π
.  

We solve for z: 

z
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60. (a) To find the magnitude of the field, we use Eq. 29-9 for each semicircle (φ = π rad), 

and use superposition to obtain the result: 
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(b) By the right-hand rule, 
f
B  points into the paper at P (see Fig. 29-6(c)). 

 

(c) The enclosed area is 2 2( ) / 2A a b= π + π  which means the magnetic dipole moment 

has magnitude 
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(d) The direction of 
f
µ  is the same as the 

f
B  found in part (a): into the paper.  



  

(x, y, z) = (0, 5.0 m, 0) 
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ff
 

 

61. By imagining that each of the segments bg and cf (which are shown in the figure as 

having no current) actually has a pair of currents, where both currents are of the same 

magnitude (i) but opposite direction (so that the pair effectively cancels in the final sum), 

one can justify the superposition. 

 

(a) The dipole moment of path abcdefgha is 
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(b) Since both points are far from the cube we can use the dipole approximation. For  



 

62. Using Eq. 29-26, we find that the net y-component field is 
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where  z1
2
 = L

2
 (see Fig. 29-76(a)) and z2

2
 = y

2
 (because the central axis here is denoted y 

instead of z).  The fact that there is a minus sign between the two terms, above, is due to 

the observation that the datum in Fig. 29-76(b) corresponding to By = 0 would be 

impossible without it (physically, this means that one of the currents is clockwise and the 

other is counterclockwise).   

 

(a) As y → ∞, only the first term contributes and (with By = 7.2 × 10
−6 

T given in this case) 

we can solve for i1.  We obtain i1 = (45/16π) Α  ≈ 0.90 A. 

 

(b) With loop 2 at y = 0.06 m (see Fig. 29-76(b)) we are able to determine i2 from 
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We obtain i2 = (117 13 /50π) Α  ≈  2.7 A. 



 

63. (a) We denote the large loop and small coil with subscripts 1 and 2, respectively. 
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(b) The torque has magnitude equal to 
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where i = 2.00 A.  This yields B 
→

 = (1.57 × 10
−7

 T) k
^
 , or 7| | 1.57 10 TB −= ×

f
. 

 

 

64. The radial segments do not contribute to B 
→

(at the center) and the arc-segments 

contribute according to Eq. 29-9 (with angle in radians).  If  k
^
 designates the direction 

"out of the page" then 

 



65. (a) The magnetic field at a point within the hole is the sum of the fields due to two 

current distributions. The first is that of the solid cylinder obtained by filling the hole and 

has a current density that is the same as that in the original cylinder (with the hole). The 

second is the solid cylinder that fills the hole. It has a current density with the same 

magnitude as that of the original cylinder but is in the opposite direction. If these two 

situations are superposed the total current in the region of the hole is zero. Now, a solid 

cylinder carrying current i which is uniformly distributed over a cross section, produces a 

magnetic field with magnitude 

B
ir

R
=

µ 0

22π
 

 

at a distance r from its axis, inside the cylinder. Here R is the radius of the cylinder. For 

the cylinder of this problem the current density is 

 

J
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A

i

a b
= =

−π 2 2c h ,  

 

where A = π(a
2
 – b

2
) is the cross-sectional area of the cylinder with the hole. The current 

in the cylinder without the hole is 
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and the magnetic field it produces at a point inside, a distance r1 from its axis, has 

magnitude 

B
I r

a

ir a

a a b

ir

a b
1

0 1 1

2

0 1

2

2 2 2

0 2

2 22 2 2
= =

−
=

−
µ µ µ

π π πc h c h .  
 

The current in the cylinder that fills the hole is 
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and the field it produces at a point inside, a distance r2 from the its axis, has magnitude 

 

B
I r

b

ir b

b a b

ir

a b
2

0 2 2

2

0 2

2

2 2 2

0 2

2 22 2 2
= =

−
=

−
µ µ µ

π π πc h c h .  
 

At the center of the hole, this field is zero and the field there is exactly the same as it 

would be if the hole were filled. Place r1 = d in the expression for B1 and obtain 
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for the field at the center of the hole. The field points upward in the diagram if the current 

is out of the page. 

 

(b) If b = 0 the formula for the field becomes 

 

B
id

a
=

µ 0

22π
.  

 

This correctly gives the field of a solid cylinder carrying a uniform current i, at a point 

inside the cylinder a distance d from the axis. If d = 0 the formula gives B = 0. This is 

correct for the field on the axis of a cylindrical shell carrying a uniform current. 

 

Note: One my appy Ampere’s law to show that the magnetic field in the hole is uniform. 

Consider a rectangular path with two long sides (side 1 and 2, each with length L) and 

two short sides (each of length less than b). If side 1 is directly along the axis of the hole, 

then side 2 would be also parallel to it and also in the hole. To ensure that the short sides 

do not contribute significantly to the integral in Ampere’s law, we might wish to make L 

very long (perhaps longer than the length of the cylinder), or we might appeal to an 

argument regarding the angle between 
f
B  and the short sides (which is 90° at the axis of 

the hole). In any case, the integral in Ampere’s law reduces to 
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where Bside 1 is the field along the axis found in part (a). This shows that the field at off-

axis points (where Bside 2 is evaluated) is the same as the field at the center of the hole; 

therefore, the field in the hole is uniform. 

 



66. Eq. 29-4 gives 

i
RB

= =
×

× ⋅
=

−
2 2 7 30 10

4
321

6
π π 0.880

π 100
−7µ

m T

T m A
A.

b gc h.
.  



the xy plane), and the field produced by wire 2 (the wire at bottom right) is at φ = 210°. 

By symmetry 
f f
B B1 2=d i  we observe that only the x-components survive, yielding 
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where i = 10 A, `  = 0.10 m, and Eq. 29-4 has been used. To cancel this, wire b must 

carry current into the page (that is, the − "k  direction) of value 
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where r = =3 2 0 087` .  m and Eq. 29-4 has again been used. 

 

(b) As stated above, to cancel this, wire b must carry current into the page (that is, the z−  

direction) 

  

 

67. (a) By the right-hand rule, the magnetic field 
f
B1  (evaluated at a) produced by wire 1 

(the wire at bottom left) is at φ = 150° (measured counterclockwise from the +x axis, in 



 

68. We note that the distance from each wire to P is r d= =2 0 071. m.  In both parts, 

the current is i = 100 A. 

 

(a) With the currents parallel, application of the right-hand rule (to determine each of 

their contributions to the field at P) reveals that the vertical components cancel and the 

horizontal components add, yielding the result: 
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and directed in the –x direction. In unit-vector notation, we have 4 ˆ( 4.00 10 T)iB −= − ×
f

. 

 

(b) Now, with the currents anti-parallel, application of the right-hand rule shows that the 

horizontal components cancel and the vertical components add. Thus, 
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and directed in the +y direction. In unit-vector notation, we have 4 ˆ(4.00 10 T)jB −= ×
f
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69. Since the radius is R = 0.0013 m, then the i = 50 A produces 
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at the edge of the wire. The three equations, Eq. 29-4, Eq. 29-17 and Eq. 29-20, agree at 

this point. 

 



  

70. (a) With cylindrical symmetry, we have, external to the conductors, 

 
f
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r
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which produces ienc = 25 mA from the given information. Therefore, the thin wire must 

carry 5.0 mA. 

 

(b) The direction is downward, opposite to the 30 mA carried by the thin conducting 

surface. 



 

71. We use B x y z i s r r, ,b g b g= ×µ0

34π ∆
f f

, where ∆ ∆
f
s s= "j  and 
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(a) The field on the z axis (at z = 5.0 m) is 
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(b)
f
B (0, 6.0 m, 0) = 0, since x = z = 0. 

 

(c) The field in the xy plane, at (x, y) = (7,7), is 
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(d) The field in the xy plane, at (x, y) = (–3, –4), is 
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where i = 0.200 A.  This yields B 
→

 = −2.75 × 10
−8

 k
^
 T, or | B 

→
| = 2.75 × 10

−8
  T. 

 

(b) The direction is k̂− , or into the page. 

 

72. (a) The radial segments do not contribute to BP 
→   

 and the arc-segments contribute 

according to Eq. 29-9 (with angle in radians).  If k
^
 designates the direction "out of the 

page" then 



 

73. Using Eq. 29-20, 
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we find that r = 0.00128 m gives the desired field value. 



 

74. The points must be along a line parallel to the wire and a distance r from it, where r 

satisfies B
i

r
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as one can check numerically (that 8 2 1π2 > ). 

 

75. Let the length of each side of the square be a. The center of a square is a distance a/2 

from the nearest side. There are four sides contributing to the field at the center. The 

result is   
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On the other hand, the magnetic field at the center of a circular wire of radius R is 

0 / 2i Rµ  (e.g., Eq. 29-10). Thus, the problem is equivalent to showing that 
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a R a R

µ µ
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To do this we must relate the parameters a and R. If both wires have the same length L 

then the geometrical relationships 4a = L and 2πR = L provide the necessary connection: 
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Thus, our proof consists of the observation that 

 



 

76. We take the current (i = 50 A) to flow in the +x direction, and the electron to be at a 

point P which is r = 0.050 m above the wire (where “up” is the +y direction). Thus, the 

field produced by the current points in the +z direction at P. Then, combining Eq. 29-4 

with Eq. 28-2, we obtain 
f f
F e i r ve = − ×µ0 2πb ge j" .k  

 

(a) The electron is moving down: 
f
v v= − "j  (where v = 1.0 × 10

7
 m/s is the speed) so 
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(b) In this case, the electron is in the same direction as the current: 
f
v v= "i  so 
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(c) Now, 
f
v v= ± "k  so 
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( ) ( )
( )

( )

8
0

1

4

2 2 3 1ˆ ˆ( k) 2 ( k)
2 6 10 3 10

2 4 T m A 10A 2 2 3 1 ˆ( k)
2 6m 10 3 10

ˆ2.0 10 T ( k).

P Pn

n

i
B B

a

µ
=

−

⎛ ⎞
= − = + + + −⎜ ⎟⎜ ⎟

⎝ ⎠

× ⋅ ⎛ ⎞
= + + + −⎜ ⎟⎜ ⎟× ⎝ ⎠

= × −

∑
f

−7

−2

π

π 10

π 8.0 10
 

 

77. The two small wire-segments, each of length a/4, shown in 

Fig. 29-83 nearest to point P, are labeled 1 and 8 in the figure. 

 

Let k̂−  be a unit vector pointing into the page. We use the 

results of Problem 29-21 to calculate BP1 through BP8: 
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and 



 

78. Eq. 29-17 applies for each wire, with r R d= +2 2
2/b g  (by the Pythagorean 

theorem). The vertical components of the fields cancel, and the two (identical) horizontal 

components add to yield the final result 
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where (d/2)/r is a trigonometric factor to select the horizontal component. It is clear that 

this is equivalent to the expression in the problem statement. Using the right-hand rule, 

we find both horizontal components point in the +x direction. Thus, in unit-vector 

notation, we have 6 ˆ(1.25 10  T)iB −= ×
f

. 



  

the nearest one should contribute an upward component to the field at P. The current 

elements are all equivalent, as is reflected in the horizontal-translational symmetry built 

into this problem; therefore, all vertical components should cancel in pairs. The field at P 

must be purely horizontal, as drawn. 

 

(b) The path used in evaluating 
f f
B dsz ⋅  is rectangular, of horizontal length ∆x (the 

horizontal sides passing through points P and P' respectively) and vertical size δy > ∆y. 

The vertical sides have no contribution to the integral since 
f
B  is purely horizontal (so the 

scalar dot product produces zero for those sides), and the horizontal sides contribute two 

equal terms, as shown next. Ampere’s law yields 

 

0 0

1
2 .

2
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79. The “current per unit x-length” may be viewed as current density multiplied by the 

thickness ∆y of the sheet; thus, λ = J∆y. Ampere’s law may be (and often is) expressed in 

terms of the current density vector as follows 

 f f f f
B ds J dAz z⋅ = ⋅µ 0  

 

where the area integral is over the region enclosed by the path relevant to the line integral 

(and 
f
J  is in the +z direction, out of the paper). With J uniform throughout the sheet, then 

it is clear that the right-hand side of this version of Ampere’s law should reduce, in this 

problem, to µ0JA = µ0J∆y∆x = µ0λ∆x. 

 

(a) Figure 29-85 certainly has the horizontal components of 
f
B  drawn correctly at points 

P and P' (as reference to Fig. 29-4 will confirm [consider the current elements nearest 

each of those points]), so the question becomes: is it possible for 
f
B  to have vertical 

components in the figure? Our focus is on point P. Fig. 29-4 suggests that the current 

element just to the right of the nearest one (the one directly under point P) will contribute 

a downward component, but by the same reasoning the current element just to the left of 



 

80. (a) We designate the wire along y = rA = 0.100 m wire A and the wire along y = rB = 

0.050 m wire B. Using Eq. 29-4, we have 
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(b) This will occur for some value rB < y < rA such that 
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Solving, we find y = 13/160 ≈ 0.0813 m. 

 

(c) We eliminate the y < rB possibility due to wire B carrying the larger current. We 

expect a solution in the region y > rA where 
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Solving, we find y = 7/40 ≈ 0.0175 m. 



 

(b) At r = a, the magnetic field strength is 
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At r b B r b= − =, ∝ 2 2 0 . Finally, for b = 0 
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which agrees with Eq. 29-20. 

 

(c) The field is zero for r < b and is equal to Eq. 29-17 for r > a, so this along with the 

result of part (a) provides a determination of B over the full range of values. The graph 

(with SI units understood) is shown below. 

 

 

 

81. (a) For the circular path L of radius r concentric with the conductor 
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82. (a) All wires carry parallel currents and attract each other; thus, the “top” wire is 

pulled downward by the other two: 
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where L = 3.0 m. Thus, 
f
F = × −17 10 4. N.  

 

(b) Now, the “top” wire is pushed upward by the center wire and pulled downward by the 

bottom wire: 
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83. We refer to the center of the circle (where we are evaluating 
f
B ) as C. Recalling the 

straight sections discussion in Sample Problem 29-1, we see that the current in the 

straight segments which are collinear with C do not contribute to the field there. Eq. 29-9 

(with φ = π/2 rad) and the right-hand rule indicates that the currents in the two arcs 

contribute 
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to the field at C. Thus, the non-zero contributions come from those straight-segments 

which are not collinear with C. There are two of these “semi-infinite” segments, one a 

vertical distance R above C and the other a horizontal distance R to the left of C. Both 

contribute fields pointing out of the page (see Fig. 29-6(c)). Since the magnitudes of the 

two contributions (governed by Eq. 29-7) add, then the result is 
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exactly what one would expect from a single infinite straight wire (see Eq. 29-4). For 

such a wire to produce such a field (out of the page) with a leftward current requires that 

the point of evaluating the field be below the wire (again, see Fig. 29-6(c)). 

 



84. Using Eq. 29-20 and Eq. 29-17, we have 
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where 4
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known to be external to the wire since | | | |
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10 A. Plugging this into the first equation yields R = 5.3 × 10
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where r = 0.0030 m, Ri = 0.0020 m, Ro = 0.0040 m and ic = 24 A. Thus, we find 
4| | 9.3 10 T.B −= ×

f
 

 

(c) Now, in the external region, the individual fields from the two conductors cancel 

completely (since ic = iw): 
f
B = 0.  

 

85. (a) The field in this region is entirely due to the long wire (with, presumably, 

negligible thickness). Using Eq. 29-17, 
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where iw = 24 A and r = 0.0010 m. 

 

(b) Now the field consists of two contributions (which are anti-parallel) — from the wire 

(Eq. 29-17) and from a portion of the conductor (Eq. 29-20 modified for annular area): 
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At x = s/2, 
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Clearly, this is zero if s = R. 

 

86. (a) The magnitude of the magnetic field on the axis of a circular loop, a distance z 

from the loop center, is given by Eq. 29-26: 
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where R is the radius of the loop, N is the number of turns, and i is the current. Both of 

the loops in the problem have the same radius, the same number of turns, and carry the 

same current. The currents are in the same sense, and the fields they produce are in the 

same direction in the region between them. We place the origin at the center of the left-

hand loop and let x be the coordinate of a point on the axis between the loops. To 

calculate the field of the left-hand loop, we set z = x in the equation above. The chosen 

point on the axis is a distance s – x from the center of the right-hand loop. To calculate 

the field it produces, we put z = s – x in the equation above. The total field at the point is 

therefore 

B
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+
+
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Its derivative with respect to x is 
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When this is evaluated for x = s/2 (the midpoint between the loops) the result is 
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independent of the value of s. 

 

(b) The second derivative is 

 



 

87. The center of a square is a distance R = a/2 from the nearest side (each side being of 

length L = a). There are four sides contributing to the field at the center. The result is   
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88. We refer to the side of length L as the long side and that of length W as the short side. 

The center is a distance W/2 from the midpoint of each long side, and is a distance L/2 

from the midpoint of each short side. There are two of each type of side, so the result of 

Problem 29-17 leads to 
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The final form of this expression, shown in the problem statement, derives from finding 

the common denominator of the above result and adding them, while noting that 

 

L W

W L
W L

2 2

2 2

2 2+

+
= + .  



 

Only the x components of the fields (contributed by each side) will contribute to the final 

result (other components cancel in pairs), so a trigonometric factor of 

 

a

R

a

a x

2

42 2
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+
 

 

multiplies the expression of the field given by the result of Problem 29-17 (for each side 

of length L = a). Since there are four sides, we find 
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which simplifies to the desired result. It is straightforward to set x = 0 and see that this 

reduces to the expression found in Problem 29-87 (noting that 4 / 2 2 2= ). 

 

89. We imagine the square loop in the yz plane (with its center at the origin) and the 

evaluation point for the field being along the x axis (as suggested by the notation in the 

problem). The origin is a distance a/2 from each side of the square loop, so the distance 

from the evaluation point to each side of the square is, by the Pythagorean theorem, 
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90. (a) Consider a segment of the projectile between y and y + dy. We use Eq. 29-12 to 

find the magnetic force on the segment, and Eq. 29-7 for the magnetic field of each semi-

infinite wire (the top rail referred to as wire 1 and the bottom as wire 2). The current in 

rail 1 is in the +"i  direction, and the current in rail 2 is in the −"i  direction. The field (in 

the region between the wires) set up by wire 1 is into the paper (the − "k  direction) and 

that set up by wire 2 is also into the paper. The force element (a function of y) acting on 

the segment of the projectile (in which the current flows in the −"j  direction) is given 

below. The coordinate origin is at the bottom of the projectile. 

  

( ) ( ) [ ]

( )

1 2 1 2 1 2

0 0

ˆ ˆ ˆj j i
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Thus, the force on the projectile is 
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(b) Using the work-energy theorem, we have  

 

∆K mv W F ds FLf= = = z ⋅ =1
2

2

ext
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Thus, the final speed of the projectile is 

 



 

91. We use Ampere’s law. For the dotted loop shown on the diagram i = 0. The integral f f
B ds⋅z  is zero along the bottom, right, and top sides of the loop. Along the right side the 

field is zero, along the top and bottom sides the field is perpendicular to ds
f

. If `  is the 

length of the left edge, then direct integration yields 
f f `B ds B⋅ =z , where B is the 

magnitude of the field at the left side of the loop. Since neither B nor `  is zero, Ampere’s 

law is contradicted. We conclude that the geometry shown for the magnetic field lines is 

in error. The lines actually bulge outward and their density decreases gradually, not 

discontinuously as suggested by the figure. 



 

92. In this case L = 2πr is roughly the length of the toroid so 

 

B i
N

r
ni= F
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I
KJ =µ µ0 0 0 0

2π
 

 

This result is expected, since from the perspective of a point inside the toroid the portion 

of the toroid in the vicinity of the point resembles part of a long solenoid. 



 

If desired, this expression can be simplified to read 
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(d) Outside the coaxial cable, the net current enclosed is zero. So B = 0 for r ≥ a. 

 

(e) We test these expressions for one case. If a → ∞  and b → ∞  (such that a > b) then 

we have the situation described on page 696 of the textbook. 

 

(f) Using SI units, the graph of the field is shown below: 

 

 
 

 

 

 

 

 

 

 

 

 

 

93. (a) Eq. 29-20 applies for r < c. Our sign choice is such that i is positive in the smaller 

cylinder and negative in the larger one. 
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(b) Eq. 29-17 applies in the region between the conductors. 
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(c) Within the larger conductor we have a superposition of the field due to the current in 

the inner conductor (still obeying Eq. 29-17) plus the field due to the (negative) current in  

that part of the outer conductor at radius less than r. The result is 
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Chapter 30 
 



 

 

 

 

 

1. (a)  The magnitude of the emf is 

 

ε = = + = + = + =
d

dt

d

dt
t t tBΦ

6 0 7 0 12 7 0 12 2 0 7 0 312. . . . .c h b g mV.  

 

(b) Appealing to Lenz’s law (especially Fig. 30-5(a)) we see that the current flow in the 

loop is clockwise. Thus, the current is to left through R. 
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2. (a) We use ε = –dΦB/dt = –πr
2
dB/dt. For 0 < t < 2.0 s: 

 

( )22 20.5T
0.12m 1.1 10 V.

2.0s
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= − = − = − ×⎜ ⎟
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(b) For 2.0 s < t < 4.0 s: ε ∝ dB/dt = 0. 

 

(c) For 4.0 s < t < 6.0 s: 
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−
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3. The amplitude of the induced emf in the loop is 
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4. Using Faraday’s law, the induced emf is 
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Ohm’s law then yields | | / 0.016 V / 5.3 0.030 Ai Rε= = Ω = . 

 

5. The total induced emf is given by  

 



 

6. The resistance of the loop is 
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We use i = |ε|/R = |dΦB/dt|/R = (πr
2
/R)|dB/dt|. Thus 
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7. The field (due to the current in the straight wire) is out-of-the-page in the upper half of 

the circle and is into the page in the lower half of the circle, producing zero net flux, at 

any time. There is no induced current in the circle. 



 

8. From the datum at t = 0 in Fig. 30-41(b) we see 0.0015 A = Vbattery /R, which implies 

that the resistance is  

R = (6.00 µV)/(0.0015 A) = 0.0040 Ω. 

 

Now, the value of the current during 10 s < t < 20 s  leads us to equate 

  

(Vbattery + ε induced)/R = 0.00050 A. 

 

This shows that the induced emf is ε induced = −4.0 µV.  Now we use Faraday’s law: 

 

ε = − 
dĭB

dt
 =  −A 

dB

dt
 = −A a . 

 

Plugging in ε = − 4.0 ×10
−6 

V and A = 5.0 × 10
−4 

m
2
, we obtain a = 0.0080 T/s. 



 

9. The flux ΦB BA= cosθ  does not change as the loop is rotated. Faraday’s law only 

leads to a nonzero induced emf when the flux is changing, so the result in this instance is 

zero. 

 



10. Fig. 30-43(b) demonstrates that /dB dt  (the slope of that line) is 0.003 T/s.  Thus, in 

absolute value, Faraday’s law becomes 

 

 
( )Bd d BA dB

A
dt dt dt

ε Φ
= − = − = −  

 

where A = 8 ×10
−4

 m
2
.  We related the induced emf to resistance and current using Ohm’s 

law.  The current is estimated from Fig. 30-43(c) to be i = /dq dt =  0.002 A (the slope of 

that line).  Therefore, the resistance of the loop is 
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11. (a) Let L be the length of a side of the square circuit. Then the magnetic flux through 

the circuit is ΦB L B= 2 2/ , and the induced emf is 
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.
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B
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d L dB
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ε Φ

= − = −  

 

Now B = 0.042 – 0.870t and dB/dt = –0.870 T/s. Thus, 

 

ε i =
( .

( . /
2 00

2
0870

m)
T s) = 1.74 V.

2

 

 

The magnetic field is out of the page and decreasing so the induced emf is 

counterclockwise around the circuit, in the same direction as the emf of the battery. The 

total emf is  

ε + εi = 20.0 V + 1.74 V = 21.7 V. 

 

(b) The current is in the sense of the total emf (counterclockwise). 



  

 

12. (a) Since the flux arises from a dot product of vectors, the result of one sign for B1 

and B2 and of the opposite sign for B3 (we choose the minus sign for the flux from B1 and 

B2, and therefore a plus sign for the flux from B3).  The induced emf is 

 

ε =  −Σ 
dĭB

dt
  =  A ⎝⎜

⎛
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⎞dB1

dt
  +  

dB2

dt
 −  

dB3

dt
 

=(0.10 m)(0.20 m)(2.0 × 10
−6 

T/s  + 1.0 ×10
−6 

T/s −5.0×10
−6 

T/s) 

= −4.0×10
−8 

V. 

 

The minus sign meaning that the effect is dominated by the changes in B3. Its magnitude 

(using Ohm’s law) is |ε| /R = 8.0 µA.  

 

(b) Consideration of Lenz’s law leads to the conclusion that the induced current is 

therefore counterclockwise.   

 



13. (a) It should be emphasized that the result, given in terms of sin(2π ft), could as easily 

be given in terms of cos(2π ft) or even cos(2π ft + φ) where φ is a phase constant as 

discussed in Chapter 15. The angular position θ of the rotating coil is measured from 

some reference line (or plane), and which line one chooses will affect whether the 

magnetic flux should be written as BA cosθ, BA sinθ or BA cos(θ + φ). Here our choice is 

such that ΦB BA= cosθ . Since the coil is rotating steadily, θ increases linearly with time. 

Thus, θ = ωt (equivalent to θ = 2π ft) if θ is understood to be in radians (and ω would be 

the angular velocity). Since the area of the rectangular coil is A=ab , Faraday’s law leads 

to  

( ) ( ) ( )cos cos 2
2 sin 2

d BA d ft
N NBA N Bab f ft

dt dt

θ
ε

π
= − = − = π π  

 

which is the desired result, shown in the problem statement. The second way this is 

written (ε0 sin(2π ft)) is meant to emphasize that the voltage output is sinusoidal (in its 

time dependence) and has an amplitude of ε0 = 2π f N abB. 

 

(b) We solve  

ε0 = 150 V = 2π f N abB 

 

when f = 60.0 rev/s and B = 0.500 T. The three unknowns are N, a, and b which occur in 

a product; thus, we obtain N ab = 0.796 m
2
.  



 

14. (a) The magnetic flux ΦB  through the loop is given by  

 

( )( )22 2 cos 45B B rΦ = π ° = 2 2r Bπ . 

Thus, 
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(a) The direction of the induced current is clockwise when viewed along the direction of f
B . 



θ = π/2 position (where its midpoint will reach a distance of a above the plane of the 

figure). At the moment it is in the θ = π/2 position, the area enclosed by the “circuit” will 

appear to us (as we look down at the figure) to that of a simple rectangle (call this area A0 

which is the area it will again appear to enclose when the wire is in the θ = 3π/2 position). 

Since the area of the semicircle is πa
2
/2 then the area (as it appears to us) enclosed by the 

circuit, as a function of our angle θ, is 

 

A A
a

= +0

2

2

π
cosθ  

 

where (since θ is increasing at a steady rate) the angle depends linearly on time, which 

we can write either as θ = ωt or θ = 2πft if we take t = 0 to be a moment when the arc is 

in the θ = 0 position. Since 
f
B  is uniform (in space) and constant (in time), Faraday’s law 

leads to 

( ) ( )2 2
0 ( / 2) cos cos 2

2

B
d A a d ftd dA a

B B B
dt dt dt dt

π θ
ε

+ πΦ π
= − = − = − = −  

 

which yields ε = Bπ2
 a

2
 f sin(2πft). This (due to the sinusoidal dependence) reinforces the 

conclusion in part (a) and also (due to the factors in front of the sine) provides the voltage 

amplitude:  

 2 2 2 2 3(0.020 T) (0.020 m) (40 / s) 3.2 10 V.m B a fε π π −= = = ×  

 

15. (a) The frequency is 

 

 
(40 rev/s)(2  rad/rev)

40 Hz
2 2

f
ω π
π π

= = = . 

 

(b) First, we define angle relative to the plane of Fig. 30-48, such that the semicircular 

wire is in the θ = 0 position and a quarter of a period (of revolution) later it will be in the 



 

16. We note that 1 gauss = 10
–4

 T. The amount of charge is 
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Note that the axis of the coil is at 20°, not 70°, from the magnetic field of the Earth. 



  

 

17. First we write ΦB = BA cos θ. We note that the angular position θ of the rotating coil 

is measured from some reference line or plane, and we are implicitly making such a 

choice by writing the magnetic flux as BA cos θ (as opposed to, say, BA sin θ). Since the 

coil is rotating steadily, θ increases linearly with time. Thus, θ = ωt if θ is understood to 

be in radians (here, ω = 2πf is the angular velocity of the coil in radians per second, and f 

= 1000 rev/min ≈ 16.7 rev/s is the frequency). Since the area of the rectangular coil is A = 

(0.500 m) × (0.300 m) = 0.150 m
2
, Faraday’s law leads to 

 

ε
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= − = − =N
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NBA f ft

cos cos
sin

b g b g b g2
2 2

π
π π  

 

which means it has a voltage amplitude of 

ε max . . . . .= = = ×2 2 16 7 100 015 35 550 102 3π πfNAB rev s turns m T Vb gb gc hb g  



 

 

18. To have an induced emf, the magnetic field must be perpendicular (or have a nonzero 

component perpendicular) to the coil, and must be changing with time.   

 

(a) For 2 ˆ(4.00 10 T/m) kB y−= ×
f

, / 0dB dt =  and hence ε = 0. 

 

(b) None. 

 

(c) For 2 ˆ(6.00 10 T/s) kB t−= ×
f

,  

 

ε = − 
dĭB

dt
  =  −A 

dB

dt
 =  −(0.400 m × 0.250 m)(0.0600 T/s) = −6.00 mV, 

 

or |ε| = 6.00 mV. 

 

(d) Clockwise. 

 

(e) For 2 ˆ(8.00 10 T/m s) kB yt−= × ⋅
f

,  

 

ΦB = (0.400)(0.0800t) ydy∫  = 31.00 10 t−× , 

 

in SI units. The induced emf is / 1.00 mV,d B dtε = − Φ = − or |ε| = 1.00 mV. 

 

(f) Clockwise. 

 

(g) 0    0B εΦ = ⇒ = . 

 

(h) None. 

 

(i) 0    0B εΦ = ⇒ =  

 

(j) None. 



 

19. The amount of charge is 
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20. Since 
cos

sin
d d

dt dt

φ φφ= − , Faraday's law (with N = 1) becomes  

 

 
( cos )

sin
d d BA d

BA
dt dt dt

φ φε φΦ
= − = − = . 

 

Substituting the values given yields |ε | = 0.018 V. 



 

21. (a) In the region of the smaller loop the magnetic field produced by the larger loop 

may be taken to be uniform and equal to its value at the center of the smaller loop, on the 

axis. Eq. 29-27, with z = x (taken to be much greater than R), gives 
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x
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32
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where the +x direction is upward in Fig. 30-50. The magnetic flux through the smaller 

loop is, to a good approximation, the product of this field and the area (πr
2
) of the smaller 

loop: 

ΦB
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(b) The emf is given by Faraday’s law: 
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(c) As the smaller loop moves upward, the flux through it decreases, and we have a 

situation like that shown in Fig. 30-5(b). The induced current will be directed so as to 

produce a magnetic field that is upward through the smaller loop, in the same direction as 

the field of the larger loop. It will be counterclockwise as viewed from above, in the same 

direction as the current in the larger loop. 



  

 

22. (a) Since 
f
B B= "i  uniformly, then only the area “projected” onto the yz plane will 

contribute to the flux (due to the scalar [dot] product). This “projected” area corresponds 

to one-fourth of a circle. Thus, the magnetic flux ΦB  through the loop is 

 

ΦB B dA r B= ⋅ =z f f 1

4

2π .  

Thus, 
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(b) We have a situation analogous to that shown in Fig. 30-5(a). Thus, the current in 

segment bc flows from c to b (following Lenz’s law). 

 



23. (a) Eq. 29-10 gives the field at the center of the large loop with R = 1.00 m and 

current i(t). This is approximately the field throughout the area (A = 2.00 × 10
–4

 m
2
) 

enclosed by the small loop. Thus, with B = µ0i/2R and i(t) = i0 + kt, where i0 = 200 A and  

 

k = (–200 A – 200 A)/1.00 s = – 400 A/s, 

we find 
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(b) 
( ) ( )( )
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74 10 H/m 200A 400A/s 0.500s
( 0.500s) 0,

2 1.00m
B t
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(c) 
( ) ( )( )

( )

7

4
4 10 H/m 200A 400A/s 1.00s

( 1.00s) 1.26 10 T,
2 1.00m

B t

−
−

π× −⎡ ⎤⎣ ⎦= = = − ×  

 

or 4| ( 1.00s) | 1.26 10 T.B t −= = ×  

 

(d) Yes, as indicated by the flip of sign of B(t) in (c). 

 

(e) Let the area of the small loop be a. Then ΦB Ba= ,  and Faraday’s law yields 
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Faraday’s law, then, (with SI units and 3 significant figures understood) leads to 
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With a = 0.120 m and b = 0.160 m, then, at t = 3.00 s, the magnitude of the emf induced 

in the rectangular loop is 
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(b) We note that / 0di dt >  at t = 3 s. The situation is roughly analogous to that shown in 

Fig. 30-5(c). From Lenz’s law, then, the induced emf (hence, the induced current) in the 

loop is counterclockwise. 

 

24. (a) First, we observe that a large portion of the figure contributes flux which “cancels 

out.” The field (due to the current in the long straight wire) through the part of the 

rectangle above the wire is out of the page (by the right-hand rule) and below the wire it 

is into the page. Thus, since the height of the part above the wire is b – a, then a strip 

below the wire (where the strip borders the long wire, and extends a distance b – a away 

from it) has exactly the equal-but-opposite flux which cancels the contribution from the 

part above the wire. Thus, we obtain the non-zero contributions to the flux: 
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25. (a) Consider a (thin) strip of area of height dy and width ` = 0 020. m . The strip is 

located at some 0 < <y ` . The element of flux through the strip is 

 

d BdA t y dyBΦ = = 4 2c hb g`  

 

where SI units (and 2 significant figures) are understood. To find the total flux through 

the square loop, we integrate: 

 

( )2 2 3

0
4 2 .B Bd t y dy tΦ = Φ = =∫ ∫

`
` `  

 

Thus, Faraday’s law yields 

ε = =
d

dt
tBΦ

4 3` .  

 

At t = 2.5 s, the magnitude of the induced emf is 8.0 × 10
–5

 V.  

 

(b) Its “direction” (or “sense’’) is clockwise, by Lenz’s law. 



the possibility of an overall minus sign since we are asked to find the absolute value of 

the flux. 
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When 1.5r b= , we have  

 

 8(4 T m A)(4.7A)(0.022m)
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2
B π

−× ⋅
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−7π 10
 

 

(b) Implementing Faraday’s law involves taking a derivative of the flux in part (a), and 

recognizing that /dr dt v= . The magnitude of the induced emf divided by the loop 

resistance then gives the induced current: 
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26. (a) We assume the flux is entirely due to the field generated by the long straight wire 

(which is given by Eq. 29-17). We integrate according to Eq. 30-1, not worrying about 



  

which yields ΦB/L = 1.3 × 10
–5

 T·m or 1.3 × 10
–5

 Wb/m. 

 

(b) The flux (per meter) existing within the regions of space occupied by one or the other 

wires was computed above to be 0.23 × 10
–5

 T·m. Thus, 
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0.23 10 T m
0.17 17% .

1.3 10 T m

−

−

× ⋅
= =
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(c) What was described in part (a) as a symmetry plane at x = ` / 2  is now (in the case of 

parallel currents) a plane of vanishing field (the fields subtract from each other in the 

region between them, as the right-hand rule shows). The flux in the 0 2< <x ` /  region is 

now of opposite sign of the flux in the ` `/ 2 < <x  region which causes the total flux (or, 

in this case, flux per meter) to be zero. 

 

27. (a) We refer to the (very large) wire length as L and seek to compute the flux per 

meter: ΦB/L. Using the right-hand rule discussed in Chapter 29, we see that the net field 

in the region between the axes of anti-parallel currents is the addition of the magnitudes 

of their individual fields, as given by Eq. 29-17 and Eq. 29-20. There is an evident 

reflection symmetry in the problem, where the plane of symmetry is midway between the 

two wires (at what we will call x = ` 2 , where ` = =20 0 020mm m. ); the net field at any 

point 0 2< <x `  is the same at its “mirror image” point ` − x . The central axis of one of 

the wires passes through the origin, and that of the other passes through x = ` . We make 

use of the symmetry by integrating over 0 2< <x `  and then multiplying by 2: 
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where d = 0.0025 m is the diameter of each wire. We will use R = d/2, and r instead of x 

in the following steps. Thus, using the equations from Ch. 29 referred to above, we find 
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28. Eq. 27-23 gives ε2
/R as the rate of energy transfer into thermal forms (dEth /dt, which, 

from Fig. 30-55(c), is roughly 40 nJ/s).  Interpreting ε as the induced emf (in absolute 

value) in the single-turn loop (N = 1) from Faraday’s law, we have 

 

 
( )Bd d BA dB

A
dt dt dt

ε Φ
= = = . 

 

Eq. 29-23 gives B = µoni for the solenoid (and note that the field is zero outside of the 

solenoid – which implies that A = Acoil ), so our expression for the magnitude of the 

induced emf becomes 

( ) coil
coil 0 coil 0 coil

didB d
A A ni nA

dt dt dt
ε µ µ= = = . 

 

where Fig. 30-55(b) suggests that dicoil/dt = 0.5 A/s.   With n = 8000 (in SI units) and Acoil 

= π(0.02)
2
  (note that the loop radius does not come into the computations of this problem, 

just the coil’s), we find V = 6.3 µV. Returning to our earlier observations, we can now 

solve for the resistance: R = ε 2
/(dEth /dt) = 1.0 mΩ.   
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where the rate of change of the field is dB/dt = 0.0100 T/s. Consequently, we obtain 
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29. Thermal energy is generated at the rate P = ε2
/R (see Eq. 27-23). Using Eq. 27-16, the 

resistance is given by R = ρL/A, where the resistivity is 1.69 × 10
–8

 Ω·m (by Table 27-1) 

and A = πd
2
/4 is the cross-sectional area of the wire (d = 0.00100 m is the wire thickness). 

The area enclosed by the loop is 

A r
L

loop loop

2= = FHG
I
KJπ π

π2

2

 

 

since the length of the wire (L = 0.500 m) is the circumference of the loop. This enclosed 

area is used in Faraday’s law (where we ignore minus signs in the interest of finding the 

magnitudes of the quantities): 



 

30. Noting that |∆B| = B, we find the thermal energy is 
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31. (a) Eq. 30-8 leads to 

 

ε = = =BLv ( . .0 350 0 0481T)(0.250 m)(0.55 m / s) V . 

 

(b) By Ohm’s law, the induced current is i = 0.0481 V/18.0 Ω = 0.00267 A. By Lenz’s 

law, the current is clockwise in Fig. 30-56. 

 

(c) Eq. 26-22 leads to P = i
2
R = 0.000129 W. 



  

ε = = =
d

dt

dt

dt
tBΦ

9 46 18 9
2

. .  

 

in SI units. At t = 3.00 s, this yields ε = 56.8 V. 

 

(c) Our calculation in part (b) shows that n = 1. 

 

32. (a) The “height” of the triangular area  enclosed by the rails and bar is the same as the 

distance traveled in time v: d = vt, where v = 5.20 m/s. We also note that the “base” of 

that triangle (the distance between the intersection points of the bar with the rails) is 2d. 

Thus, the area of the triangle is 

 

A vt vt v t= = =
1

2

1

2
2 2 2( ( )( ) .base)(height)  

 

Since the field is a uniform B = 0.350 T, then the magnitude of the flux (in SI units) is  

 

ΦB = BA = (0.350)(5.20)
2
t
2
 = 9.46t

2
. 

 

At t = 3.00 s, we obtain ΦB = 85.2 Wb. 

 

(b) The magnitude of the emf is the (absolute value of) Faraday’s law: 

 



 

33. (a) Eq. 30-8 leads to 

 

(1.2T)(0.10 m)(5.0 m/s) 0.60 V .BLvε = = =  

 

(b) By Lenz’s law, the induced emf is clockwise. In the rod itself, we would say the emf 

is directed up the page. 

 

(c) By Ohm’s law, the induced current is i = 0.60 V/0.40 Ω = 1.5 A. 

 

(d) The direction is clockwise. 

 

(e) Eq. 27-22 leads to P = i
2
R = 0.90 W. 

 

(f) From Eq. 29-2, we find that the force on the rod associated with the uniform magnetic 

field is directed rightward and has magnitude 

 

F iLB= = =( . )( . .15 010 018A m)(1.2 T) N .  

 

To keep the rod moving at constant velocity, therefore, a leftward force (due to some 

external agent) having that same magnitude must be continuously supplied to the rod. 

 

(g) Using Eq. 7-48, we find the power associated with the force being exerted by the 

external agent:  

P = Fv = (0.18 N)(5.0 m/s) = 0.90 W, 

 

which is the same as our result from part (e). 



 

34. Noting that Fnet = BiL – mg = 0, we solve for the current: 
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BL R R
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B t= = = = =
| |
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which yields vt = mgR/B
2
L

2
. 



consider an infinitesimal horizontal strip of length x and width dr, parallel to the wire and 

a distance r from it; it has area A = x dr and the flux is 

 

0

2
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i
d BdA xdr

r

µ
π

Φ = = . 

 

By Eq. 30-1, the total flux through the area enclosed by the rod and rails is 
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According to Faraday’s law the emf induced in the loop is 
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(b) By Ohm’s law, the induced current is 

 

( ) ( )4 4/ 2.40 10 V / 0.400 6.00 10 A.i Rε − −= = × Ω = ×`  

 

Since the flux is increasing the magnetic field produced by the induced current must be 

into the page in the region enclosed by the rod and rails. This means the current is 

clockwise. 

 

(c) Thermal energy is being generated at the rate  

 

( ) ( )2
2 46.00 10 A 0.400P i R −= = × Ω =`

71.44 10 W.−×  

  

(d) Since the rod moves with constant velocity, the net force on it is zero. The force of the 

external agent must have the same magnitude as the magnetic force and must be in the 

opposite direction. The magnitude of the magnetic force on an infinitesimal segment of 

the rod, with length dr at a distance r from the long straight wire, is  

 

BdF = i B dr =` ( )0 / 2 .i i r drµ π`  

 

We integrate to find the magnitude of the total magnetic force on the rod: 

 

 

35. (a) Letting x be the distance from the right end of the rails to the rod, we find an 

expression for the magnetic flux through the area enclosed by the rod and rails. By Eq. 

29-17, the field is B = µ0i/2πr, where r is the distance from the long straight wire. We 
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Since the field is out of the page and the current in the rod is upward in the diagram, the 

force associated with the magnetic field is toward the right. The external agent must 

therefore apply a force of 2.87 × 10
–8

 N, to the left. 

 

(e) By Eq. 7-48, the external agent does work at the rate  

 

P = Fv = (2.87 × 10
–8

 N)(5.00 m/s) = 1.44 × 10
–7

 W. 

 

This is the same as the rate at which thermal energy is generated in the rod. All the 

energy supplied by the agent is converted to thermal energy. 



 

36. (a) For path 1, we have 
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(b) For path 2, the result is 
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(c) For path 3, we have 
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37. (a) The point at which we are evaluating the field is inside the solenoid, so Eq. 30-25 

applies. The magnitude of the induced electric field is 
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(b) Now the point at which we are evaluating the field is outside the solenoid and Eq. 30-

27 applies. The magnitude of the induced field is 
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38. From the “kink” in the graph of Fig. 30-61, we conclude that the radius of the circular 

region is 2.0 cm.  For values of r less than that, we have (from the absolute value of Eq. 

30-20) 

2( )
(2 ) Bd d BA dB

E r A r a
dt dt dt

π πΦ
= = = =  

 

which means that E/r = a/2.  This corresponds to the slope of that graph (the linear 

portion for small values of r) which we estimate to be 0.015 (in SI units). Thus, 

0.030 T/s.a =  



 

39. The magnetic field B can be expressed as 

 

B t B B tb g b g= + +0 1 0sin ,ω φ  

 

where B0 = (30.0 T + 29.6 T)/2 = 29.8 T and B1 = (30.0 T – 29.6 T)/2 = 0.200 T. Then 

from Eq. 30-25 
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We note that ω = 2π f and that the factor in front of the cosine is the maximum value of 

the field. Consequently, 
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40. Since NΦB = Li, we obtain 
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41. (a) We interpret the question as asking for N multiplied by the flux through one turn: 

 

Φ Φturns T m Wb.= = = = × = ×− −N NBA NB rB π π2 3 2 330 0 2 60 10 0100 2 45 10c h b gc hb gb g. . . .  

 

(b) Eq. 30-33 leads to 
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42. (a) We imagine dividing the one-turn solenoid into N small circular loops placed 

along the width W of the copper strip. Each loop carries a current ∆i = i/N. Then the 

magnetic field inside the solenoid is  
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(b) Eq. 30-33 leads to 
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43. We refer to the (very large) wire length as `  and seek to compute the flux per meter:  

ΦB / .`  Using the right-hand rule discussed in Chapter 29, we see that the net field in the 

region between the axes of antiparallel currents is the addition of the magnitudes of their 

individual fields, as given by Eq. 29-17 and Eq. 29-20. There is an evident reflection 

symmetry in the problem, where the plane of symmetry is midway between the two wires 

(at x = d/2); the net field at any point 0 < x < d/2 is the same at its “mirror image” point  

d – x. The central axis of one of the wires passes through the origin, and that of the other 

passes through x = d. We make use of the symmetry by integrating over 0 < x < d/2 and 

then multiplying by 2: 
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where d = 0.0025 m is the diameter of each wire. We will use r instead of x in the 

following steps. Thus, using the equations from Ch. 29 referred to above, we find 
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where the first term is the flux within the wires and will be neglected (as the problem 

suggests). Thus, the flux is approximately  ΦB i d a a≈ −µ 0 ` / ln / .π b gc h  Now, we use Eq. 

30-33 (with N = 1) to obtain the inductance per unit length: 
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60V
5.0A/s,

12H

di

dt L

ε
= − = − = −  

 

or | / | 5.0A/s.di dt =  We might, for example, uniformly reduce the current from 2.0 A to 

zero in 40 ms. 

 

44. Since ε = –L(di/dt), we may obtain the desired induced emf by setting 

 



 

45. (a) Speaking anthropomorphically, the coil wants to fight the changes—so if it wants 

to push current rightward (when the current is already going rightward) then i must be in 

the process of decreasing. 

 

(b) From Eq. 30-35 (in absolute value) we get 
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46. During periods of time when the current is varying linearly with time, Eq. 30-35 (in 

absolute values) becomes | | | / | .L i tε = ∆ ∆  For simplicity, we omit the absolute value 

signs in the following. 
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(b) For 2 ms < t < 5 ms, 
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(c) For 5 ms < t < 6 ms, 
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47. (a) Voltage is proportional to inductance (by Eq. 30-35) just as, for resistors, it is 

proportional to resistance. Since the (independent) voltages for series elements add (V1 + 

V2), then inductances in series must add, eq 1 2L L L= + , just as was the case for resistances. 

Note that to ensure the independence of the voltage values, it is important that the 

inductors not be too close together (the related topic of mutual inductance is treated in 

§30-12). The requirement is that magnetic field lines from one inductor should not have 

significant presence in any other. 

 

(b) Just as with resistors,  L Lnn

N

eq =
=∑ .

1
 

 



  

48. (a) Voltage is proportional to inductance (by Eq. 30-35) just as, for resistors, it is 

proportional to resistance. Now, the (independent) voltages for parallel elements are 

equal (V1 = V2), and the currents (which are generally functions of time) add (i1 (t) + i2 (t) 

= i(t)). This leads to the Eq. 27-21 for resistors. We note that this condition on the 

currents implies 

di t

dt

di t

dt

di t

dt

1 2b g b g b g
+ = .  

 

Thus, although the inductance equation Eq. 30-35 involves the rate of change of current, 

as opposed to current itself, the conditions that led to the parallel resistor formula also 

applies to inductors. Therefore, 

1 1 1

1 2L L Leq

= + .  

 

Note that to ensure the independence of the voltage values, it is important that the 

inductors not be too close together (the related topic of mutual inductance is treated in 

§30-12). The requirement is that the field of one inductor not to have significant influence 

(or “coupling’’) in the next. 

 

(b) Just as with resistors, 
1eq

1 1N

n nL L=

= ∑ . 



 

49. Using the results from Problems 30-47 and 30-48, the equivalent resistance is 

 

 
2 3

eq 1 4 23 1 4

2 3
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= + + = + + = + +

+ +
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50. (a) Immediately after the switch is closed ε – εL = iR. But i = 0 at this instant, so εL = 

ε, or εL/ε = 1.00 

 

(b) 
2.0 2.0( ) 0.135 ,L L Lt

L t e e e
τ τ τε ε ε ε ε− − −= = = =  or εL/ε = 0.135. 

 

(c) From ( ) Lt

L t e
τε ε −=  we obtain 

 

ln ln 2 ln 2 0.693       / 0.693.L L L

L L

t
t t

ε τ τ τ
τ ε

⎛ ⎞
= = ⇒ = = ⇒ =⎜ ⎟

⎝ ⎠
 



where τL = L/R is the inductive time constant and ε is the battery emf. To calculate the 

time at which i = 0.9990ε/R, we solve for t: 

 

( ) ( ) ( )/
0.990 1 ln 0.0010 /     / 6.91.Lt

Le t t
R R

τε ε τ τ−= − ⇒ = − ⇒ =  

 

51. Starting with zero current at t = 0 (the moment the switch is closed) the current in the 

circuit increases according to 

i
R

e t L= − −ε τ1 / ,c h  

 



 

52. The steady state value of the current is also its maximum value, ε/R, which we denote 

as im. We are told that i = im/3 at t0 = 5.00 s. Eq. 30-41 becomes ( )0 /
1 Lt

mi i e
τ−= −  which 

leads to 

τ L

m

t

i i
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−
= −

−
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5 00
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s
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53. The current in the circuit is given by 0
Lt

i i e
τ−= , where i0 is the current at time t = 0 

and τL is the inductive time constant (L/R). We solve for τL. Dividing by i0 and taking the 

natural logarithm of both sides, we obtain 

 

ln .
i

i

t

L0

F
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I
KJ = −

τ
 

This yields 

τ L

t

i i
= − = −

×
=

−ln /

.
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.
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A A
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Therefore, R = L/τL = 10 H/0.217 s = 46 Ω. 



 

54. From the graph we get Φ/i = 2 ×10
−4 

in SI units.  Therefore, with N = 25, we find the 

self-inductance is L = N Φ/i  = 5 × 10
−3 

H.  From the derivative of Eq. 30-41 (or a 

combination of that equation and Eq. 30-39) we find (using the symbol V to stand for the 

battery emf) 

di

dt
 = 

V

R

R

L
  e
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(b) At t = 1.0τL the current in the circuit is 

 

( )1.0 1.0 3

3

14.0V
1 (1 ) 7.37 10 A .

1.20 10
i e e

R
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55. (a) If the battery is switched into the circuit at t = 0, then the current at a later time t is 

given by 

i
R

e t L= − −ε τ1 / ,c h  

 

where τL = L/R. Our goal is to find the time at which i = 0.800ε/R. This means 

 
/ /

0.800 1 0.200 .L Lt t
e e

τ τ− −= − ⇒ =  

 

Taking the natural logarithm of both sides, we obtain –(t/τL) = ln(0.200) = –1.609. Thus, 

 



 

(g) i1 = 0, and  

 

(h) i2 = 0. 

 

56. (a) The inductor prevents a fast build-up of the current through it, so immediately 

after the switch is closed, the current in the inductor is zero. It follows that 

 

1

1 2

100V
3.33A.

10.0 +20.0
i

R R

ε
= = =

+ Ω Ω
 

(b) 2 1 3.33A.i i= =  

 

(c) After a suitably long time, the current reaches steady state. Then, the emf across the 

inductor is zero, and we may imagine it replaced by a wire. The current in R3 is i1 – i2. 

Kirchhoff’s loop rule gives 

( )
1 1 2 2

1 1 1 2 3

0

0.

i R i R

i R i i R

ε

ε

− − =
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We solve these simultaneously for i1 and i2, and find  
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(d) and 

( )( )
( )( ) ( )( ) ( )( )

3
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(e) The left-hand branch is now broken. We take the current (immediately) as zero in that 

branch when the switch is opened (that is, i1 = 0).  

 

(f) The current in R3 changes less rapidly because there is an inductor in its branch. In 

fact, immediately after the switch is opened it has the same value that it had before the 

switch was opened. That value is 4.55 A – 2.73 A = 1.82 A. The current in R2 is the same 

but in the opposite direction as that in R3, i.e., i2 = –1.82 A. 

 

A long time later after the switch is reopened, there are no longer any sources of emf in 

the circuit, so all currents eventually drop to zero. Thus, 



 

57. (a) Before the fuse blows, the current through the resistor remains zero. We apply the 

loop theorem to the battery-fuse-inductor loop: ε – L di/dt = 0. So i = εt/L. As the fuse 

blows at t = t0, i = i0 = 3.0 A. Thus, 

 

( )( )0
0

3.0A 5.0H
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10V

i L
t

ε
= = =  

 

(b) We do not show the graph here; qualitatively, it would be similar to Fig. 30-15. 



 

58. Applying the loop theorem 

ε − FHG
I
KJ =L

di

dt
iR ,  

 

we solve for the (time-dependent) emf, with SI units understood: 

 

( ) ( ) ( )( ) ( )( )
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1
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Rt L Rt L Rt Le e e− − −= − ⇒ =  

 

Taking the natural logarithm of both sides (and using ln ln1 2 2b g = − ) we obtain 

 

ln 2 ln 2.
Rt L

t
L R

⎛ ⎞ = ⇒ =⎜ ⎟
⎝ ⎠

 

 

59. (a) We assume i is from left to right through the closed switch. We let i1 be the 

current in the resistor and take it to be downward. Let i2 be the current in the inductor, 

also assumed downward. The junction rule gives i = i1 + i2 and the loop rule gives i1R – 

L(di2/dt) = 0. According to the junction rule, (di1/dt) = – (di2/dt). We substitute into the 

loop equation to obtain 

L
di

dt
i R1
1 0+ = .  

 

This equation is similar to Eq. 30-46, and its solution is the function given as Eq. 30-47: 

 

i i e Rt L

1 0= − ,  

 

where i0 is the current through the resistor at t = 0, just after the switch is closed. Now 

just after the switch is closed, the inductor prevents the rapid build-up of current in its 

branch, so at that moment i2 = 0 and i1 = i. Thus i0 = i, so 

 

( )1 2 1, 1 .Rt L Rt Li ie i i i i e− −= = − = −  

(b) When i2 = i1, 



 

60. (a) Our notation is as follows: h is the height of the toroid, a its inner radius, and b its 

outer radius. Since it has a square cross section, h = b – a = 0.12 m – 0.10 m = 0.02 m. 

We derive the flux using Eq. 29-24 and the self-inductance using Eq. 30-33: 
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Now, since the inner circumference of the toroid is l = 2πa = 2π(10 cm) ≈ 62.8 cm, the 

number of turns of the toroid is roughly N ≈ 62.8 cm/1.0 mm = 628. Thus 
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(b) Noting that the perimeter of a square is four times its sides, the total length `  of the 

wire is ` = =628 4 2 0 50b g b g. cm m , the resistance of the wire is  

 

R = (50 m)(0.02 Ω/m) = 1.0 Ω. 

 

Thus, 
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We equate this to dUB/dt, and solve for the time: 
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61. From Eq. 30-49 and Eq. 30-41, the rate at which the energy is being stored in the 

inductor is 
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where τL = L/R has been used. From Eq. 26-22 and Eq. 30-41, the rate at which the 

resistor is generating thermal energy is 



 

62. Let U t Li tB b g b g= 1
2

2 . We require the energy at time t to be half of its final value: 
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1
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63. (a) If the battery is applied at time t = 0 the current is given by 

 

i
R

e t L= − −ε τ1c h ,  

 

where ε is the emf of the battery, R is the resistance, and τL is the inductive time constant 

(L/R). This leads to 

e
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the inductive time constant is  

 

τL = t/0.5108 = (5.00 × 10
–3

 s)/0.5108 = 9.79 × 10
–3

 s 

 

and the inductance is 

 

L RL= = × × =−τ 9 79 10 10 0 10 97 93 3. . .s H .c hc hΩ  

 

(b) The energy stored in the coil is 
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64. (a) From Eq. 30-49 and Eq. 30-41, the rate at which the energy is being stored in the 

inductor is 
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Now,  

τL = L/R = 2.0 H/10 Ω = 0.20 s 

 

and ε = 100 V, so the above expression yields dUB/dt = 2.4 × 10
2
 W when t = 0.10 s. 

 

(b) From Eq. 26-22 and Eq. 30-41, the rate at which the resistor is generating thermal 

energy is 
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1 1
ε ετ τc h c h .  

 

At t = 0.10 s, this yields Pthermal = 1.5 × 10
2
 W. 

 

(c) By energy conservation, the rate of energy being supplied to the circuit by the battery 

is 

P P
dU

dt

B
battery thermal W.= + = ×39 102.  

 

We note that this result could alternatively have been found from Eq. 28-14 (with Eq. 30-

41). 



  

 

65. (a) The energy delivered by the battery is the integral of Eq. 28-14 (where we use Eq. 

30-41 for the current): 
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(b) The energy stored in the magnetic field is given by Eq. 30-49: 
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(c) The difference of the previous two results gives the amount “lost” in the resistor:  

18.7 J – 5.10 J = 13.6 J. 

 



66. It is important to note that the x that is used in the graph of Fig. 30-71(b) is not the x 

at which the energy density is being evaluated.  The x in Fig. 30-71(b) is the location of 

wire 2.  The energy density (Eq. 30-54) is being evaluated at the coordinate origin 

throughout this problem.  We note the curve in Fig. 30-71(b) has a zero; this implies that 

the magnetic fields (caused by the individual currents) are in opposite directions (at the 

origin), which further implies that the currents have the same direction.  Since the 

magnitudes of the fields must be equal (for them to cancel) when the x of Fig. 30-71(b) is 

equal to 0.20 m, then we have (using Eq. 29-4) B1 = B2, or  

 

 0 1 0 2

2 2 (0.20 m)

i i

d

µ µ
π π

=  

      

which leads to (0.20 m) / 3d =  once we substitute 1 2 / 3i i=  and simplify.  We can also 

use the given fact that when the energy density is completely caused by B1 (this occurs 

when x becomes infinitely large because then B2 = 0) its value is uB = 1.96  × 10
−9 

(in SI 

units) in order to solve for B1: 

 1 02 BB µ µ= . 

 

(a) This combined with 1 0 1 / 2B i dµ π=  allows us to find wire 1’s current: i1 ≈ 23 mA. 

 

(b) Since i2 = 3i1 then i2 = 70 mA (approximately). 



 

67. We set u E u BE B= = =1
2 0

2 1
2

2

0ε µ  and solve for the magnitude of the electric field: 
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68. The magnetic energy stored in the toroid is given by U LiB = 1
2

2 , where L is its 

inductance and i is the current. By Eq. 30-54, the energy is also given by UB = uBV, 

where uB is the average energy density and V is the volume. Thus 
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n = (950 turns)/(0.850 m) = 1.118 × 10
3
 m

–1
. 

 

The magnetic energy density is 

 

u n iB = = × ⋅ × =− −1
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2
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(b) Since the magnetic field is uniform inside an ideal solenoid, the total energy stored in 

the field is UB = uBV, where V is the volume of the solenoid. V is calculated as the 

product of the cross-sectional area and the length. Thus 

 

U B = × = ×− −34 2 17 0 10 0850 4 94 10
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69. (a) At any point the magnetic energy density is given by uB = B
2
/2µ0, where B is the 

magnitude of the magnetic field at that point. Inside a solenoid B = µ0ni, where n, for the 

solenoid of this problem, is  

 



 

70. (a) The magnitude of the magnetic field at the center of the loop, using Eq. 29-9, is 
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(b) The energy per unit volume in the immediate vicinity of the center of the loop is 
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71. (a) The energy per unit volume associated with the magnetic field is 
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(b) The electric energy density is 
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Here we used J = i/A and R A= ρ`  to obtain ρJ iR= ` . 



 

72. We use ε2 = –M di1/dt ≈ M|∆i/∆t| to find M: 
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73. (a) Eq. 30-65 yields 

M
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(b) Eq. 30-60 leads to 
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74. (a) The flux in coil 1 is 
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(b) The magnitude of the self-induced emf is 
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(c) In coil 2, we find 
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(d) The mutually induced emf is 

 

( )( )1
21 3.0mH 4.0 A s 12mV.
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M
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which is exactly the emf that would be produced if the coils were replaced by a single 

coil with inductance Leq = L1 + L2 + 2M. 

 

(b) We imagine reversing the leads of coil 2 so the current enters at the back of coil rather 

than the front (as pictured in the diagram). Then the field produced by coil 2 at the site of 

coil 1 is opposite to the field produced by coil 1 itself. The fluxes have opposite signs. An 

increasing current in coil 1 tends to increase the flux in that coil, but an increasing current 

in coil 2 tends to decrease it. The emf across coil 1 is 

 

ε1 1= − −L M
di

dt
b g .  

Similarly, the emf across coil 2 is 

 

ε 2 2= − −L M
di

dt
b g .  

The total emf across both coils is 

 

ε = − + −L L M
di

dt
1 2 2b g .  

 

This the same as the emf that would be produced by a single coil with inductance  

 

Leq = L1 + L2 – 2M. 

 

75. (a) We assume the current is changing at (nonzero) rate di/dt and calculate the total 

emf across both coils. First consider the coil 1. The magnetic field due to the current in 

that coil points to the right. The magnetic field due to the current in coil 2 also points to 

the right. When the current increases, both fields increase and both changes in flux 

contribute emf’s in the same direction. Thus, the induced emf’s are 

 

ε ε1 1 2 2= − + = − +L M
di

dt
L M

di

dt
b g b gand . 

 

Therefore, the total emf across both coils is 

 

ε ε ε= + = − + +1 2 1 2 2L L M
di

dt
b g  



 

76. (a) The coil-solenoid mutual inductance is 

 

M M
N

i

N i n R

i
R nNcs

cs

s

s

s

= = = =
Φ µ

µ0

2

0

2
π

π
c h

.  

 

(b) As long as the magnetic field of the solenoid is entirely contained within the cross-

section of the coil we have Φsc = BsAs = BsπR
2
, regardless of the shape, size, or possible 

lack of close-packing of the coil. 



  

 

77. The flux over the loop cross section due to the current i in the wire is given by 

 

Φ = = = +FHG
I
KJ

+ +z za

a b

a

a b

B ldr
il

r
dr

il b

a
wire

µ µ0 0

2 2
1

π π
ln .  

Thus, 

M
N

i

N l b

a
= = +FHG

I
KJ

Φ µ 0

2
1

π
ln .  

 

From the formula for M obtained above, we have 

 

M =
×

+FHG
I
KJ = ×

−
−

100 4 10 0 30

2
1

8 0

10
13 10

7

5
b gc hb gπ

π

H m m
H

.
ln

.

.
. .  



 

78. In absolute value, Faraday’s law (for a single turn, with B changing in time) gives  

 

 2( )Bd d BA dB dB
A R

dt dt dt dt
πΦ

= = =  

 

for the magnitude of the induced emf.  Dividing it by R
2
 then allows us to relate this to 

the slope of the graph in Fig. 30-75(b) [particularly the first part of the graph], which we 

estimate to be 80 µV/m
2
.  

 

(a) Thus,  
dB1

dt
  =  (80 µV/m

2
)/π   ≈ 25 µT/s . 

 

(b) Similar reasoning for region 2 (corresponding to the slope of the second part of the 

graph in Fig. 30-75(b)) leads to an emf equal to 

 

2 21 2 2
1

dB dB dB
r R

dt dt dt
π π⎛ ⎞− +⎜ ⎟

⎝ ⎠
 . 

 

which means the second slope (which we estimate to be 40 µV/m
2
) is equal to 2dB

dt
π .  

Therefore, 
 dB2

dt
  = (40 µV/m

2
)/π   ≈ 13 µT/s. 

 

(c) Considerations of Lenz’s law leads to the conclusion that B2 is increasing. 



 

79. The induced electric field E as a function of r is given by E(r) = (r/2)(dB/dt).  

 

(a) The acceleration of the electron released at point a is  

 

 
( )( )( )

( )
19 2 3

7 2

27

1.60 10 C 5.0 10 m 10 10 T s
ˆ ˆ ˆ ˆi i i (4.4 10 m s )i.

2 2 9.11 10 kg
a

eE er dB
a

m m dt

− − −

−

× × ×⎛ ⎞= = = = ×⎜ ⎟ ×⎝ ⎠
f

 

 

(b) At point b we have ab ∝ rb = 0. 

 

(c) The acceleration of the electron released at point c is  

 
7 2 ˆ(4.4 10 m s )i .c aa a= − = − ×

f f
 



 

80. (a)  From Eq. 30-35, we find L = (3.00 mV)/(5.00 A/s) = 0.600 mH. 

 

(b) Since NΦ = iL (where Φ = 40.0 µWb and i = 8.00 A), we obtain N = 120. 

 



  

81. (a) The magnitude of the average induced emf is 

 

( )( )2

avg

2.0T 0.20m
0.40V.

0.20s

iB B
BAd

dt t t
ε − Φ ∆Φ

= = = = =
∆

 

 

(b) The average induced current is 

 

i
R

avg

avg V

20 10
A.= =

×
=−

ε 0 40
20

3

.

Ω
 



 

82. Since 2 ,A = `  we have / 2 /dA dt d dt= ` ` . Thus, Faraday's law, with N = 1, becomes  

 

( )
2Bd d BA dA d

B B
dt dt dt dt

ε Φ
= − = − = − = −

``  

 

which yields ε = 0.0029 V. 



 

83. The energy stored when the current is i is 

 

 21

2
BU Li=  

 

where L is the self-inductance.  The rate at which this is developed is  

 

BdU di
Li

dt dt
=  

 

where i is given by Eq. 30-41 and /di dt  is obtained by taking the derivative of that 

equation (or by using Eq. 30-37).  Thus, using the symbol V to stand for the battery 

voltage (12.0 volts) and R for the resistance (20.0 Ω), we have, at 1.61 ,Lt τ=  

 

( ) ( )
2 2

/ / 1.61 1.61(12.0 V)
1 1 1.15 W

20.0
L Lt tBdU V

e e e e
dt R

τ τ− − − −= − = − =
Ω

. 



 

84. We write 0
Lt

i i e
τ−=  and note that i = 10% i0. We solve for t: 

 

t
i

i

L

R

i

i

i

i
L= F
HG
I
KJ = F

HG
I
KJ =

F
HG

I
KJ =τ ln ln

.
ln

.
. .0 0 0

0

2 00

0100
154

H

3.00
s

Ω
 



 

(b) Since now εL = ε, we have i2 = 0. 

 

(c) is = i1 + i2 = 2.0 A + 0 = 2.0 A. 

 

(d) Since VL = ε, V2 = ε – εL = 0. 

 

(e) VL = ε = 10 V. 

 

(f) 2 10 V
2.0 A/s

5.0 H

Ldi V

dt L L

ε
= = = = .  

(g) After a long time, we still have V1 = ε, so i1 = 2.0 A. 

 

(h) Since now VL = 0, i2 = ε/R2 = 10 V/10 Ω = 1.0 A. 

 

(i) is = i1 + i2 = 2.0 A + 1.0 A = 3.0 A. 

 

(j) Since VL = 0, V2 = ε – VL = ε = 10 V. 

 

(k) VL = 0. 

 

(l) 2 0Ldi V

dt L
= = .  

 

85. (a) When switch S is just closed, V1 = ε and i1 = ε/R1 = 10 V/5.0 Ω = 2.0 A.  



 

86. Because of the decay of current (Eq. 30-45) that occurs after the switches are closed 

on B, the flux will decay according to 

 

 1 2
/ /

1 10 2 20,L Lt t
e e

τ τ− −Φ = Φ Φ = Φ  

 

where each time-constant is given by Eq. 30-42.  Setting the fluxes equal to each other 

and solving for time leads to 

 

20 10

2 2 1 1

ln( / ) ln(1.50)
81.1 s

( / ) ( / ) (30.0 / 0.0030 H) (25 / 0.0050 H)
t

R L R L
µΦ Φ

= = =
− Ω − Ω

 . 

       



 ( )/ /
2 2 (1 ) 2 1L Lt t
iR e R e

R

τ τεε ε− −⎡ ⎤= = − = −⎢ ⎥⎣ ⎦
 

 

where Eq. 30-42 gives the inductive time constant as τL = L/R.  We note that the emf ε 

cancels out of that final equation, and we are able to rearrange (and take natural log) and 

solve.  We obtain t = 0.520 ms. 

87. Eq. 30-41 applies, and the problem requires 

 

iR = L 
di

dt
 = ε – iR 

 

at some time t (where Eq. 30-39 has been used in that last step).  Thus, we have 2iR = ε, 

or 

 



 

88. Taking the derivative of Eq. 30-41, we have 

 

/ / /
(1 )L L Lt t t

L

di d
e e e

dt dt R R L

τ τ τε ε ε
τ

− − −⎡ ⎤= − = =⎢ ⎥⎣ ⎦
. 

 

With τL = L/R (Eq. 30-42), L = 0.023 H and ε  = 12 V, t = 0.00015 s, and di/dt = 280 A/s, 

we obtain e
− t/τL = 0.537.  Taking the natural log and rearranging leads to R = 95.4 Ω. 

 



89. The self-inductance and resistance of the coil may be treated as a "pure" inductor in 

series with a "pure" resistor, in which case the situation described in the problem may be 

addressed by using Eq. 30-41.  The derivative of that solution is 

 

/ / /
(1 )L L Lt t t

L

di d
e e e

dt dt R R L

τ τ τε ε ε
τ

− − −⎡ ⎤= − = =⎢ ⎥⎣ ⎦
 

 

With τL = 0.28 ms (by Eq. 30-42), L = 0.050 H and ε = 45 V, we obtain di/dt = 12 A/s 

when t = 1.2 ms. 



 

90. (a)  From Eq. 30-28, we have  

 

 
9 2

3

(150)(50 10  T m )
3.75 mH

2.00 10 A

N
L

i

−

−

Φ × ⋅
= = =

×
. 

 

(b) The answer for L (which should be considered the constant of proportionality in  

Eq. 30-35) does not change; it is still 3.75 mH. 

 

(c) The equations of Chapter 28 display a simple proportionality between magnetic field 

and the current that creates it.  Thus, if the current has doubled, so has the field (and 

consequently the flux).  The answer is 2(50) = 100 nWb. 

 

(d) The magnitude of the induced emf is (from Eq. 30-35)  

 

 
max

(0.00375 H)(0.0030 A)(377 rad/s) 0.00424 V
di

L
dt

= = . 



  

 

91. (a) i0 = ε /R = 100 V/10 Ω = 10 A. 

 

(b) ( )( )22 21 1
02 2

2.0H 10A 1.0 10 JBU Li= = = × . 

 



92. (a) The self-inductance per meter is 

 

L
n A

`
= = × =µ 0

2 2 2
4 100 16 010π 10 π−7 H m turns cm cm H mc hb g b gb g. . .  

 

(b) The induced emf per meter is 

 

ε
` `

= = =
L di

dt
010 13 13. . .H m A s V mb gb g  



 

93. (a) As the switch closes at t = 0, the current being zero in the inductors serves as an 

initial condition for the building-up of current in the circuit. Thus, the current through any 

element of this circuit is also zero at that instant. Consequently, the loop rule requires the 

emf (εL1) of the L1 = 0.30 H inductor to cancel that of the battery. We now apply (the 

absolute value of) Eq. 30-35 

 

di

dt L

L= = =
ε 1

1

6 0

0 30
20

.

.
.A s  

 

(b) What is being asked for is essentially the current in the battery when the emf’s of the 

inductors vanish (as t → ∞ ). Applying the loop rule to the outer loop, with R1 = 8.0 Ω, 

we have 

1 1 2

1

6.0V
0 0.75A.L Li R i

R
ε ε ε− − − = ⇒ = =  



 

94. Using Eq. 30-41 

i
R

e t L= − −ε τ1c h  
where τL = 2.0 ns, we find 

 

1
ln 1.0ns.

1 /
Lt

iR
τ

ε
⎛ ⎞= ≈⎜ ⎟−⎝ ⎠

 



2bat | | 40 V
8.0 10 A s .

0.050 H

L
di

dt L

ε
= = = ×  

 

(c) This circuit becomes equivalent to that analyzed in §30-9 when we replace the parallel 

set of 20000 Ω resistors with R = 10000 Ω. Now, with τL = L/R = 5 × 10
–6

 s, we have t/τL 

= 3/5, and we apply Eq. 30-41: 

 

( )3 5 3

bat 1 1.8 10 A.i e
R

ε − −= − ≈ ×  

 

(d) The rate of change of the current is figured from the loop rule (and Eq. 30-35): 

 

bat | | 0 .Li Rε ε− − =  

 

Using the values from part (c), we obtain |εL| ≈ 22 V. Then, 

 

2bat | | 22 V
4.4 10 A s .

0.050 H

L
di

dt L

ε
= = ≈ ×  

 

(e) As t → ∞ , the circuit reaches a steady state condition, so that dibat/dt = 0 and εL = 0. 

The loop rule then leads to 

 

3

bat bat

40 V
| | 0   4.0 10 A.

10000
Li R iε ε −− − = ⇒ = = ×

Ω
 

 

(f) As t → ∞ , the circuit reaches a steady state condition, dibat/dt = 0. 

 

 

95. (a) As the switch closes at t = 0, the current being zero in the inductor serves as an 

initial condition for the building-up of current in the circuit. Thus, at t = 0 the current 

through the battery is also zero. 

 

(b) With no current anywhere in the circuit at t = 0, the loop rule requires the emf of the 

inductor εL to cancel that of the battery (ε = 40 V). Thus, the absolute value of Eq. 30-35 

yields 



96. (a) L = Φ/i = 26 × 10
–3

 Wb/5.5 A = 4.7 × 10
–3

 H. 

 

(b) We use Eq. 30-41 to solve for t: 

 

( )( )3

3

2.5A 0.754.7 10 H
ln 1 ln 1 ln 1

0.75 6.0V

2.4 10 s.

L

iR L iR
t

R
τ

ε ε

−

−

⎡ ⎤Ω×⎛ ⎞ ⎛ ⎞= − − = − − = − −⎢ ⎥⎜ ⎟ ⎜ ⎟ Ω⎝ ⎠ ⎝ ⎠ ⎣ ⎦
= ×

 



         ΦB = xHB2 + (D – x)HB1= DHB1 + xH(B2 – B1) 

which means  

 

dĭB

dt
  = 

dx

dt
H(B2 – B1) = vH(B2 – B1)  ⇒     i = vH(B2 – B1)/R. 

 

Similar considerations hold (replacing “B1” with 0 and  “B2” with B1) for the loop 

crossing initially from the zero-field region (to the left of Fig. 30-81(a)) into region 1.   

 

(a) In this latter case, appeal to Fig. 30-81(b) leads to  

 

     3.0 × 10
− 6 

A = (0.40 m/s)(0.015 m) B1 /(0.020 Ω) 

 

which yields B1 = 10 µT. 

 

(b) Lenz’s law considerations lead us to conclude that the direction of the region 1 field is 

out of the page. 

 

(c) Similarly, i = vH(B2 – B1)/R leads to 2 3.3 TB µ= .  

 

(d) The direction of 2B
f

  is out of the page.  

  

 

97. Using Ohm’s law, we relate the induced current to the emf and (the absolute value of) 

Faraday’s law: 

 
| | 1 d

i
R R dt

ε Φ
= = . 

 

As the loop is crossing the boundary between regions 1 and 2 (so that “x” amount of its 

length is in region 2 while “D – x” amount of its length remains in region 1) the flux is 

 



 

98. (a) We use U LiB = 1
2

2  to solve for the self-inductance: 

 

L
U

i

B= =
×

×
=

−

−

2 2 25 0 10

60 0 10
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c h
c h

 

 

(b) Since UB ∝ i
2
, for UB to increase by a factor of 4, i must increase by a factor of 2. 

Therefore, i should be increased to 2(60.0 mA) = 120 mA. 



  

(d) The trend in our answers to parts (a), (b) and (c) lead us to expect the smaller the 

resistance then the smaller to value of t.  If we consider what happens to Eq. 30-39 in the 

extreme case where R → 0, we find that the time-derivative of the current becomes equal 

to the emf divided by the self-inductance, which leads to a linear dependence of current 

on time: i = (ε /L)t.  In fact, this is what one have obtained starting from Eq. 30-41 and 

considering its R → 0 limit.  Thus, this case seems self-consistent, so we conclude that it 

is meaningful and that R = 0 is actually a valid answer here. 

 

(e) Thus t = Li/ ε = 0.00300 s in this “least-time” scenario.    

 

 

99. (a) The current is given by Eq. 30-41 

 

( )1 2.00 ALt
i e

R

τε −= − =  , 

 

where L = 0.018 H and ε = 12 V.  If R = 1.00 Ω (so τL = L/R = 0.018 s), we obtain t = 

0.00328 s when we solve this equation. 

 

(b) For R = 5.00 Ω we find t = 0.00645 s. 

 

(c) If we set R = 6.00 Ω then ε /R = 2.00 A so e
− t/τL = 0, which means t = ∞. 

 



100. Faraday’s law (for a single turn, with B changing in time) gives  

 

2( )Bd d BA dB dB
A r

dt dt dt dt
ε πΦ

= − = − = − = − . 

 

In this problem, we find  /0 tBdB
e

dt

τ

τ
−= − .   Thus, 2 /0 tB

r e τε π
τ

−= .  



 

101. (a) As the switch closes at t = 0, the current being zero in the inductor serves as an 

initial condition for the building-up of current in the circuit. Thus, at t = 0 any current 

through the battery is also that through the 20 Ω and 10 Ω resistors. Hence, 

 

0.400A
30.0

i
ε

= =
Ω

 

 

which results in a voltage drop across the 10 Ω resistor equal to (0.400 A)(10 Ω) = 4.0 V. 

The inductor must have this same voltage across it |εL|, and we use (the absolute value of) 

Eq. 30-35: 

4.00 V
400A s.

0.0100 H

Ldi

dt L

ε
= = =  

 

(b) Applying the loop rule to the outer loop, we have 

 

ε ε− − =050 20 0. .Ab gb gΩ L  

 

Therefore, |εL| = 2.0 V, and Eq. 30-35 leads to 

 

2.00 V
200A s.

0.0100 H

Ldi

dt L

ε
= = =  

 

(c) As t → ∞ , the inductor has εL = 0 (since the current is no longer changing). Thus, the 

loop rule (for the outer loop) leads to 

 

ε ε− − = ⇒ =i iL20 0 0 60Ωb g . A .  



 

102. The flux ΦB over the toroid cross-section is (see, for example Problem 30-60) 

 

ΦB
a

b

a

b

B dA
Ni

r
hdr

Nih b

a
= = FHG

I
KJ = F

HG
I
KJz z µ µ0 0

2 2π π
ln . 

 

Thus, the coil-toroid mutual inductance is 

 

M
N

i

N

i

i N h b

a

N N h b

a
ct

c ct

t

c

t

t t= = F
HG
I
KJ = F
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I
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Φ µ µ0 0 1 2

2 2π π
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where Nt = N1 and Nc = N2.  



 

103. From the given information, we find 

 

dB

dt
= =

0 030
2 0

.
. .

T

0.015s
T s  

 

Thus, with N = 1 and cos30 3 2°= , and using Faraday’s law with Ohm’s law, we have 

 

( )
2 23 (0.14 m) 3

2.0 T/s 0.021A.
2 5.0 2

N r dB
i

R R dt

ε π π
= = = =

Ω
 



 

104. The area enclosed by any turn of the coil is πr
2
 where r = 0.15 m, and the coil has N 

= 50 turns. Thus, the magnitude of the induced emf, using Eq. 30-5, is 

 

ε = =N r
dB

dt

dB

dt
π 2 2353. mc h  

 

where dB
dt

t= 0 0126. cosT sb g ω . Thus, using Ohm’s law, we have 

 

( )( )23.53 m 0.0126 T/s
cos .

4.0
i t

R

ε
ω= =

Ω
 

 

When t = 0.020 s, this yields i = 0.011 A. 



Chapter 31 
 



 

 

 

 

1. (a) The period is T = 4(1.50 µs) = 6.00 µs. 

 

(b) The frequency is the reciprocal of the period: 

 

f
T

= = = ×
1 1

6 00
167 105

.
.

µs
Hz. 

 

(c) The magnetic energy does not depend on the direction of the current (since UB ∝ i
2
), 

so this will occur after one-half of a period, or 3.00 µs. 
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2. We find the capacitance from U Q C= 1
2

2 : 

 

C
Q

U
= =

×

×
= ×

−

−
−

2 6
2
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2

160 10

2 140 10
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J
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c h
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3. According to U LI Q C= =1
2

2 1
2

2 ,  the current amplitude is 

 

I
Q

LC
= =

×

× ×
= ×

−

− −

−300 10

4 00 10
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( ) ( ) ( )
( ) ( )( )

3

2 1 2 11 1
( 1) 2 1 2 1 2.50 s ,

2 2 2 2 2 10 Hz

n n
t T n T n T n

f
µ

− −
= + − = − = = = −

×
 

 

where n = 1, 2, 3, 4, … . The earliest time is (n=1) 2.50 s.t µ=  

 

(c) At t T= 1
4

, the current and the magnetic field in the inductor reach maximum values 

for the first time (compare steps a and c in Fig. 31-1). Later this will repeat every half-

period (compare steps c and g in Fig. 31-1). Therefore, 

 

( ) ( )( )( 1)
2 1 2 1 1.25 s ,

4 2 4
L

T n T T
t n n µ−

= + = − = −  

 

where n = 1, 2, 3, 4, … . The earliest time is (n=1) 1.25 s.t µ=  

 

4. (a) We recall the fact that the period is the reciprocal of the frequency. It is helpful to 

refer also to Fig. 31-1. The values of t when plate A will again have maximum positive 

charge are multiples of the period: 

 

t nT
n

f

n
nA = = =

×
=

2 00 10
500

3.
. ,

Hz
sµb g  

 

where n = 1, 2, 3, 4, … . The earliest time is (n=1) 5.00 s.At µ=  

 

(b) We note that it takes t T= 1
2

 for the charge on the other plate to reach its maximum 

positive value for the first time (compare steps a and e in Fig. 31-1). This is when plate A 

acquires its most negative charge. From that time onward, this situation will repeat once 

every period. Consequently, 

 



 

5. (a) All the energy in the circuit resides in the capacitor when it has its maximum 

charge. The current is then zero. If Q is the maximum charge on the capacitor, then the 

total energy is 

U
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C
= =
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×
= ×
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(b) When the capacitor is fully discharged, the current is a maximum and all the energy 

resides in the inductor. If I is the maximum current, then U = LI
2
/2 leads to 

 

I
U

L
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×
= ×

−

−
−2 2 1168 10

75 10
558 10

6

3

3
.

.
J

H
A.

c h
 



 

6. (a) The angular frequency is 

 

ω = = =
×

=
−

k

m

F x

m

8 0
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89

13

.

.
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N

2.0 10 m kg
rad sc hb g  

 

(b) The period is 1/f and f = ω/2π. Therefore, 

 

T = = = × −2 2
7 0 10 2π π

89ω rad s
s..  

 

(c) From ω = (LC)
–1/2

, we obtain 

 

C
L

= = = × −1 1

89 50
2 5 10

2 2

5

ω rad s H
F.b g b g.

.  



 

7. (a) The mass m corresponds to the inductance, so m = 1.25 kg. 

 

(b) The spring constant k corresponds to the reciprocal of the capacitance. Since the total 

energy is given by U = Q
2
/2C, where Q is the maximum charge on the capacitor and C is 

the capacitance, 

C
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k =
×

=−

1

2 69 10
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3. m / N
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(c) The maximum displacement corresponds to the maximum charge, so 
4

max 1.75 10  m.x −= ×  

 

(d) The maximum speed vmax corresponds to the maximum current. The maximum 

current is 

I Q
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Consequently, vmax = 3.02 × 10
–3

 m/s. 

 



8. We find the inductance from f LC= =
−

ω / .2 2
1

π πd i  

 

L
f C

= =
× ×

= ×
−

−1

4

1

4 10 10 6 7 10
38 10

2 2 2 3
2

6

5

π π Hz F
H.

c h c h.
.  



 

9. The time required is t = T/4, where the period is given by T LC= =2 2π π/ .ω  

Consequently, 

t
T LC

= = =
×

= ×
−

−

4

2

4

2 0 050 4 0 10

4
7 0 10

6

4π π . .
.

H F
s.

b gc h
 



  

 

10. We apply the loop rule to the entire circuit: 

 

( )
1 1 1total j j jL C R L C R j j

j j j

di q di q
L iR L iR

dt C dt C
ε ε ε ε ε ε ε

⎛ ⎞
= + + + = + + = + + = + +⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑A  

with 

1 1
, ,j j

j j jj

L L R R
C C

= = =∑ ∑ ∑  

 

and we require εtotal = 0. This is equivalent to the simple LRC circuit shown in Fig. 31-

27(b). 

 



11. (a) After the switch is thrown to position b the circuit is an LC circuit. The angular 

frequency of oscillation is ω = 1/ LC . Consequently, 

 

f
LC

= = =
× ×

=
− −

ω
2

1

2

1

2 54 0 10 6 20 10
275

3 6π π π . .H F
Hz.

c hc h
 

 

(b) When the switch is thrown, the capacitor is charged to V = 34.0 V and the current is 

zero. Thus, the maximum charge on the capacitor is Q = VC = (34.0 V)(6.20 × 10
–6

 F) = 

2.11 × 10
–4

 C. The current amplitude is 

 

I Q fQ= = = × =−ω 2 2 275 211 10 0 3654π π Hz C A.b gc h. .  



 

12. The capacitors C1 and C2 can be used in four different ways: (1) C1 only; (2) C2 only; 

(3) C1 and C2 in parallel; and (4) C1 and C2 in series.  

 

(a) The smallest oscillation frequency is 

 

f
L C C

3

1 2
2 6

21

2

1

2 10 10 2 0 10
6 0 10=

+
=

× × ×
= ×

− − −π πb g c hc h. .
.

H F + 5.0 10 F
Hz

6
. 

 

(b) The second smallest oscillation frequency is 

 

 

( )( )
2

1
2 6

1

1 1
7.1 10 Hz

2 2 1.0 10 H 5.0 10 F
f

LC − −
= = = ×

π π × ×
. 

 

(c) The second largest oscillation frequency is 

 

( )( )
3

2
2 6

2

1 1
1.1 10 Hz

2 2 1.0 10 H 2.0 10 F
f

LC − −
= = = ×

π π × ×
. 

 

(d) The largest oscillation frequency is 

 

( ) ( )( )( )
6 6

3

4 2 6 6

1 2 1 2

1 1 2.0 10 F+5.0 10 F
1.3 10 Hz

2 1.0 10 H 2.0 10 F 5.0 10 F2 /
f

LC C C C

− −

− − −

× ×
= = = ×

π × × ×π +
. 



  

(b) From U LI Q C= =1
2

2 1
2

2 /  we get 

 

I
Q

LC
= =

×

× ×
= ×

−

− −

−30 10

30 10 10 10
17 10

9

3 9

3.

. .
.

C

H F
A.

c hc h
 

 

(c) When the current is at a maximum, the magnetic energy is at a maximum also: 

 

U LIB ,max . . .= = × × = ×− − −1

2

1

2
30 10 17 10 4 5 102 3 3

2
9H A J.c hc h  

 

13. (a) The maximum charge is Q = CVmax = (1.0 × 10
–9

 F)(3.0 V) = 3.0 × 10
–9

 C. 

 



 

14. The linear relationship between θ (the knob angle in degrees) and frequency f is 

 

f f
f

f
= +

°
F
HG

I
KJ ⇒ = ° −

F
HG
I
KJ0

0

1
180

180 1
θ θ  

 

where f0 = 2 × 10
5
 Hz. Since f = ω/2π = 1/2π LC , we are able to solve for C in terms of 

θ : 

( ) ( )2 22 2 2

0

1 81

4 1 /180 400000 180
C

Lf θ θ
= =

π + ° π ° +
 

 

with SI units understood. After multiplying by 10
12

 (to convert to picofarads), this is 

plotted below: 

 



 

r = =
160

054
2 96

.

.
. .

MHz

MHz
 

 

Since the additional capacitor is in parallel with the tuning capacitor, its capacitance adds 

to that of the tuning capacitor. If C is in picofarads (pF), then 

 

C

C

+

+
=

365

10
2 96

pF

pF
. .  

The solution for C is 

C =
−

−
=

365 2 96 10

2 96 1
36

2

2

pF pF
pF.

b g b g b g
b g

.

.
 

 

(c) We solve f LC= 1 2/ π  for L. For the minimum frequency C = 365 pF + 36 pF = 

401 pF and f = 0.54 MHz. Thus 

 

L
Cf

= =
× ×

= ×
−

−1

2

1

2 401 10 054 10
2 2 10

2 2 2 12 6
2

4

π πb g b g c hc hF Hz
H.

.
.  

 

15. (a) Since the frequency of oscillation f is related to the inductance L and capacitance 

C by f LC= 1 2/ ,π  the smaller value of C gives the larger value of f. Consequently,  

f LC f LCmax min min max/ , / ,= =1 2 1 2π π  and 

 

maxmax

min min

365pF
6.0.

10pF

Cf

f C
= = =  

 

(b) An additional capacitance C is chosen so the ratio of the frequencies is 



 

16. For the first circuit ω = (L1C1)
–1/2

, and for the second one ω = (L2C2)
–1/2

. When the 

two circuits are connected in series, the new frequency is 

 

( ) ( ) ( ) ( )

( ) ( )

eq eq 1 2 1 2 1 2 1 1 2 2 2 1 1 2

1 1 1 2 1 2

1 1 1

/ /

1 1
,

/

L C L L C C C C L C C L C C C C

L C C C C C

ω

ω

′ = = =
+ + + +

= =
+ +

 

 

where we use ω − = =1

1 1 2 2L C L C .  



 

17. (a) We compare this expression for the current with i = I sin(ωt+φ0). Setting (ωt+φ) = 

2500t + 0.680 = π/2, we obtain t = 3.56 × 10
–4

 s. 

 

(b) Since ω = 2500 rad/s = (LC)
–1/2

, 

 

L
C

= =
×

= ×
−

−1 1

2500 64 0 10
2 50 10

2 2 6

3

ω rad / s F
H.b g c h.

.  

 

(c) The energy is 

 

U LI= = × = ×− −1

2

1

2
2 50 10 160 320 102 3 2 3. . .H A J.c hb g  



 

18. (a) Since the percentage of energy stored in the electric field of the capacitor is  

(1 75.0%) 25.0%− = , then 

U

U

q C

Q C

E = =
2

2

2

2
25 0%

/

/
.  

 

which leads to / 0.250 0.500.q Q = =  

 

(b) From 

U

U

Li

LI

B = =
2

2

2

2
750%,

/

/
.  

 

we find / 0.750 0.866.i I = =  



  

 

19. (a) The total energy U is the sum of the energies in the inductor and capacitor: 

 

( )
( )

( ) ( )2 2
6 3 32 2

6

6

3.80 10 C 9.20 10 A 25.0 10 H
1.98 10 J.

2 2 22 7.80 10 F
E B

q i L
U U U

C

− − −
−

−

× × ×
= + = + = + = ×

×
 

 

(b) We solve U = Q
2
/2C for the maximum charge: 

 

Q CU= = × × = ×− − −2 2 7 80 10 198 10 556 106 6 6. . .F J C.c hc h  

 

(c) From U = I
2
L/2, we find the maximum current: 

 

I
U

L
= =

×

×
= ×

−

−
−2 2 198 10

25 0 10
126 10

6

3

2
.

.
.

J

H
A.

c h
 

 

(d) If q0 is the charge on the capacitor at time t = 0, then q0 = Q cos φ and 

 

φ =
F
HG
I
KJ =

×
×

F
HG

I
KJ = ± °− −

−

−cos cos
.

.
. .1 1

6

6

380 10

556 10
46 9

q

Q

C

C
 

 

For φ = +46.9° the charge on the capacitor is decreasing, for φ = –46.9° it is increasing. 

To check this, we calculate the derivative of q with respect to time, evaluated for t = 0. 

We obtain –ωQ sin φ, which we wish to be positive. Since sin(+46.9°) is positive and 

sin(–46.9°) is negative, the correct value for increasing charge is φ = –46.9°. 

 

(e) Now we want the derivative to be negative and sin φ to be positive. Thus, we take 

46.9 .φ = + °  

 



20. (a)  From V = IXC we find ω = I/CV.  The period is then T = 2π/ω = 2πCV/I = 46.1 µs. 

 

(b) The maximum energy stored in the capacitor is  

 

 2 7 2 91 1
(2.20 10 F)(0.250 V) 6.88 10  J

2 2
EU CV − −= = × = × . 

 

(c) The maximum energy stored in the inductor is also 2 / 2BU LI= = 6.88 nJ . 

 

(d) We apply Eq. 30-35 as V = L(di/dt)max . We can substitute L = CV
2
/I

2
 (combining 

what we found in part (a) with Eq. 31-4) into Eq. 30-35 (as written above) and solve for 

(di/dt)max .  Our result is  

 

 
2 3 2

3

2 2 7

max

(7.50 10 A)
1.02 10 A/s

/ (2.20 10 F)(0.250 V)

di V V I

dt L CV I CV

−

−

×⎛ ⎞ = = = = = ×⎜ ⎟ ×⎝ ⎠
. 

 

(e) The derivative of UB = 
1

2
 Li

2
 leads to  

 

 2 21
sin cos sin 2

2

BdU
LI t t LI t

dt
ω ω ω ω ω= = . 

 

Therefore, 2 3

max

1 1 1
(7.50 10 A)(0.250 V) 0.938 mW.

2 2 2

BdU
LI IV

dt
ω −⎛ ⎞ = = = × =⎜ ⎟

⎝ ⎠
 



  

U
q

C

Q t

C
E = =

2 2 2

2 2

sin ω
 

and its rate of change is 

dU

dt

Q t t

C

E =
2ω ω ωsin cos

 

 

We use the trigonometric identity cos sin sinω ω ωt t t= 1
2

2b g  to write this as 

 

dU

dt

Q

C
tE =

ω ω
2

2
2sin .b g  

 

The greatest rate of change occurs when sin(2ωt) = 1 or 2ωt = π/2 rad. This means 

 

( )( )3 6 53.00 10 H 2.70 10 F 7.07 10 s.
4 4

t LC
π π π
ω

− − −= = = × × = ×
4

 

 

(c) Substituting ω = 2π/T and sin(2ωt) = 1 into dUE/dt = (ωQ
2
/2C) sin(2ωt), we obtain  

 

dU

dt

Q

TC

Q

TC

EF
HG
I
KJ = =

max

.
2

2

2 2π π
 

 

Now T LC= = × × = ×− − −2 2 3 00 10 2 70 10 5 655 103 6 4π π . . .H F s,c hc h  so 

 

dU

dt

EF
HG
I
KJ =

×

× ×
=

−

− −
max

.

. .
.

π 180 10

5 655 10 2 70 10
66 7

4
2

4 6

C

s F
W.

c h
c hc h  

 

We note that this is a positive result, indicating that the energy in the capacitor is indeed 

increasing at t = T/8. 

 

21. (a) The charge (as a function of time) is given by sinq Q tω= , where Q is the 

maximum charge on the capacitor and ω is the angular frequency of oscillation. A sine 

function was chosen so that q = 0 at time t = 0. The current (as a function of time) is 

 

i
dq

dt
Q t= = ω ωcos ,  

 

and at t = 0, it is I = ωQ. Since ω = 1/ ,LC  

 

Q I LC= = × × = ×− − −2 00 3 00 10 2 70 10 180 103 6 4. . . .A H F C.b g c hc h  

 

(b) The energy stored in the capacitor is given by 

 



(c) Referring to Fig. 31-1, we see that the required time is one-fourth of a period (where 

the period is the reciprocal of the frequency). Consequently, 

 

t T
f

= = =
×

= × −1

4

1

4

1

4 133 10
188 10

3

4

.
.

Hz
s.

e j
 

 

22. (a) We use U LI Q C= =1
2

2 1
2

2 /  to solve for L: 

 

( )
22 22

6 3max max

3

1 1 1.50V
4.00 10 F 3.60 10 H.

50.0 10 A

CV VQ
L C

C I C I I

− −
−

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞= = = = × = ×⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ×⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

 

(b) Since f = ω/2π, the frequency is 

 

f
LC

= =
× ×

= ×
− −

1

2

1

2 360 10 4 00 10
133 10

3 6

3

π π . .
.

H F
Hz.

c hc h
 

 



 

23. The loop rule, for just two devices in the loop, reduces to the statement that the 

magnitude of the voltage across one of them must equal the magnitude of the voltage 

across the other.  Consider that the capacitor has charge q and a voltage (which we’ll 

consider positive in this discussion) V = q/C.  Consider at this moment that the current in 

the inductor at this moment is directed in such a way that the capacitor charge is 

increasing (so i = +dq/dt). Eq. 30-35 then produces a positive result equal to the V across 

the capacitor: V = −L(di/dt), and we interpret the fact that −di/dt > 0 in this discussion to 

mean that d(dq/dt)/dt = d
2
q/dt

2
 < 0 represents a “deceleration” of the charge-buildup 

process on the capacitor (since it is approaching its maximum value of charge).  In this 

way we can “check” the signs in Eq. 31-11 (which states q/C = − L d
2
q/dt

2
) to make sure 

we have implemented the loop rule correctly. 



 

24. The assumption stated at the end of the problem is equivalent to setting φ = 0 in Eq. 

31-25. Since the maximum energy in the capacitor (each cycle) is given by q Cmax /2 2 , 

where qmax is the maximum charge (during a given cycle), then we seek the time for 

which 
2 2

max
max

1
.

2 2 2 2

q Q Q
q

C C
= ⇒ =  

 

Now qmax (referred to as the exponentially decaying amplitude in §31-5) is related to Q 

(and the other parameters of the circuit) by 

 

q Qe
q

Q

Rt

L

Rt L

max

/ maxln .= ⇒
F
HG
I
KJ = −− 2

2
 

 

Setting q Qmax = / 2 , we solve for t: 

 

t
L

R

q

Q

L

R

L

R
= −

F
HG
I
KJ = − F

HG
I
KJ =

2 2 1

2
2ln ln ln .max  

 

The identities ln ( / ) ln ln1 2 2 21
2

= − = −  were used to obtain the final form of the 

result. 



  

( ) ( )( )( )3 62
50 50 50 2 50 2 220 10 H 12.0 10 F

0.5104s.

t T LC
ω

− −π⎛ ⎞= = = π = π × ×⎜ ⎟
⎝ ⎠

=
 

 

The maximum charge on the capacitor decays according toq Qe Rt L

max

/= − 2  (this is called 

the exponentially decaying amplitude in §31-5), where Q is the charge at time t = 0 (if we 

take φ = 0 in Eq. 31-25). Dividing by Q and taking the natural logarithm of both sides, we 

obtain 

ln maxq

Q

Rt

L

F
HG
I
KJ = −

2
 

which leads to 

 

( ) ( )
3

3max
2 220 10 H2

ln ln 0.99 8.66 10 .
0.5104s

qL
R

t Q

−
−

×⎛ ⎞
= − = − = × Ω⎜ ⎟

⎝ ⎠
 

 

25. Since ω ≈ ω', we may write T = 2π/ω as the period and ω = 1/ LC  as the angular 

frequency. The time required for 50 cycles (with 3 significant figures understood) is 

 



 

26. The charge q after N cycles is obtained by substituting t = NT = 2πN/ω' into Eq.  

31-25: 

 

( ) ( )
( ) ( )

/ 2 / 2

2 / / 2

/

cos cos 2 /

cos 2

cos .

Rt L RNT L

RN L C L

N R C L

q Qe t Qe N

Qe N

Qe

ω φ ω ω φ

φ

φ

− −

− π

− π

′ ′ ′⎡ ⎤= + = π +⎣ ⎦

= π +

=

 

 

We note that the initial charge (setting N = 0 in the above expression) is q0 = Q cos φ, 

where q0 = 6.2 µC is given (with 3 significant figures understood). Consequently, we 

write the above result as ( )0 exp /Nq q N R C L= − π . 

 

(a) For N = 5, ( ) ( )( )5 6.2 C exp 5 7.2 0.0000032F/12H 5.85 C.q µ µ= − π Ω =  

 

(b) For N = 10, ( ) ( )( )10 6.2 C exp 10 7.2 0.0000032F/12H 5.52 C.q µ µ= − π Ω =  

 

(c) For N = 100, ( ) ( )( )100 6.2 C exp 100 7.2 0.0000032F/12H 1.93 C.q µ µ= − π Ω =  



where 

q Qe Rt L

max

/

1

2= −  

 

(see the discussion of the exponentially decaying amplitude in §31-5). One period later 

the charge on the fully charged capacitor is  

 

( )2 /

max 2

2
where = ,

'

R t T Lq Qe T
ω

− + π
=  

and the energy is 
2 2

( ) /max 2( ) .
2 2

R t T Lq Q
U t T e

C C

− ++ = =  

 

The fractional loss in energy is 

 

| | ( ) ( )

( )
.

/ ( )/

/

/∆U

U

U t U t T

U t

e e

e
e

Rt L R t T L

Rt L

RT L=
− +

=
−

= −
− − +

−
−1  

 

Assuming that RT/L is very small compared to 1 (which would be the case if the 

resistance is small), we expand the exponential (see Appendix E). The first few terms are: 

 

e
RT

L

R T

L

RT L− ≈ − + +/ .1
2

2 2

2
A  

 

If we approximate ω ≈ ω', then we can write T as 2π/ω. As a result, we obtain 

 

| | 2
1 1 .

U RT RT R

U L L Lω
∆ π⎛ ⎞≈ − − + ≈ =⎜ ⎟

⎝ ⎠
A  

 

27. Let t be a time at which the capacitor is fully charged in some cycle and let qmax 1 be 

the charge on the capacitor then. The energy in the capacitor at that time is 

 

U t
q

C

Q

C
e Rt L( ) max /= = −1

2 2

2 2
 

 



 

28. (a) The current through the resistor is 

 

30.0V
0.600 A .

50.0

mI
R

ε
= = =

Ω
 

 

(b) Regardless of the frequency of the generator, the current is the same, 0.600 A .I =  



  

(b) The inductive reactance is  

 

XL = ωdL = 2πfdL = 2π(650 Hz)(6.0 × 10
–3

 H) = 24 Ω. 

 

The capacitive reactance has the same value at this frequency. 

 

(c) The natural frequency for free LC oscillations is f LC= ω / 2π = 1/ 2π , the same as 

we found in part (a). 

 

29. (a) The inductive reactance for angular frequency ωd is given by L dX Lω= , and the 

capacitive reactance is given by XC = 1/ωdC. The two reactances are equal if ωdL = 1/ωdC, 

or 1/d LCω = . The frequency is 

 

2

6

1 1
6.5 10  Hz.

2 2 2 H)(10 10 F)

d
df

LC

ω
−3 −

= = = = ×
π π π (6.0×10 ×

 

 



 

30. (a) We use I = ε/Xc = ωdCε: 

 
62 2 Hz)(1.50 10 F)(30.0 V) 0.283 A .d m d mI C f Cω ε ε 3 −= = π = π(1.00×10 × =  

 

(b) I = 2π(8.00 × 10
3
 Hz)(1.50 × 10

–6
 F)(30.0 V) = 2.26 A. 

 



31. (a) The current amplitude I is given by I = VL/XL, where XL = ωdL = 2πfdL. Since the 

circuit contains only the inductor and a sinusoidal generator, VL = εm. Therefore, 

 

3

30.0V
0.0955A 95.5 mA.

2 2 Hz)(50.0 10 H)

mL

L d

V
I

X f L

ε
3 −= = = = =

π π(1.00×10 ×
 

 

(b) The frequency is now eight times larger than in part (a), so the inductive reactance XL 

is eight times larger and the current is one-eighth as much. The current is now  

 

I = (0.0955 A)/8 = 0.0119 A = 11.9 mA. 



must also require cos(ωdt) < 0. These conditions imply that ωt must equal (2nπ – 5π/6) [n 

= integer]. Consequently, Eq. 31-29 yields (for all values of n) 

 

3 23
sin 2 (3.91 10 A) 3.38 10 A,

2
i I n − −⎛ ⎞5π π⎛ ⎞= π − + = × − = − ×⎜ ⎟⎜ ⎟ ⎜ ⎟6 2⎝ ⎠ ⎝ ⎠

 

 

or 2| | 3.38 10 A.i −= ×  

 

32. (a) The circuit consists of one generator across one capacitor; therefore, εm = VC. 

Consequently, the current amplitude is 

 

I
X

Cm

C

m= = = × = ×− −ε ω ε (377 rad / s)(4.15 10 F)(25.0 V) 3.91 10 A .6 2  

 

(b) When the current is at a maximum, the charge on the capacitor is changing at its 

largest rate. This happens not when it is fully charged (±qmax), but rather as it passes 

through the (momentary) states of being uncharged (q = 0). Since q = CV, then the 

voltage across the capacitor (and at the generator, by the loop rule) is zero when the 

current is at a maximum. Stated more precisely, the time-dependent emf ε(t) and current 

i(t) have a φ = –90° phase relation, implying ε(t) = 0 when i(t) = I. The fact that φ = –90° 

= –π/2 rad is used in part (c). 

 

(c) Consider Eq. 32-28 with ε ε= − 1
2 m . In order to satisfy this equation, we require 

sin(ωdt) = –1/2. Now we note that the problem states that ε is increasing in magnitude, 

which (since it is already negative) means that it is becoming more negative. Thus, 

differentiating Eq. 32-28 with respect to time (and demanding the result be negative) we 



 

33. (a) The generator emf is a maximum when sin(ωdt – π/4) = 1 or  

 

ωdt – π/4 = (π/2) ± 2nπ   [n = integer]. 

 

The first time this occurs after t = 0 is when ωdt – π/4 = π/2 (that is, n = 0). Therefore, 

 

t
d

= = = × −3 3
6 73 10 3π

4
π

4(350ω  rad / s)
s ..  

 

(b) The current is a maximum when sin(ωdt – 3π/4) = 1, or  

 

ωdt – 3π/4 = (π/2) ± 2nπ   [n = integer]. 

 

The first time this occurs after t = 0 is when ωdt – 3π/4 = π/2 (as in part (a), n = 0). 

Therefore, 

t
d

= = = × −5 5
112 10 2π

4
π

4(350ω  rad / s)
s ..  

 

(c) The current lags the emf by / 2π+  rad, so the circuit element must be an inductor. 

 

(d) The current amplitude I is related to the voltage amplitude VL by VL = IXL, where XL is 

the inductive reactance, given by XL = ωdL. Furthermore, since there is only one element 

in the circuit, the amplitude of the potential difference across the element must be the 

same as the amplitude of the generator emf: VL = εm. Thus, εm = IωdL and 

 

L
I

m

d

= =
×

=−

ε
ω

30 0
0138

.
.

V

(620 10 A)(350 rad / s)
H.

3
 



(b) When the current is at a maximum, its derivative is zero. Thus, Eq. 30-35 gives εL = 0 

at that instant. Stated another way, since ε(t) and i(t) have a 90° phase difference, then ε(t) 

must be zero when i(t) = I. The fact that φ = 90° = π/2 rad is used in part (c). 

 

(c) Consider Eq. 31-28 with / 2mε ε= − . In order to satisfy this equation, we require 

sin(ωdt) = –1/2. Now we note that the problem states that ε is increasing in magnitude, 

which (since it is already negative) means that it is becoming more negative. Thus, 

differentiating Eq. 31-28 with respect to time (and demanding the result be negative) we 

must also require cos(ωdt) < 0. These conditions imply that ωt must equal (2nπ – 5π/6) [n 

= integer]. Consequently, Eq. 31-29 yields (for all values of n) 

 

i I n= −F
HG

I
KJ = ×

F
HG
I
KJ = ×− −sin ( . .2 522 10 4 51 103 3π −

5π
6

π
2

A)
3

2
A .  

 

34. (a) The circuit consists of one generator across one inductor; therefore, εm = VL. The 

current amplitude is  

 

325.0 V
5.22 10 A .

(377 rad/s)(12.7 H)

m m

L d

I
X L

ε ε
ω

−= = = = ×  

 



 

35. (a) Now XL = 0, while R = 200 Ω and XC = 1/2πfdC = 177 Ω.  Therefore, the 

impedance is  

 2 2 2 2(200 ) (177 ) 267 .CZ R X= + = Ω + Ω = Ω  

 

(b) The phase angle is 

 

 1 1 0 177
=tan tan 41.5

200

L CX X

R
φ − − ⎛ ⎞− − Ω⎛ ⎞ = = − °⎜ ⎟⎜ ⎟ Ω⎝ ⎠ ⎝ ⎠

 

 

(c) The current amplitude is  

 

36.0 V
0.135 A .

267

mI
Z

ε
= = =

Ω
 

 

(d) We first find the voltage amplitudes across the 

circuit elements: 

 

(0.135A)(200 ) 27.0V

(0.135A)(177 ) 23.9V

R

C C

V IR

V IX

= = Ω ≈
= = Ω ≈

 

 

The circuit is capacitive, so I leads ε m . The phasor 

diagram is drawn to scale on the right. 

 



  

36. (a) The graph shows that the resonance angular frequency is 25000 rad/s, which 

means (using Eq. 31-4)  

 

C = (ω2
L)

−1
 = [(25000)

2
 ×200 × 10

−6]
−1

 = 8.0 µF. 

 

(b) The graph also shows that the current amplitude at resonance is 4.0 A, but at 

resonance the impedance Z becomes purely resistive (Z = R) so that we can divide the 

emf amplitude by the current amplitude at resonance to find R: 8.0/4.0 = 2.0 Ω. 

 



37. (a) Now XC = 0, while R = 200 Ω and XL = ωL = 2πfdL = 86.7 Ω remain unchanged. 

Therefore, the impedance is  

 
2 2 2 2(200 ) (86.7 ) 218 .LZ R X= + = Ω + Ω = Ω  

 

(b) The phase angle is, from Eq. 31-65, 

 

1 1 86.7 0
tan tan 23.4 .

200

L CX X

R
φ − − ⎛ ⎞− Ω −⎛ ⎞= = = °⎜ ⎟⎜ ⎟ Ω⎝ ⎠ ⎝ ⎠

 

 

(c) The current amplitude is now found to be  

 

36.0 V
0.165 A .

218

mI
Z

ε
= = =

Ω
 

 

(d) We first find the voltage amplitudes across the circuit elements: 

 

(0.165 A)(200 ) 33V

(0.165A)(86.7 ) 14.3V

R

L L

V IR

V IX

= = Ω ≈
= = Ω ≈

 

 

This is an inductive circuit, so εm leads I. The phasor diagram is drawn to scale below. 

 

 



 

38. (a) Since Z = R
2
 + XL

2
  and  XL = ωd L, then as ωd → 0 we find Z → R = 40 Ω. 

 

(b) L  =  XL /ωd  = slope = 60 mH. 



  

6

1 1 1
37.9 .

2 2 z)(70.0 10 F)
C

d d

X
C f Cω −= = = = Ω

π π(60.0 Η ×
 

 

The inductive reactance 86.7 Ω is unchanged. The new impedance is 

 
2 2 2 2( ) (200 ) (37.9 86.7 ) 206 .L CZ R X X= + − = Ω + Ω − Ω = Ω  

 

(b) The phase angle is 

 

1 1 86.7 37.9
tan tan 13.7 .

200

L CX X

R
φ − − ⎛ ⎞− Ω − Ω⎛ ⎞= = = °⎜ ⎟⎜ ⎟ Ω⎝ ⎠ ⎝ ⎠

 

 

(c) The current amplitude is 

36.0 V
0.175A.

206

mI
Z

ε
= = =

Ω
 

 

(d) We first find the voltage amplitudes across the circuit elements: 

 

(0.175 A)(200 ) 35.0 V

(0.175 A)(86.7 ) 15.2 V

(0.175 A)(37.9 ) 6.62V

R

L L

C C

V IR

V IX

V IX

= = Ω =
= = Ω =
= = Ω =

 

 

Note that X XL C> , so that ε m  leads I. The phasor diagram is drawn to scale below. 

 

 

 

39. (a) The capacitive reactance is 

 



method 1: At ωd = 50 rad/s, we have Z ≈ 700 Ω which gives C = (ωd Z2 - R2 )
−1 

= 41 µF. 
 

method 2: At ωd = 50 rad/s, we have XC  ≈ 500 Ω which gives C = (ωd XC)
−1 

= 40 µF. 

 

method 3: At ωd = 250 rad/s, we have XC  ≈ 100 Ω which gives C = (ωd XC)
−1 

= 40 µF. 

 

40. (a) The circuit has a resistor and a capacitor (but no inductor).  Since the capacitive 

reactance decreases with frequency, then the asymptotic value of Z must be the resistance: 

R = 500 Ω. 

 

(b) We describe three methods here (each using information from different points on the 

graph):   

 



 

41. The rms current in the motor is  

 

( ) ( )
rms rms

rms
2 2 2 2

420V
7.61A.

45.0 32.0L

I
Z R X

ε ε
= = = =

+ Ω + Ω
 



 

42. A phasor diagram very much like Fig. 31-11(d) leads to the condition: 

 

VL – VC = (6.00 V)sin(30º) = 3.00 V. 

 

With the magnitude of the capacitor voltage at 5.00 V, this gives a inductor voltage 

magnitude equal to 8.00 V. Since the capacitor and inductor voltage phasors are 180° out 

of phase, the potential difference across the inductor is 8.00 V− . 



 

43. The resistance of the coil is related to the reactances and the phase constant by Eq. 

31-65. Thus, 

 

X X

R

L C

R

L C d d−
=

−
=

ω ω φ1/
tan ,  

which we solve for R: 

 

2

6

1 1 1 1
(2 Hz(8.8 10 H)

tan tan 75 (2 Hz)(0.94 10 F

89 .

d

d

R L
C

ω
φ ω

−
−

⎛ ⎞ ⎡ ⎤
= − = π)(930 × −⎜ ⎟ ⎢ ⎥° π)(930 ×⎣ ⎦⎝ ⎠
= Ω

 



 

44. (a) A sketch of the phasors would be very much like Fig. 31-9(c) but with the label 

“IC” on the green arrow replaced with “VR.”   

 

(b) We have I R = I XC, or 

I R = I XC  Ш   R =  
1

 ωd C
  

 

which yields  
5

1 1
159 Hz

2 2 2 (50.0 )(2.00 10 F)

df
RC

ω
π π π −= = = =

Ω ×
.  

 

(c) φ = tan
−1

(−VC /VR) = – 45°. 

 

(d) ωd = 1/RC =1.00 ×10
3
 rad/s. 

 

(e) I = (12 V)/ R
2
 + XC

2
  =  6/(25 2) ≈170 mA. 

 



  

45. (a) For a given amplitude εm of the generator emf, the current amplitude is given by 

 

2 2
.

( 1/ )

m m

d d

I
Z R L C

ε ε

ω ω
= =

+ −
 

 

We find the maximum by setting the derivative with respect to ω d  equal to zero: 

 

dI

d
E R L C L

C
L

Cd

m d d d

d dω
ω ω ω

ω ω
= − + − −

L
NM

O
QP

+
L
NM

O
QP

−( ) [ ( / ) ] ./2 2 3 2

2
1

1 1
 

 

The only factor that can equal zero is ω ωd dL C− ( / )1 ; it does so for ω ωd LC= =1/ . 

For this 

ω d
LC

= =
×

=
−

1 1

100
224

( .  H)(20.0 10 F)
 rad / s .

6
 

 

(b) When ω ωd = , the impedance is Z = R, and the current amplitude is 

 

30.0 V
6.00 A .

5.00

mI
R

ε
= = =

Ω
 

 

(c) We want to find the (positive) values of ω d  for which / 2 :mI Rε=  

 

2 2
.

2( 1/ )

m m

d d
RR L C

ε ε

ω ω
=

+ −
 

 

This may be rearranged to yield 

 

ω
ωd

d

L
C

R−
F
HG

I
KJ =

1
3

2

2 . 

 

Taking the square root of both sides (acknowledging the two ± roots) and multiplying by 

ω dC , we obtain 

ω ωd dLC CR2 3 1 0( ) .± − =d i  

 

Using the quadratic formula, we find the smallest positive solution 

 



2 2 6

2 6

6 2 2 6

6

3 3 4 3(20.0 10 F)(5.00 )

2 2(1.00 H)(20.0 10 F)

3(20.0 10 F) (5.00 ) 4(1.00 H)(20.0 10 F)

2(1.00 H)(20.0 10 F)

219 rad/s .

CR C R LC

LC
ω

−

−

− −

−

− + + − × Ω
= =

×

× Ω + ×
+

×
=

 

 

(d) The largest positive solution 

 
2 2 6

1 6

6 2 2 6

6

3 3 4 3(20.0 10 F)(5.00 )

2 2(1.00 H)(20.0 10 F)

3(20.0 10 F) (5.00 ) 4(1.00 H)(20.0 10 F)

2(1.00 H)(20.0 10 F)

228 rad/s .

CR C R LC

LC
ω

−

−

− −

−

+ + + + × Ω
= =

×

× Ω + ×
+

×
=

 

 

(e) The fractional width is 

 

1 2

0

228rad/s 219rad/s
0.040.

224 rad/s

ω ω
ω
− −

= =  



 

46. (a) With both switches closed (which effectively removes the resistor from the 

circuit), the impedance is just equal to the (net) reactance and is equal to  

 

Xnet = (12 V)/(0.447 A) = 26.85 Ω. 

 

With switch 1 closed but switch 2 open, we have the same (net) reactance as just 

discussed, but now the resistor is part of the circuit; using Eq. 31-65 we find 

 

 net 26.85
100

tan tan15

X
R

φ
Ω

= = = Ω
°

. 

 

(b) For the first situation described in the problem (both switches open) we can reverse 

our reasoning of part (a) and find   

 

Xnet first = tanR φ′ = (100 Ω) tan(–30.9º) = –59.96 Ω. 

 

We observe that the effect of switch 1 implies  

 

XC = Xnet – Xnet firsrt = 26.85 Ω – (–59.96 Ω) = 86.81 Ω. 

 

Then Eq. 31-39 leads to C = 1/ωXC  = 30.6 µF. 

 

(c) Since Xnet = XL  – XC , then we find L = XL/ω = 301 mH . 

 



  

47. (a) Yes, the voltage amplitude across the inductor can be much larger than the 

amplitude of the generator emf. 

 

(b) The amplitude of the voltage across the inductor in an RLC series circuit is given by 

V IX I LL L d= = ω . At resonance, the driving angular frequency equals the natural angular 

frequency: ω ωd LC= = 1/ . For the given circuit 

 

6

1.0 H
1000 .

(1.0 H)(1.0 10 F)
L

L
X

LC −
= = = Ω

×
 

 

At resonance the capacitive reactance has this same value, and the impedance reduces 

simply: Z = R. Consequently, 

 

resonance

10 V
1.0 A .

10

m mI
Z R

ε ε
= = = =

Ω
 

 

The voltage amplitude across the inductor is therefore 

 
3(1.0A)(1000 ) 1.0 10 VL LV IX= = Ω = ×  

 

which is much larger than the amplitude of the generator emf. 



 

48. (a) A sketch of the phasors would be very much like Fig. 31-10(c) but with the label 

“IL” on the green arrow replaced with “VR.” 

 

(b) We have VR = VL, which implies 

 

I R = I XL   Ш   R  = ωd L 

 

which yields  f = ωd/2π = R/2πL = 318 Hz. 

 

(c) φ = tan
−1

(VL /VR) = +45°. 

 

(d) ωd = R/L = 2.00×10
3 
rad/s. 

 

(e) I = (6 V)/ R
2
 + XL

2
  =  3/(40 2) ≈ 53.0 mA. 



 

We also use Eq. 31-4. Thus, 

 

∆ω
ω

ω ω
ω

d CR LC

LC
R

C

L
=

−
= =1 2 2 3

2

3
.  

 

For the data of Problem 31-45, 

 

∆
Ω

ω
ω

d =
×

= ×
−

−5 00
3 20 0 10

100
387 10

6

2.
.

.
. .b g c hF

H
 

 

This is in agreement with the result of Problem 31-45. The method of Problem 31-45, 

however, gives only one significant figure since two numbers close in value are 

subtracted (ω1 – ω2). Here the subtraction is done algebraically, and three significant 

figures are obtained. 

 

49. We use the expressions found in Problem 31-45: 

 
2 2 2 2

1 2

3 3 4 3 3 4
,

2 2

CR C R LC CR C R LC

LC LC
ω ω+ + + − + +

= =  . 



 

50. (a) The capacitive reactance is 

 

6

1 1
16.6 .

2 2  Hz)(24.0 10 F)
CX

fC −= = = Ω
π π(400 ×

 

 

(b) The impedance is 

 
2 2 2 2

2 3 2

( ) (2 )

(220 ) [2 Hz)(150 10 H) 16.6 ] 422 .

L C CZ R X X R fL X

−

= + − = + π −

= Ω + π(400 × − Ω = Ω
 

 

(c) The current amplitude is 

 

I
Z

m= = =
ε 220

0521
V

422
A .

Ω
.  

 

(d) Now X CC ∝ −
eq

1 . Thus, XC increases as Ceq decreases. 

 

(e) Now Ceq = C/2, and the new impedance is 

 
2 3 2(220 ) [2 Hz)(150 10 H) 2(16.6 )] 408 422 .Z −= Ω + π(400 × − Ω = Ω < Ω  

 

Therefore, the impedance decreases. 

 

(f) Since I Z∝ −1 , it increases. 

 



  

51. (a) Since Leq = L1 + L2 and Ceq = C1 + C2 + C3 for the circuit, the resonant frequency 

is 

       

ω = =
+ + +

=
× × × × ×

=

− − − − −

1

2

1

2

1

2 170 10 4 00 10

796

1 2 1 2 3

3 6

π π

π

L C L L C C Ceq eq

3 6 6H + 2.30 10 H F + 2.50 10 F + 3.50 10 F

Hz.

b gb g

c hc h. .
 

 

(b) The resonant frequency does not depend on R so it will not change as R increases. 

 

(c) Since ω ∝ (L1 + L2)
–1/2

, it will decrease as L1 increases. 

 

(d) Since ω ∝ −Ceq

1/2   and Ceq decreases as C3 is removed, ω will increase. 



 

52. The amplitude (peak) value is 

 

V Vmax = = =2 2 100 141rms V V.b g  



 

53. The average power dissipated in resistance R when the current is alternating is given 

by P I Ravg rms

2= ,  where Irms is the root-mean-square current. Since I Irms = / 2 , where I is 

the current amplitude, this can be written Pavg = I
2
R/2. The power dissipated in the same 

resistor when the current id is direct is given by P i Rd= 2 .  Setting the two powers equal to 

each other and solving, we obtain 

 

i
I

d = = =
2

2 60
184

.
.

A

2
A.  



 

54. Since the impedance of the voltmeter is large, it will not affect the impedance of the 

circuit when connected in parallel with the circuit. So the reading will be 100 V in all 

three cases. 



 

55. (a) Using Eq. 31-61, the impedance is 

 

( ) ( )2 2
12.0 1.30 0 12.1 .Z = Ω + Ω − = Ω  

 

(b) The average rate at which energy has been supplied is 

 

( ) ( )
( )

22
3 3rms

avg 22

120V 12.0
1.186 10 W 1.19 10 W.

12.07

R
P

Z

ε Ω
= = = × ≈ ×

Ω
 

 



56. This circuit contains no reactances, so εrms = IrmsRtotal. Using Eq. 31-71, we find the 

average dissipated power in resistor R is 

 

P I R
r R

RR
m= =

+
F
HG
I
KJrms

2 ε 2

.  

 

In order to maximize PR we set the derivative equal to zero: 

 

( ) ( )
( )

( )
( )

22
2

m

4 3

2
0

m
R

r R r R R r RdP
R r

dR r R r R

ε ε⎡ ⎤+ − + −⎣ ⎦= = = ⇒ =
+ +

 



 

57. (a) The power factor is cos φ, where φ is the phase constant defined by the expression 

i = I sin(ωt – φ). Thus, φ = – 42.0° and cos φ = cos(– 42.0°) = 0.743. 

 

(b) Since φ < 0, ωt – φ > ωt. The current leads the emf. 

 

(c) The phase constant is related to the reactance difference by tan φ = (XL – XC)/R. We 

have  

tan φ = tan(– 42.0°) = –0.900, 

 

a negative number. Therefore, XL – XC is negative, which leads to XC > XL. The circuit in 

the box is predominantly capacitive. 

 

(d) If the circuit were in resonance XL would be the same as XC, tan φ would be zero, and 

φ would be zero. Since φ is not zero, we conclude the circuit is not in resonance. 

 

(e) Since tan φ is negative and finite, neither the capacitive reactance nor the resistance 

are zero. This means the box must contain a capacitor and a resistor.  

 

(f) The inductive reactance may be zero, so there need not be an inductor. 

 

(g) Yes, there is a resistor. 

 

(h) The average power is 

 

P Imavg V A W.= = =
1

2

1

2
750 120 0 743 334ε φcos . . . .b gb gb g  

 

(i) The answers above depend on the frequency only through the phase constant φ, which 

is given. If values were given for R, L and C then the value of the frequency would also 

be needed to compute the power factor. 



  

( )

( ) ( )( ) ( )( ){ }

22

22

1/

45.0 V

16.0 3000 rad/s 9.20mH 1/ 3000 rad/s 31.2 F

1.93A

m m

d d

I
Z R L C

ε ε

ω ω

µ

= =
+ −

=
Ω + − ⎡ ⎤⎣ ⎦

=

 

 

and 

( )( )
( )( )( )

1 1

1

1/
tan tan

3000 rad/s 9.20 mH 1
tan

16.0 3000 rad/s 16.0 31.2 F

46.5 .

L C d dX X L C

R R

ω ωφ

µ

− −

−

− −⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎡ ⎤

= −⎢ ⎥Ω Ω⎣ ⎦
= °

 

 

(a) The power supplied by the generator is 

 

( )
( )( ) ( )( ) ( )( )
( ) ( ) sin sin

1.93A 45.0 V sin 3000 rad/s 0.442 ms sin 3000 rad/s 0.442 ms 46.5

41.4 W.

g d m dP i t t I t tε ω φ ε ω= = −

= − °⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
=

 

 

(b) With  

( ) sin( / 2) cos( )c c d c dv t V t V tω φ π ω φ= − − = − −  

 

where / ,c dV I Cω= the rate at which the energy in the capacitor changes is 

 

( ) ( ) ( )

( )
( )( ) ( )( ) ( )

2

2

2

6

2

sin cos sin 2
2

1.93A
sin 2 3000 rad/s 0.442ms 2 46.5

2 3000rad/s 31.2 10 F

17.0 W.

c c

d d d

d d

d q q
P i iv

dt C C

I I
I t t t

C C
ω φ ω φ ω φ

ω ω

−

⎛ ⎞
= = =⎜ ⎟

⎝ ⎠
⎛ ⎞

= − − − = − −⎡ ⎤⎜ ⎟ ⎣ ⎦
⎝ ⎠

= − − °⎡ ⎤⎣ ⎦×

= −

 

 

(c) The rate at which the energy in the inductor changes is 

 

 

58. The current in the circuit satisfies i(t) = I sin(ωdt – φ), where 

 



( ) ( ) ( )

( )( ) ( ) ( )( ) ( )

2 2

2

1 1
sin sin sin 2

2 2

1
3000rad/s 1.93A 9.20mH sin 2 3000rad/s 0.442ms 2 46.5

2

44.1 W.

L d d d d

d di d
P Li Li LI t I t LI t

dt dt dt
ω φ ω φ ω ω φ⎛ ⎞= = = − − = −⎡ ⎤ ⎡ ⎤⎜ ⎟ ⎣ ⎦ ⎣ ⎦⎝ ⎠

= − °⎡ ⎤⎣ ⎦

=

 

 

(d) The rate at which energy is being dissipated by the resistor is 

 

( ) ( ) ( ) ( )( )22 2 2 2sin 1.93A 16.0 sin 3000 rad/s 0.442ms 46.5

14.4 W.

R dP i R I R tω φ= = − = Ω − °⎡ ⎤⎣ ⎦
=

 

 

(e) Equal. 44.1W 17.0 W 14.4 W 41.5 W .L R c gP P P P+ + = − + = =   



  

( )
( )

2

avg

30.0V
90.0 W.

2 5.00
P = =

Ω
 

 

(d) At maximum power, the reactances are equal: XL = XC. The phase angle φ in this case 

may be found from 

tan ,φ =
−

=
X X

R

L C 0  

which implies φ = 0° .  

 

(e) At maximum power, the power factor is cos φ = cos 0° = 1.  

 

(f) The minimum average power is Pavg = 0 (as it would be for an open switch). 

 

(g) On the other hand, at minimum power XC ∝ 1/C is infinite, which leads us to set 

tanφ = −∞ . In this case, we conclude that φ = –90°. 

 

(h) At minimum power, the power factor is cos φ = cos(–90°) = 0. 

 

59. We shall use 

( )

2 2

avg 2 22
.

2 2 1/

m m

d d

R R
P

Z R L C

ε ε

ω ω
= =

⎡ ⎤+ −⎣ ⎦

 

 

where Z R L Cd d= + −2 2
1ω ω/b g  is the impedance.  

 

(a) Considered as a function of C, Pavg has its largest value when the factor 

( )22 1/d dR L Cω ω+ −  has the smallest possible value. This occurs for 1/d dL Cω ω= , or 

 

C
Ld

= =
×

= ×
−

−1 1

2 60 0 60 0 10
117 10

2 2 2 3

4

ω πb g b g c h. .
.

Hz H
F.  

 

The circuit is then at resonance. 

 

(b) In this case, we want Z
2
 to be as large as possible. The impedance becomes large 

without bound as C becomes very small. Thus, the smallest average power occurs for C = 

0 (which is not very different from a simple open switch). 

 

(c) When ωdL = 1/ωdC, the expression for the average power becomes 

 
2

avg ,
2

mP
R

ε
=  

 

so the maximum average power is in the resonant case and is equal to 

 



 

60. (a) The power consumed by the light bulb is P = I
2
R/2. So we must let Pmax/Pmin = 

(I/Imin)
2
 = 5, or 

 

I

I

Z

Z

Z

Z

R L

R

m

mmin

min

max

max

min

max/

/
.

F
HG
I
KJ =
F
HG

I
KJ =
F
HG
I
KJ =

+F

H
GG

I

K
JJ =

2 2 2 2 2
2

5
ε
ε

ωb g
 

 

We solve for Lmax: 

   L
R

max

/

.
.= = = × −2 2 120 1000

2 60 0
7 64 10

2

2

ω
V W

Hz
H.

b g
b gπ

 

 

(b) Yes, one could use a variable resistor. 

 

(c) Now we must let 

R R

R

max ,
+F

HG
I
KJ =bulb

bulb

2

5  

or 

R Rmax . .= − = − =5 1 5 1
120

1000
17 8

2

d i d i b g
bulb

V

W
Ω  

 

(d) This is not done because the resistors would consume, rather than temporarily store, 

electromagnetic energy. 

 



61. (a) The rms current is 

 

( )

( ) ( )( ) ( )( ){ }

rms rms
rms

22

22

2 1/ 2

75.0V

15.0 2 550Hz 25.0mH 1/ 2 550Hz 4.70 F

2.59A.

I
Z R fL fC

ε ε

µ

= =
+ π − π

=
Ω + π − π⎡ ⎤⎣ ⎦

=

 

 

(b) The rms voltage across R is  

 

 ( )( )rms 2.59 A 15.0 38.8VabV I R= = Ω = . 

 

(c) The rms voltage across C is  

 

 
( )( )

rms
rms

2.59A
159 V

2 2 550 Hz 4.70 F
bc C

I
V I X

fC µ
= = = =

π π
. 

 

(d) The rms voltage across L is  

 

 ( )( )( )rms rms2 2 2.59A 550 Hz 25.0mH 224 Vcd LV I X I fL= = π = π = . 

 

(e) The rms voltage across C and L together is  

 

 159.5V 223.7 V 64.2Vbd bc cdV V V= − = − =  

 

(f) The rms voltage across R, C and L together is 

 

( ) ( )2 22 2 38.8V 64.2 V 75.0 Vad ab bdV V V= + = + =  

 

(g) For R,  

( )22 38.8V
100 W.

15.0

ab
R

V
P

R
= = =

Ω
 

 

(h) No energy dissipation in C. 

 

(i) No energy dissipation in L. 

 



  

(a) The smallest value of the ratio /s pV V is achieved by using T2T3 as primary and T1T3 as 

secondary coil: V13/V23 = (800 + 200)/800 = 1.25. 

 

(b) The second smallest value of the ratio /s pV V is achieved by using T1T2 as primary and 

T2T3 as secondary coil: V23/V13 = 800/200 = 4.00. 

 

(c) The largest value of the ratio /s pV V is achieved by using T1T2 as primary and T1T3 as 

secondary coil: V13/V12 = (800 + 200)/200 = 5.00. 

 

For the step-down transformer, we simply exchange the primary and secondary coils in 

each of the three cases above.   

 

(d) The smallest value of the ratio /s pV V is 1/5.00 = 0.200. 

 

(e) The second smallest value of the ratio /s pV V is 1/4.00 = 0.250. 

 

(f) The largest value of the ratio /s pV V is 1/1.25 = 0.800. 

62. For step-up trasnformer: 

 



 

63. (a) The stepped-down voltage is 

 

V V
N

N
s p

s

p

=
F
HG
I
KJ = F

HG
I
KJ =120

10

500
2 4V V.b g .  

 

(b) By Ohm’s law, the current in the secondary is I
V

R
s

s

s

= = =
2 4

15
016

.
.

V
A.

Ω
 

 

We find the primary current from Eq. 31-80: 

 

I I
N

N
p s

s

p

=
F
HG
I
KJ = F

HG
I
KJ = × −016

10

500
32 10 3. .A A.b g  

 

(c) As shown above, the current in the secondary is 0.16A.sI =  



 

64. We use Eq. 31-79 to find 

 

V V
N

N
s p

s

p

=
F
HG
I
KJ = F

HG
I
KJ = ×100

500

50
100 103V V.b g .  

 



 

(b) The rate of energy dissipation is P I Rd = = =rms

2 A W.3125 2 0 60 59. . .b gb gb gΩ  

 

(c) Now I rms

3W / 8.0 10 V A= × × =250 10 31253 c h . , so ( )( )31.25A 0.60 19V.V∆ = Ω =   

 

(d) Pd = = ×3125 0 60 59 10
2 2. . .A W.b g b gΩ  

 

(e) ( )3 3

rms 250 10 W/ 0.80 10 V 312.5 AI = × × = , so ( )( )312.5A 0.60V∆ = Ω = 21.9 10 V× .  

 

(f) ( ) ( )2 4312.5A 0.60 5.9 10 W.dP = Ω = ×   

65. (a) The rms current in the cable is I P Vtrms

3W / 80 10 V A.= = × × =/ .250 10 31253 c h  

Therefore, the rms voltage drop is ∆ ΩV I R= = =rms A V3125 2 0 30 19. . .b gb gb g . 



 

66. (a) The effective resistance Reff satisfies I R Prms

2

eff mechanical= , or 

 

R
P

I
eff

mechanical

rms

2

hp W / hp

A
= = =

0100 746

0 650
177

2

.

.
.

b gb g
b g Ω  

 

(b) This is not the same as the resistance R of its coils, but just the effective resistance for 

power transfer from electrical to mechanical form. In fact I Rrms

2  would not give Pmechanical 

but rather the rate of energy loss due to thermal dissipation. 



 

67. (a) We consider the following combinations: ∆V12 = V1 – V2, ∆V13 = V1 – V3, and ∆V23 

= V2 – V3. For ∆V12, 

 

∆V A t A t A
t

A td d
d

d12 120 2
120

2

2 120

2
3 60= − − ° =

°F
HG
I
KJ

− °F
HG

I
KJ = − °sin( ) sin ( ) sin cos cosω ω ω ωb g  

 

where we use  

( ) ( )sin sin 2sin 2 cos 2α β α β α β− = − +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  

 

and sin 60 3 2.° =  Similarly, 

 

( )13

2 240240
sin( ) sin ( 240 ) 2 sin cos 3 cos 120

2 2

d
d d d

t
V A t A t A A t

ωω ω ω− °° ⎛ ⎞⎛ ⎞∆ = − − ° = = − °⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

and 

( )

23

2 360120
sin( 120 ) sin ( 240 ) 2 sin cos

2 2

3 cos 180

d
d d

d

t
V A t A t A

A t

ωω ω

ω

− °° ⎛ ⎞⎛ ⎞∆ = − ° − − ° = ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= − °

 

 

All three expressions are sinusoidal functions of t with angular frequency ωd. 

 

(b) We note that each of the above expressions has an amplitude of 3A . 

 



  

68. (a) Eq. 31-39 gives f = ω/2π = (2πCXC)
−1

 = 8.84 kHz. 

 

(b) Because of its inverse relationship with frequency, then the reactance will go down by 

a factor of 2 when f increases by a factor of 2.  The answer is XC = 6.00 Ω. 



 

69. (a) The impedance is 
125V

39.1 .
3.20A

mZ
I

ε
= = = Ω  

 

(b) From V IRR m= = ε φcos ,  we get 

 

R
I

m= = =
ε φcos V rad

A

125 0 982

320
217

b g b gcos .

.
. .Ω  

 

(c) Since X XL C− ∝ = −sin sin . ,φ 0 982 radb g  we conclude that XL < XC. The circuit is 

predominantly capacitive. 



 

70. (a) Eq. 31-4 directly gives 1/ LC  ≈ 5.77×10
3
 rad/s. 

 

(b) Eq. 16-5 then yields T = 2π/ω = 1.09 ms. 

 

(c) Although we do not show the graph here, we describe it:  it is a cosine curve with 

amplitude 200 µC and period given in part (b). 



 

71. (a) The phase constant is given by 

 

φ =
−F

HG
I
KJ =

−F
HG

I
KJ = = °− − −tan tan

/ .

/ .
tan . . .1 1 12 00

2 00
100 45 0

V V

R

V V

V

L C L L

L

b g  

 

(b) We solve R from ε φm IRcos = :  

 

R
I

m= =
°

×
=−

ε φcos . cos
. .

30 0 45

300 10
70 7

3

V

A

b gb g
Ω  

 



72. From Eq. 31-4, we have C = (ω2
L)

−1
 = ((2πf)

2
L)

−1
 = 1.59 µF. 



(b) The total energy may be calculated from the inductor (when the current is at 

maximum): 

U LI= = × × = ×− − −1

2

1

2
689 10 7 20 10 179 102 7 3

2
11. . .H A J.c hc h  

 

(c) We solve for Q from  U Q C= 1
2

2 / :  

 

Q CU= = × × = ×− − −2 2 340 10 179 10 110 106 11 7F J C.c hc h. .  

 

73. (a) We solve L from Eq. 31-4, using the fact that ω = 2πf: 

 

L
f C

= =
× ×

= ×
−

−1

4

1

4 10 4 10 340 10
689 10

2 2 2 3
2

6

7

π π .
.

Hz F
H.

c h c h
 

 



 

74. (a) With a phase constant of 45º the (net) reactance must equal the resistance in the 

circuit, which means the circuit impedance becomes  

 

Z = R 2  ⇒  R = Z/ 2  = 707 Ω. 
 

(b) Since f = 8000 Hz then ωd  = 2π(8000) rad/s.  The net reactance (which, as observed, 

must equal the resistance) is therefore XL – XC  = ωdL – (ωdC)
−1

 = 707 Ω.  We are also 

told that the resonance frequency is 6000 Hz, which (by Eq. 31-4) means  

 

 
2 2 2 2 2 2

1 1 1 1

(2 ) 4 4 (6000 Hz)
C

L f L f L Lω π π π
= = = = . 

 

Substituting this in for C in our previous expression (for the net reactance) we obtain an 

equation that can be solved for the self-inductance.  Our result is L = 32.2 mH. 

 

(c) C = ((2π(6000))
2
L)

−1 
 = 21.9 nF. 



 

75. (a) From Eq. 31-4, we have L = (ω2
C)

−1
 = ((2πf)

2
C)

−1
 = 2.41 µH. 

 

(b) The total energy is the maximum energy on either device (see Fig. 31-4).  Thus, we 

have Umax = 
1

2
 LI

2
 = 21.4 pJ. 

 

(c) Of several methods available to do this part, probably the one most “in the spirit” of 

this problem (considering the energy that was calculated in part (b)) is to appeal to Umax = 
1

2
 Q

2
/C (from Chapter 26) to find the maximum charge: Q = 2CUmax  = 82.2 nC. 



  

(b) Since φ > 0, it is inductive (XL > XC). 

 

(c) We have VR = IR = 9.98 V, so that VL = 2.00VR = 20.0 V and VC = VL/1.50 = 13.3 V. 

Therefore, from Eq. 31-60, we have 

 
2 2 2 2( ) (9.98 V) (20.0 V 13.3 V) 12.0 Vm R L CV V Vε = + − = + − = . 

 

76. (a) From Eq. 31-65, we have 

 

φ =
−F

HG
I
KJ =

−F
HG

I
KJ

− −tan tan
( / . )

( / . )

1 1 150

2 00

V V

V

V V

V

L C

R

L L

L

 

 

which becomes tan
–1

 (2/3 ) = 33.7° or 0.588 rad. 

 



 

77. (a) The impedance is  Z = (80.0 V)/(1.25 A) = 64.0 Ω. 

 

(b) We can write cos φ = R/Z  ⇒   R = (64.0 Ω)cos(0.650 rad) = 50.9 Ω. 

 

(c) Since the “current leads the emf” the circuit is capacitive. 



 

78. (a) We find L from X L fLL = =ω 2π :  

 

f
X

L

L= =
×
×

= ×
−2

130 10

2 450 10
4 60 10

3

3

3

π π
.

.
.

Ω
H

Hz.c h  

 

(b) The capacitance is found from XC = (ωC)
–1

 = (2πfC)
–1

: 

 

C
fXC

= =
× ×

= × −1

2

1

2 4 60 10 130 10
2 66 10

3 3

8

π π . .
.

Hz
F.c hc hΩ

 

 

(c) Noting that XL ∝ f and XC ∝ f 
–1

, we conclude that when f is doubled, XL doubles and 

XC reduces by half. Thus, XL = 2(1.30 × 10
3
  Ω) = 2.60 × 10

3
 Ω . 

 

(d) XC = 1.30 × 10
3
 Ω/2 = 6.50 × 10

2
 Ω. 



 

79. (a) Using ω = 2πf , XL = ωL, XC = 1/ωC and tan(φ) = (XL −XC)/R, we find  

 

φ = tan
−1

[(16.022 – 33.157)/40.0] = –0.40473 ≈ –0.405 rad. 

 

(b) Eq. 31-63 gives I = 120/ 402 + (16-33)2   = 2.7576 ≈ 2.76 A. 
 

(c) XC  > XL    ⇒   capacitive. 

 



80. From Umax = 
1

2
 LI

2
 we get I = 0.115 A. 

 



81. From Eq. 31-4 we get   f = 1/2π LC  = 1.84 kHz 



 1 5 1

2 2 2 2

2 2 (400 Hz)(0.0242 H) 60.82

(2 ) [2 (400 Hz)(1.21 10 F)] 32.88

( ) (20.0 ) (60.82 32.88 ) 34.36

L d

C d

L C

X f L

X f C

Z R X X

π π

π π− − −

= = = Ω

= = × = Ω

= + − = Ω + Ω − Ω = Ω

 

 

With 90.0 V,ε =  we have 

 

 rms

90.0 V 2.62 A
2.62 A 1.85 A

34.36 2 2

I
I I

Z

ε
= = = ⇒ = = =

Ω
. 

 

Therefore, the rms potential difference across the resistor is VR rms = Irms R = 37.0 V. 

 

(b) Across the capacitor, the rms potential difference is VC rms = Irms XC = 60.9 V. 

 

(c) Similarly, across the inductor, the rms potential difference is VL rms = Irms XL = 113 V. 

 

(d) The average rate of energy dissipation is Pavg = (Irms)
2
R = 68.6 W. 

 

82. (a) The reactances are as follows: 

 



 

83. (a) At any time, the total energy U in the circuit is the sum of the energy UE in the 

capacitor and the energy UB in the inductor. When UE = 0.500UB (at time t), then UB = 

2.00UE and U = UE + UB = 3.00UE. Now, UE is given by q C2 2/ , where q is the charge 

on the capacitor at time t. The total energy U is given by Q C2 2/ , where Q is the 

maximum charge on the capacitor. Thus,  

 
2 23.00

0.577 .
2 2 3.00

Q q Q
q Q

C C
= ⇒ = =   

 

(b) If the capacitor is fully charged at time t = 0, then the time-dependent charge on the 

capacitor is given by q Q t= cosω . This implies that the condition q = 0.577Q is satisfied 

when cosωt =0.557, or ωt = 0.955 rad. Since ω = 2π / T  (where T is the period of 

oscillation), t T T= 0 955 2. / π = 0.152 , or t / T = 0.152. 

 



84. From Eq. 31-60, we have 2 2 2(220 V / 3.00 A) 69.3 .L LR X X= + ⇒ = Ω  



  

P T I T T Imavg rms rms= = FHG
I
KJε φ ε φcos cosb g 1

2
 

 

where we substitute I I mrms rmsand= =/ / .2 2ε ε  

 

(d) The energy dissipated by the resistor is 

 

P T I V T I I R T T I RRavg,resistor rms rms rms= = = FHG
I
KJb g b g 1

2

2 . 

 

(e) Since ε φ ε ε ε εm m R m m mI I V I IR I Rcos / / ,= = =b g b g 2  the two quantities are indeed the 

same. 

 

85. (a) The energy stored in the capacitor is given by U q CE = 2 2/ . Since q is a periodic 

function of t with period T, so must be UE. Consequently, UE will not be changed over 

one complete cycle. Actually, UE has period T/2, which does not alter our conclusion. 

 

(b) Similarly, the energy stored in the inductor is U i LB = 1
2

2 . Since i is a periodic 

function of t with period T, so must be UB.  

 

(c) The energy supplied by the generator is 

 



 

86. (a) We note that we obtain the maximum value in Eq. 31-28 when we set 

 

t
fd

= = = =
π

2ω
1

4

1

4 60
0 00417

( )
. s  

 

or 4.17 ms. The result is ε εm msin( sin ( ) .π / 2) = 90 36 0° = V .  

 

(b) At t = 4.17 ms, the current is 

 

sin ( ) sin (90 ( 24.3 )) (0.164A) cos(24.3 ) 0.1495A 0.150 A.di I t Iω φ= − = ° − − ° = ° = ≈  

 

using Eq. 31-29 and the results of the Sample Problem. Ohm’s law directly gives 

 

(0.1495A)(200 ) 29.9V.Rv iR= = Ω =  

 

(c) The capacitor voltage phasor is 90° less than that of the current. Thus, at t = 4.17 ms, 

we obtain 

 

sin(90 ( 24.3 ) 90 ) sin(24.3 ) (0.164A)(177 )sin(24.3 ) 11.9V.C C Cv I X IX= ° − − ° − ° = ° = Ω ° =
 

(d) The inductor voltage phasor is 90° more than that of the current. Therefore, at t =  

4.17 ms, we find 

 

sin(90 ( 24.3 ) 90 ) sin(24.3 ) (0.164A)(86.7 )sin(24.3 )

5.85V.

L L Lv I X IX= ° − − ° + ° = − ° = − Ω °
= −

 

 

(e) Our results for parts (b), (c) and (d) add to give 36.0 V, the same as the answer for 

part (a). 

 



87. (a) Let  ωt − =π π/ /4 2  to obtain t = = = × −3 4 3 4 350 6 73 10 3π π/ / .ω rad / s s.b g  

 

(b) Let  ωt + =π π/ /4 2  to obtain t = = = × −π π/ / .4 4 350 2 24 10 3ω rad / s s.b g  

 

(c) Since i leads ε in phase by π/2, the element must be a capacitor. 

 

(d) We solve C from X C IC m= =−ω εb g 1
/ : 

  

( )( )
3

56.20 10 A
5.90 10 F.

30.0 V 350rad/sm

I
C

ε ω

−
−×

= = = ×  



dP

dx

R r xR

r xR

avg =
−

+

ε 2

3

b g
b g .  

 

This is zero for x r R= = =/ /1000 10 100Ω Ωb g b g . We note that for small x, Pavg 

increases linearly with x, and for large x it decreases in proportion to 1/x. Thus x = r/R is 

indeed a maximum, not a minimum. Recalling x = (Np/Ns)
2
, we conclude that the 

maximum power is achieved for  

/ 10p sN N x= = . 

 

88. (a) The amplifier is connected across the primary windings of a transformer and the 

resistor R is connected across the secondary windings.  

 

(b) If Is is the rms current in the secondary coil then the average power delivered to R is 

P I Rsavg = 2 . Using sI =  ( )/p s pN N I , we obtain 

 

P
I N

N
R

p p

s

avg =
F
HG
I
KJ

2

.  

 

Next, we find the current in the primary circuit. This is effectively a circuit consisting of 

a generator and two resistors in series. One resistance is that of the amplifier (r), and the 

other is the equivalent resistance Req of the secondary circuit. Therefore, 

 

I
r R r N N R

p

p s

=
+

=
+

ε εrms

eq

rms

/d i2
 

 

where Eq. 31-82 is used for Req. Consequently, 

 
2 2

avg 2
2

( / )
.

( / )

p s

p s

N N R
P

r N N R

ε
=

⎡ ⎤+⎣ ⎦
 

 

Now, we wish to find the value of Np/Ns such that Pavg is a maximum. For brevity, let x = 

(Np/Ns)
2
. Then 

P
Rx

r xR
avg =

+

ε 2

2b g ,  

and the derivative with respect to x is 

 



  

 

The diagram that follows is a schematic of a transformer with a ten to one turns ratio. An 

actual transformer would have many more turns in both the primary and secondary coils. 

 

 



 

89. Resonance occurs when the inductive reactance equals the capacitive reactance.  

Reactances of a certain type add (in series) just like resistances did in Chapter 28.  Thus, 

since the resonance ω values are the same for both circuits, we have for each circuit: 

 

 1 2

1 2

1 1
,L L

C C
ω ω

ω ω
= =  

 

and adding these equations we find 

( )1 2

1 2

1 1 1
L L

C C
ω

ω
⎛ ⎞

+ = +⎜ ⎟
⎝ ⎠

. 

 

Since eq 1 2L L L= +  and 1 1 1

eq 1 2( )C C C− − −= + , 

 

ω Leq =  
1

 ω Ceq
   ⇒    resonance in the combined circuit. 



 

90. When switch S1 is closed and the others are open, the inductor is essentially out of the 

circuit and what remains is an RC circuit. The time constant is  τC = RC. When switch S2 

is closed and the others are open, the capacitor is essentially out of the circuit. In this case, 

what we have is an LR circuit with time constant τL = L/R. Finally, when switch S3 is 

closed and the others are open, the resistor is essentially out of the circuit and what 

remains is an LC circuit that oscillates with period T LC= 2π . Substituting L = RτL and 

C = τC/R, we obtain T C L= 2π τ τ . 



 

91. When the switch is open, we have a series LRC circuit involving just the one 

capacitor near the upper right corner. Eq. 31-65 leads to 

 

o

1

tan tan( 20 ) tan 20 .

d

d

L
C

R

ω
ω φ

−
= = − ° = − °  

 

Now, when the switch is in position 1, the equivalent capacitance in the circuit is 2C. In 

this case, we have 

1

1

2
tan tan10.0 .

d

d

L
C

R

ω
ω φ

−
= = °  

 

Finally, with the switch in position 2, the circuit is simply an LC circuit with current 

amplitude 

2
2 1

1

m m m

LC d
dd

d

I
Z L

CL
C

ε ε ε

ωωω ω

= = =
−⎛ ⎞−⎜ ⎟

⎝ ⎠

 

 

where we use the fact that 1( )d dC Lω ω− >  in simplifying the square root (this fact is 

evident from the description of the first situation, when the switch was open). We solve 

for L, R and C from the three equations above, and the results are 

 

(a) 
2 o

120V
165 .

tan (2.00 A) tan ( 20.0 )

mR
I

ε
φ

− −
= = = Ω

− °
 

 

(b) 1

2 o

tan 120 V tan10.0
1 2 1 2 0.313 H

tan 2 (60.0 Hz)(2.00 A) tan ( 20.0 )

m

d

L
I

ε φ
ω φ

⎛ ⎞ ⎛ ⎞°
= − = − =⎜ ⎟ ⎜ ⎟π − °⎝ ⎠⎝ ⎠

. 

 

(c)  

( ) ( )
2

1 0

5

2.00 A

2 1 tan / tan 2(2 )(60.0 Hz)(120 V) 1 tan10.0 / tan( 20.0 )

1.49 10  F

d m

I
C

ω ε φ φ
−

= =
− π − ° − °

= ×

 

 



U
q

C

Q

C
tE = =

2 2
2

2 2
(sin ) .ω  

 

Differentiating and using the fact that 2 sin θ cos θ = sin 2θ, we obtain 

 

dU

dt

Q

C
tE =

2

2
2ω ωsin .  

 

We find the maximum value occurs whenever sin 2 1ωt = , which leads (with n = odd 

integer) to 

t
n n n

LC= = = = × ×− −1

2
8 31 10 5

ω ω
π
2

π
4

π
4

. .s, 2.49 10 s,4 …  

 

The earliest time is 58.31 10 s.t −= ×  

 

(c) Returning to the above expression for /EdU dt  with the requirement that sin2 1ωt = , 

we obtain 

dU

dt

Q

C

I LC

C

I

LC

I L

C

EF
HG
I
KJ = = = = × −

max

. .
2

2
2

3

2 2 2
5 44 10ω

d i
J / s  

92. (a) Eqs. 31-4 and 31-14 lead to 61
1.27 10 C .Q I LC

ω
−= = = ×  

 

(b) We choose the phase constant in Eq. 31-12 to be φ = −π / 2 , so that i0 = I in Eq.  

31-15). Thus, the energy in the capacitor is 

 



 

93. (a) We observe that ω = 6597 rad/s, and, consequently, XL = 594 Ω and XC = 303 Ω. 

Since XL > XC, the phase angle is positive: 60.0φ = + ° . 

 

From Eq. 31-65, we obtain R
X XL C=

−
=

tan
.

φ
168Ω  

 

(b) Since we are already on the “high side” of resonance, increasing f will only decrease 

the current further, but decreasing f brings us closer to resonance and, consequently, large 

values of I. 

 

(c) Increasing L increases XL, but we already have XL > XC. Thus, if we wish to move 

closer to resonance (where XL must equal XC), we need to decrease the value of L. 

 

(d) To change the present condition of XC < XL to something closer to XC = XL (resonance, 

large current), we can increase XC. Since XC depends inversely on C, this means 

decreasing C. 



  

 

94. (a) We observe that ωd = 12566 rad/s. Consequently, XL = 754 Ω and XC = 199 Ω. 

Hence, Eq. 31-65 gives 

φ =
−F

HG
I
KJ =−tan .1 122

X X

R

L C  rad .  

 

(b) We find the current amplitude from Eq. 31-60: I
R X X

m

L C

=
+ −

=
ε

2 2
0 288

( )
. A .  

 



95. From Eq. 31-4, with ω = = ×2 4 49 103πf . rad / s,  we obtain 

 

L
C

= = × −1
7 08 10

2

3

ω
. H.  



 

96. (a) From Eq. 31-4, with  ω = 2πf , C = 2.00 nF and L = 2.00 mH, we have 

 

41
7.96 10 Hz.

2
f

LC
= = ×

π
 

 

(b) The maximum current in the oscillator is i I
V

X
CvC

C

C

max max .= = = = × −ω 4 00 10 3 A.  

 

(c) Using Eq. 30-49, we find the maximum magnetic energy: 

 

2 8

,max max

1
1.60 10 J.

2
BU Li −= = ×  

 

(d) Adapting Eq. 30-35 to the notation of this chapter, max max| / |v L di dt= , which yields a 

(maximum) time rate of change (for i) equal to 2.00×10
3
 A/s. 



 

97. Reading carefully, we note that the driving frequency of the source is permanently set 

at the resonance frequency of the initial circuit (with switches open); it is set at ωd = 

1/ LC = 1.58 × 10
4
 rad/s and does not correspond to the resonance frequency once the 

switches are closed.  In our table, below, Ceq is in µF, f is in kHz, and Req and Z are in Ω.  

Steady state conditions are assumed in calculating the current amplitude (which is in 

amperes); this I is the current through the source (or through the inductor), as opposed to 

the (generally smaller) current in one of the resistors.  Resonant frequencies f are 

computed with ω = 2πf.  Reducing capacitor and resistor combinations is explained in 

chapters 26 and 28, respectively. 

 

 

switch 

(a) 

Ceq(µF) 

(b) 

f(kHz) 

(c) 

Req(Ω) 

(d) 

Z(Ω) 

(e) 

I (A) 

S1 4.00 1.78 12.0 19.8 0.605 

S2 5.00 1.59 12.0 22.4 0.535 

S3 5.00 1.59 6.0 19.9 0.603 

S4 5.00 1.59 4.0 19.4 0.619 

 



Chapter 32 
 



 

 

 

 
 

1. We use 
6

1
0Bnn=

Φ =∑  to obtain 

 

( )
5

6

1

1Wb 2 Wb 3Wb 4 Wb 5Wb 3Wb .B Bn

n=

Φ = − Φ = − − + − + − = +∑  
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2. (a)   The flux through the top is +(0.30 T)πr
2
 where r = 0.020 m.  The flux through the 

bottom is +0.70 mWb as given in the problem statement.  Since the net flux must be zero 

then the flux through the sides must be negative and exactly cancel the total of the 

previously mentioned fluxes.  Thus (in magnitude) the flux though the sides is 1.1 mWb. 

 

(b) The fact that it is negative means it is inward. 



 

3. (a) We use Gauss’ law for magnetism: z ⋅ =
f f
B dA 0 . Now,  

 

z ⋅ = + +
f f
B dA CΦ Φ Φ1 2 , 

 

where Φ1 is the magnetic flux through the first end mentioned, Φ2 is the magnetic flux 

through the second end mentioned, and ΦC is the magnetic flux through the curved 

surface. Over the first end the magnetic field is inward, so the flux is Φ1 = –25.0 µWb. 

Over the second end the magnetic field is uniform, normal to the surface, and outward, so 

the flux is Φ2 = AB = πr
2
B, where A is the area of the end and r is the radius of the 

cylinder. It value is 

 

Φ2

2 3 50120 160 10 7 24 10 72 4= × = + × = +− −π . . . . .m T Wb Wbb g c h µ  

 

Since the three fluxes must sum to zero, 

 

Φ Φ ΦC = − − = − = −1 2 250 72 4 47 4. . . .µ µ µWb Wb Wb  

 

Thus, the magnitude is | | 47.4 Wb.C µΦ =  

 

(b) The minus sign in cΦ indicates that the flux is inward through the curved surface. 



 

4. From Gauss’ law for magnetism, the flux through S1 is equal to that through S2, the 

portion of the xz plane that lies within the cylinder. Here the normal direction of S2 is +y. 

Therefore, 

0 0
1 2 left

1
( ) ( ) ( ) 2 ( ) 2 ln 3 .

2 2

r r r

B B
r r r

i iL
S S B x L dx B x L dx L dx

r x

µ µ
− − −

Φ = Φ = = = =
π − π∫ ∫ ∫  



 
 

5. We use the result of part (b) in Sample Problem 32-1: 

 

( )
2

0 0 ,
2

R dE
B r R

r dt

µ ε
= ≥  

to solve for dE/dt: 

 

( )( )
( )( )( )

7 3

13

22
12 2 2 3

0 0

2 2.0 10 T 6.0 10 m2 V
2.4 10 .

m s4 T m A 8.85 10 C /N m 3.0 10 m

dE Br

dt Rµ ε

− −

−7 − −

× ×
= = = ×

⋅π×10 ⋅ × ⋅ ×
 



 

6. The integral of the field along the indicated path is, by Eq. 32-18 and Eq. 32-19, equal 

to  

 0 0 2

enclosed area (4.0 cm)(2.0 cm)
(0.75 A) 52 nT m

total area 12 cm
diµ µ⎛ ⎞ = = ⋅⎜ ⎟

⎝ ⎠
. 



  

( )

( )

2 2 2

0 0 0 0 0 0
max max

max max max

2

0 0 max

cos
2 2 2

   for
2

R R RdE dV
B V t

r dt rd dt rd

R V
r R

rd

µ ε µ ε µ ε ω ω

µ ε ω

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠

= ≥

 

 

(note the B ∝ r
–1

 dependence — See also Eqs. 32-16 and 32-17). The plot (with SI units 

understood) is shown below. 

 

 

 

7. (a) Noting that the magnitude of the electric field (assumed uniform) is given by E = 

V/d (where d = 5.0 mm), we use the result of part (a) in Sample Problem 32-1 

 

( )0 0 0 0 .
2 2

r rdE dV
B r R

dt d dt

µ ε µ ε
= = ≤  

 

We also use the fact that the time derivative of sin (ωt) (where ω = 2πf = 2π(60) ≈ 377/s 

in this problem) is ω cos(ωt). Thus, we find the magnetic field as a function of r (for r ≤ 

R; note that this neglects “fringing” and related effects at the edges): 

 

( )0 0 0 0 max
max maxcos

2 2

r rV
B V t B

d d

µ ε µ ε ωω ω= ⇒ =  

 

where Vmax = 150 V. This grows with r until reaching its highest value at r = R = 30 mm: 

 

( )( )( )( )( )
( )

12 3

0 0 max
max

3

12

4 H m 8.85 10 F m 30 10 m 150V 377 s

2 2 5.0 10 m

1.9 10 T.

r R

RV
B

d

µ ε ω
−7 − −

= −

−

π×10 × ×
= =

×

= ×

 

 

(b) For r ≤ 0.03 m, we use the expression max 0 0 max / 2B rV dµ ε ω=  found in part (a) (note 

the B ∝ r dependence), and for r ≥ 0.03 m we perform a similar calculation starting with 

the result of part (b) in Sample Problem 32-1: 

 



 

8. From Sample Problem 32-1 we know that B ∝ r for r ≤ R and B ∝ r
–1

 for r ≥ R. So the 

maximum value of B occurs at r = R, and there are two possible values of r at which the 

magnetic field is 75% of Bmax. We denote these two values as r1 and r2, where r1 < R and 

r2 > R.  

 

(a) Inside the capacitor, 0.75 Bmax/Bmax = r1/R, or r1 = 0.75 R = 0.75 (40 mm) =30 mm. 

 

(b) Outside the capacitor, 0.75 Bmax/Bmax = (r2/R)
–1

, or  

 

r2 = R/0.75 = 4R/3 = (4/3)(40 mm) = 53 mm. 

 

(c) From Eqs. 32-15 and 32-17, 

 

B
i

R

i

R

d
max

.

.
.= = =

× ⋅
= ×

−
−µ µ0 0

7

5

2 2

4 10 6 0

2 0 040
30 10

π π

π

π

T m A A

m
T.

c hb g
b g  



7 14
190 1

2 2

(4 10 T m/A)(2.66 10 A)(0.0200 m)
1.18 10  T

2 2 (0.0300 m)

di r
B

R

µ π
π π

− −
−× ⋅ ×

= = = × . 

 

(b) Outside we have (by Eq. 32-17) 0 2/ 2dB i rµ π=  where r2 = 0.0500 cm.  Here we 

obtain  
7 14

190

2

(4 10 T m/A)(2.66 10 A)
1.06 10  T

2 2 (0.0500 m)

diB
r

µ π
π π

− −
−× ⋅ ×

= = = ×  

 

9. (a) Inside we have (by Eq. 32-16) 2

0 1 / 2dB i r Rµ π= , where 1 0.0200 m,r =  

0.0300 m,R =  and the displacement current is given by Eq. 32-38 (in SI units):  

 

 12 2 2 3 14

0 (8.85 10 C /N m )(3.00 10 V/m s) 2.66 10 AE
d

d
i

dt
ε − − −Φ

= = × ⋅ × ⋅ = × . 

 

Thus we find  

 



 

10. (a) Application of Eq. 32-3 along the circle referred to in the second sentence of the 

problem statement (and taking the derivative of the flux expression given in that sentence) 

leads to 

( )0 0(2 ) 0.60 V m/s
r

B r
R

π ε µ= ⋅ . 

 

Using r = 0.0200 m (which, in any case, cancels out) and R = 0.0300 m, we obtain 

 
12 2 2 7

0 0

17

(0.60 V m/s) (8.85 10 C /N m )(4 10 T m/A)(0.60 V m/s)

2 2 (0.0300 m)

3.54 10  T .

B
R

ε µ
π π

− −

−

⋅ × ⋅ π× ⋅ ⋅
= =

= ×
 

 

(b) For a value of r larger than R, we must note that the flux enclosed has already reached 

its full amount (when r = R in the given flux expression).  Referring to the equation we 

wrote in our solution of part (a), this means that the final fraction ( /r R ) should be 

replaced with unity.  On the left hand side of that equation, we set r = 0.0500 m and solve.  

We now find  

 
12 2 2 7

0 0

17

(0.60 V m/s) (8.85 10 C /N m )(4 10 T m/A)(0.60 V m/s)

2 2 (0.0500 m)

2.13 10  T .

B
r

ε µ
π π

− −

−

⋅ × ⋅ π× ⋅ ⋅
= =

= ×
 



 

(b) With r > R, the expression above must replaced by 

 

( )2

0 0(2 ) 0.00450 V/m sB r Rπ ε µ π= ⋅ . 

 

Substituting r = 0.050 m and R = 0.030 m, we obtain B = 4.51 × 10
−22 

T. 

 

11. (a) Application of Eq. 32-7 with A = πr
2
 (and taking the derivative of the field 

expression given in the problem) leads to 

 

 ( )2

0 0(2 ) 0.00450 V/m sB r rπ ε µ π= ⋅ . 

 

For r = 0.0200 m, this gives  

 

0 0

12 2 2 7

22

1
(0.00450 V/m s)

2
1

(8.85 10 C /N m )(4 10 T m/A)(0.0200 m)(0.00450 V/m s)
2
5.01 10  T .

B rε µ

− −

−

= ⋅

= × ⋅ π× ⋅ ⋅

= ×

 



 

12. (a) Here, the enclosed electric flux is found by integrating 

 
3

2

0 0

1
2 (0.500 V/m s)(2 ) 1

2 3

r r

E

r r
E rdr t rdr t r

R R
π π π

⎛ ⎞⎛ ⎞Φ = = ⋅ − = −⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫ ∫  

 

with SI units understood.  Then (after taking the derivative with respect to time) Eq. 32-3 

leads to   
3

2

0 0

1
(2 )

2 3

r
B r r

R
π ε µ π

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
. 

 

For r = 0.0200 m and R = 0.0300 m, this gives B = 3.09 × 10
−20 

T. 

 

(b) The integral shown above will no longer (since now r > R) have r as the upper limit; 

the upper limit is now R.  Thus,  

 
3

2 21 1

2 3 6
E

R
t R t R

R
π π

⎛ ⎞
Φ = − =⎜ ⎟

⎝ ⎠
. 

Consequently, Eq. 32-3 becomes 

 

2

0 0

1
(2 )

6
B r Rπ ε µ π=  

which for r = 0.0500 m, yields   

 
2 12 7 2

200 0 (8.85 10 )(4 10 )(0.030)
1.67 10  T .

12 12(0.0500)

R
B

r

ε µ − −
−× π×

= = = ×  



  

 

13. The displacement current is given by 0 ( / ),di A dE dtε=  where A is the area of a plate 

and E is the magnitude of the electric field between the plates. The field between the 

plates is uniform, so E = V/d, where V is the potential difference across the plates and d is 

the plate separation. Thus, 

i
A

d

dV

dt
d =

ε 0 .  

 

Now, ε0A/d is the capacitance C of a parallel-plate capacitor (not filled with a dielectric), 

so 

i C
dV

dt
d = .  



 

14. We use Eq. 32-14: 0 ( / ).di A dE dtε=  Note that, in this situation, A is the area over 

which a changing electric field is present. In this case r > R, so A = πR
2
. Thus, 

 

( )( )
12

22 12 2 2
0 0

2.0 A V
7.2 10 .

m s8.85 10 C /N m 0.10 m

d di idE

dt A Rε ε −
= = = = ×

π ⋅π × ⋅
 



 

15. Let the area plate be A and the plate separation be d. We use Eq. 32-10: 

 

i
d

dt

d

dt
AE A

d

dt

V

d

A

d

dV

dt
d

E= = = F
HG
I
KJ = F

HG
I
KJε ε ε ε

0 0 0
0Φ b g ,  

or 

dV

dt

i d

A

i

C

d d= = =
×

= ×−ε 0

6

515
7 5 10

.
. .

A

2.0 10 F
V s  

 

Therefore, we need to change the voltage difference across the capacitor at the rate of 
57.5 10  V/s× . 



 

16. Consider an area A, normal to a uniform electric field 
f
E . The displacement current 

density is uniform and normal to the area. Its magnitude is given by Jd = id/A. For this 

situation , 0 ( / )di A dE dtε= , so 

J
A

A
dE

dt

dE

dt
d = =

1
0 0ε ε .  

 



17. (a) We use 
f f
B ds I⋅ =z µ 0 enclosed  to find 

 

( ) ( )( )( )
2

0 6 2 30 enclosed
0

7

1 1
1.26 10 H m 20 A m 50 10 m

2 2 2 2

6.3 10 T.

d

d

J rI
B J r

r r

µµ µ − −

−

π
= = = = × ×

π π
= ×

 

 

(b) From i J r
d

dt
r

dE

dt
d d

E= = =π π2

0 0

2ε εΦ
, we get 

 

dE

dt

Jd= =
×

= ×
⋅−ε 0

12

1220

885 10
2 3 10

A m

F m

V

m s

2

.
. . 

 



  

( ) ( ) ( )
( )( )( )

5 4 4

0 0 0 0

12 2 2 2 2 4

8

4.0 10 6.0 10 6.0 10 V m s

8.85 10 C /N m 4.0 10 m 6.0 10 V m s

2.1 10 A.

E
d

d dE d
i A A t A

dt dt dt
ε ε ε ε

− −

−

Φ ⎡ ⎤= = × − × = − × ⋅⎣ ⎦

= − × ⋅ × × ⋅

= − ×

 

 

Thus, the magnitude of the displacement current is 8| | 2.1 10 A.di
−= ×  

 

(b) The negative sign in di implies that the direction is downward.  

 

(c) If one draws a counterclockwise circular loop s around the plates, then according to 

Eq. 32-18 

s
dB ds iz ⋅ = <

f f µ 0 0,  

 

which means that 
f f
B ds⋅ < 0 . Thus 

f
B  must be clockwise. 

18. (a) From Eq. 32-10, 

 



 

19. (a) In region a of the graph, 

 

( )( )
5 5

12 2

0 0 6

4.5 10 N C 6.0 10 N C
8.85 10 F m 1.6 m 0.71A.

4.0 10 s

E
d

d dE
i A

dt dt
ε ε −

−

Φ × − ×
= = = × =

×
 

(b) id ∝ dE/dt = 0. 

 

(c) In region c of the graph, 

 

( )( )
5

12 2

0 6

4.0 10 N C
| | 8.85 10 F m 1.6m 2.8A.

2.0 10 s
d

dE
i A

dt
ε −

−

− ×
= = × =

×
 



(c) We now look for a solution in the exterior region, where the field is inversely 

proportional to r (by Eq. 32-17): 

 

B

B

R

rmax

.
= =

300mT

12.0mT
 

 

which yields r = 4R = 4(1.20 cm) = 4.80 cm.   

 

20. (a) Since i = id (Eq. 32-15) then the portion of displacement current enclosed is 

 

( )2

,enc 2

/ 3
1.33A.

9
d

R i
i i

R

π
π

= = =  

 

(b) We see from Sample Problems 32-1 and 32-2 that the maximum field is at r = R and 

that (in the interior) the field is simply proportional to r. Therefore, 

 

B

B

r

Rmax

.
= =

300mT

12.0mT
 

 

which yields r = R/4 = (1.20 cm)/4 = 0.300 cm.  

 



 

21. (a) At any instant the displacement current id in the gap between the plates equals the 

conduction current i in the wires. Thus id = i = 2.0 A. 

 

(b) The rate of change of the electric field is 

 

dE

dt A

d

dt

i

A

E d= F
HG

I
KJ = =

×
= ×

⋅−

1 2 0

85 10 10
2 3 10

0

0

0
12 2

11

ε
ε

ε
Φ .

. .
. .

A

8 F m m

V

m sc hb g
 

 

(c) The displacement current through the indicated path is 

 

( )
2

2

2

0.50m
2.0A 0.50A.

1.0m
d d

d
i i

L

⎛ ⎞ ⎛ ⎞
′ = = =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

 

(d) The integral of the field around the indicated path is 

 f f
B ds id⋅ = ′ = × = × ⋅− −z µ 0

16 7126 10 050 6 3 10. . .H m A T m.c hb g  



  

i = 
12.0 V

20.0 x 10
6 Ω  e

− t/τ
  = 3.50  × 10

−7 
A . 

 

Since i = id (see Eq. 32-15) and r = 0.0300 m, then (with plate radius R = 0.0500 m) we 

find 
7 7

130

2 2

(4 10 T m/A)(3.50 10 A)(0.030 m)
8.40 10  T

2 2 (0.050 m)

di r
B

R

µ
π π

− −
−π× ⋅ ×

= = = × . 

 

 

22. From Eq. 28-11, we have i = (ε / R ) e
− t/τ

  since we are ignoring the self-inductance of 

the capacitor. Eq. 32-16 gives 

 0

22

di r
B

R

µ
π

= . 

 

Furthermore, Eq. 25-9 yields the capacitance  

 

 
2

110 (0.05 m)
2.318 10 F

0.003 m
C

ε π −= = × , 

 

so that the capacitive time constant is  

 

τ = (20.0 × 10
6 Ω)(2.318 × 10

−11 
F) = 4.636 × 10

−4 
s. 

 

At t = 250 × 10
−6 

s, the current is 

 



23. (a) Using Eq. 27-10, we find E J
i

A
= = =

× ⋅

×
=

−

−ρ ρ 162 10 100

500 10
0 324

8

6

.

.
. .

Ω m A

m
V m

2

c hb g
 

 

(b) The displacement current is 

 

( )( )( )12 8

0 0 0 0

16

8.85 10 F/m 1.62 10 2000A s

2.87 10 A.

E
d

d dE d i di
i A A

dt dt dt A dt

ρε ε ε ε ρ − −

−

Φ ⎛ ⎞= = = = = × × Ω⎜ ⎟
⎝ ⎠

= ×
 

(c) The ratio of fields is 
B i

B i

i r

i r

i

i

d d d
due to

due to

A

100A

b g
b g = = =

×
= ×

−
−µ

µ
0

0

16
182

2

2 87 10
2 87 10

π
π

.
. .  



 

24. (a) Fig. 32-35 indicates that i = 4.0 A when t = 20 ms.  Thus,  

 

Bi = µoi/2πr  = 0.089 mT. 

 

(b) Fig. 32-35 indicates that i = 8.0 A when t = 40 ms. Thus, Bi ≈ 0.18 mT. 

 

(c) Fig. 32-35 indicates that i = 10 A when t > 50 ms. Thus, Bi  ≈ 0.220 mT.  

 

(d) Eq. 32-4 gives the displacement current in terms of the time-derivative of the electric 

field: id = εoA(dE/dt), but using Eq. 26-5 and Eq. 26-10 we have E = ρi/A (in terms of the 

real current); therefore, id = εoρ(di/dt). For 0 < t < 50 ms, Fig. 32-35 indicates that di/dt = 

200 A/s.  Thus, Bid = µoid /2πr  = 6.4 × 10
−22 

T. 

 

(e) As in (d), Bid = µoid /2πr  = 6.4 × 10
−22 

T. 

 

(f) Here di/dt = 0, so (by the reasoning in the previous step) B = 0. 

 

(g) By the right-hand rule, the direction of iB
f

at t = 20 s is out of page. 

 

(h) By the right-hand rule, the direction of idB
f

at t = 20 s is out of page. 



 
2

0 0 0
02 2 2

7 2

( ) 1

2 2 2 2

1
(4 10 T m/A)(6.00 A/m )(0.0200 m) 75.4 nT .

2

d d d
d

i r J Ar J R r
B J r

R R R

µ µ µ π µ
π π π

−

= = = =

= π× ⋅ =
  

(b) Similarly, Eq. 32-17 gives 
2

0 0 67.9 nT
2 2

d di J R
B

r r

µ µ π
π π

= = = . 

 

25. (a) Eq. 32-16 (with Eq. 26-5)  gives, with A = πR
2
,  



 

26. (a) Eq. 32-16 gives  0

2
2.22 T

2

di r
B

R

µ µ
π

= = .  

(b) Eq. 32-17 gives 0 2.00 T
2

diB
r

µ µ
π

= = .  



 

27. (a) Eq. 32-11 applies (though the last term is zero) but we must be careful with id,enc .  

It is the enclosed portion of the displacement current, and if we related this to the 

displacement current density Jd , then 

 

( )
3

2 2

enc
0 0

1
2 (4.00 A/m )(2 ) 1 / 8

2 3

r r

d d

r
i J r dr r R r dr r

R
π π π

⎛ ⎞
= = − = −⎜ ⎟

⎝ ⎠
∫ ∫  

 

with SI units understood.  Now, we apply Eq. 32-17 (with id replaced with id,enc) or start 

from scratch with Eq. 32-11, to get 
0 enc

27.9 nT
2

di
B

r

µ
π

= = . 

 

(b) The integral shown above will no longer (since now r > R) have r as the upper limit; 

the upper limit is now R.  Thus,  

 
3

2 2

enc

1 4
8

2 3 3
d d

R
i i R R

R
π π

⎛ ⎞
= = − =⎜ ⎟

⎝ ⎠
. 

 

Now Eq. 32-17 gives 0 15.1 nT
2

diB
r

µ
π

= = .  



 

28. (a) Eq. 32-11 applies (though the last term is zero) but we must be careful with id,enc .  

It is the enclosed portion of the displacement current.  Thus Eq. 32-17 (which derives 

from Eq. 32-11) becomes, with  id replaced with id,enc, 

 

 
0 enc 0 (3.00 A)( / )

2 2

di r R
B

r r

µ µ
π π

= =  

 

which yields (after canceling r, and setting R = 0.0300 m) B = 20.0 µ 
T. 

 

(b) Here  id = 3.00 A, and we get  0 12.0 T
2

diB
r

µ µ
π

= = . 

 



  

29. (a) At any instant the displacement current id in the gap between the plates equals the 

conduction current i in the wires. Thus imax = id max = 7.60 µA. 

 

(b) Since id = ε0 (dΦE/dt), 

 

d

dt

i
E dΦF

HG
I
KJ = =

×
×

= × ⋅
−

−
max

max .
. .

ε 0

6

12

57 60 10
859 10

A

8.85 10 F m
V m s  

 

(c) According to Problem 32-13, the displacement current is 

 

i C
dV

dt

A

d

dV

dt
d = =

ε 0 .  

 

Now the potential difference across the capacitor is the same in magnitude as the emf of 

the generator, so V = εm sin ωt and dV/dt = ωεm cos ωt. Thus, 0 m( / ) cosdi A d tε ωε ω=  

and max 0 m / .di A dε ωε=  This means 

 

( ) ( ) ( )( )212

30 m

6

max

8.85 10 F m 0.180 m 130rad s 220 V
3.39 10 m,

7.60 10 Ad

A
d

i

ε ωε
−

−
−

× π
= = = ×

×
 

 

where A = πR
2
 was used. 

 

(d) We use the Ampere-Maxwell law in the form 
f f
B ds Id⋅ =z µ 0 , where the path of 

integration is a circle of radius r between the plates and parallel to them. Id is the 

displacement current through the area bounded by the path of integration. Since the 

displacement current density is uniform between the plates, Id = (r
2
/R

2
)id, where id is the 

total displacement current between the plates and R is the plate radius. The field lines are 

circles centered on the axis of the plates, so 
f
B  is parallel to ds

f
. The field has constant 

magnitude around the circular path, so 
f f
B ds rB⋅ =z 2π . Thus, 

 
2

0
0 2 2

2       .
2

d
d

i rr
rB i B

R R

µµ
⎛ ⎞

π = ⇒ =⎜ ⎟ π⎝ ⎠
 

 

The maximum magnetic field is given by 

 

B
i r

R

d
max

max
. .

.= =
× ⋅ ×

= ×
−

−µ 0

2

6

2

12

2

4 7 6 10 0110

2 0
516 10

π

π 10

π 0.18

−7 T m A A m

m
T.

c hc hb g
b g

 



 

30. (a) The flux through Arizona is 

 

Φ = − = − × = − ×−B Ar 43 10 295 000 10 13 106 3
2

7T km m km Wb2c hc hc h, . ,  

 

inward. By Gauss’ law this is equal to the negative value of the flux Φ' through the rest of 

the surface of the Earth. So Φ' = 1.3 × 10
7
 Wb. 

 

(b) The direction is outward. 



 

31. The horizontal component of the Earth’s magnetic field is given by Bh i= B cosφ , 

where B is the magnitude of the field andφ i  is the inclination angle. Thus 

 

B
Bh

i

= =
°

=
cos cosφ

µ µ16

73
55

T
T .  



 

32. We use Eq. 32-27 to obtain  

 

∆U = –∆(µs,zB) = –B∆µs,z, 

 

where µ µs z e Beh m, = ± = ±4π  (see Eqs. 32-24 and 32-25). Thus, 

 

∆U B BB B B= − − − = = × = ×− −µ µ µb g c hb g2 2 9 27 10 0 25 4 6 1024 24. . . .J T T J  



 

33. We use Eq. 32-31: µ orb, z = – m` µB. 

 

(a) For m`  = 1, µorb,z = –(1) (9.3 × 10
–24

 J/T) = –9.3 × 10
–24

 J/T. 

 

(b) For m`  = –2, µorb,z = –(–2) (9.3 × 10
–24

 J/T) = 1.9 × 10
–23

 J/T. 



 

34. Combining Eq. 32-27 with Eqs. 32-22 and 32-23, we see that the energy difference is 

 

2 BU Bµ∆ =  

 

where µB is the Bohr magneton (given in Eq. 32-25).  With ∆U = 6.00 × 10
−25

 J, we 

obtain B = 32.3 mT. 



  

 

(d) Regardless of the value of m` , we find for the spin part 

 

U B Bs z B= − = ± = ± × = ± ×− −µ µ, . . .9 27 10 35 32 1024 25J T mT Jc hb g  

 

(e) Now m`  = –3, so 

 

( ) ( )27

34 34

orb,

3 6.63 10 J s
3.16 10 J s 3.2 10 J s

2 2
z

m h
L

−
− −

− × ⋅
= = = − × ⋅ ≈ − × ⋅

π π
`  

 

(f) and ( ) ( )24 23 23

orb, 3 9.27 10 J T 2.78 10 J T 2.8 10 J T .z Bmµ µ − − −= − = − − × = × ≈ ×`  

 

(g) The potential energy associated with the electron’s orbital magnetic moment is now 

 

( )( )23 3 25

orb, ext 2.78 10 J T 35 10 T 9.7 10 J.zU Bµ − − −= − = − × × = − ×  

 

(h) On the other hand, the potential energy associated with the electron spin, being 

independent of m` , remains the same: ±3.2 × 10
–25

 J. 

 

35. (a) Since m`  = 0, Lorb,z = m` h/2π = 0. 

 

(b) Since m`  = 0, µorb,z = – m` µB = 0. 

 

(c) Since m`  = 0, then from Eq. 32-32, U = –µorb,zBext = – m` µBBext = 0. 



 

36. (a) The potential energy of the atom in association with the presence of an external 

magnetic field 
f
Bext  is given by Eqs. 32-31 and 32-32: 

 

orb ext orb, ext ext .z BU B B m Bµ µ µ= − ⋅ = − = − `

f
 

 

For level E1 there is no change in energy as a result of the introduction of 
f
Bext , so U ∝ m`  

= 0, meaning that m` = 0 for this level.  

 

(b) For level E2 the single level splits into a triplet (i.e., three separate ones) in the 

presence of 
f
Bext , meaning that there are three different values of m` . The middle one in 

the triplet is unshifted from the original value of E2 so its m`  must be equal to 0. The 

other two in the triplet then correspond to m`  = –1 and m`  = +1, respectively. 

 

(c) For any pair of adjacent levels in the triplet |∆ m` | = 1. Thus, the spacing is given by 

 
24 24| ( ) | | | (9.27 10 J/T)(0.50T) 4.64 10 J.B B BU m B m B Bµ µ µ − −∆ = ∆ − = ∆ = = × = ×` `  



 
 

(b) The primary conclusion of §32-9 is two-fold: 
f
u  is opposite to 

f
B , and the effect of 

f
F  

is to move the material towards regions of smaller | |B
f

 values. The direction of the 

magnetic moment vector (of our loop) is toward the right in our sketch, or in the +x 

direction. 

 

(c) The direction of the current is clockwise (from the perspective of the bar magnet.) 

 

(d) Since the size of | |B
f

 relates to the “crowdedness” of the field lines, we see that 
f
F  is 

towards the right in our sketch, or in the +x direction. 

 

37. (a) A sketch of the field lines (due to the presence of the bar magnet) in the vicinity of 

the loop is shown below: 



 

38. An electric field with circular field lines is induced as the magnetic field is turned on. 

Suppose the magnetic field increases linearly from zero to B in time t. According to Eq. 

31-27, the magnitude of the electric field at the orbit is given by 

 

E
r dB

dt

r B

t
= FHG
I
KJ = FHG

I
KJ2 2

,  

 

where r is the radius of the orbit. The induced electric field is tangent to the orbit and 

changes the speed of the electron, the change in speed being given by 

 

∆v at
eE

m
t

e

m

r B

t
t

erB

me e e

= = =
F
HG
I
KJ
F
HG
I
KJ
F
HG
I
KJ =

2 2
.  

 

The average current associated with the circulating electron is i = ev/2πr and the dipole 

moment is 

µ = = F
HG
I
KJ =Ai r

ev

r
evrπ

π
2

2

1

2
c h .  

 

The change in the dipole moment is 

 

∆ ∆µ = =
F
HG
I
KJ =

1

2

1

2 2 4

2 2

er v er
erB

m

e r B

me e

.  



 

39. The magnetization is the dipole moment per unit volume, so the dipole moment is 

given by µ = MV, where M is the magnetization and V  is the volume of the cylinder 

(V = πr L2 , where r is the radius of the cylinder and L is its length). Thus, 

µ = = × × × = ×− −M r Lπ π 0.500 10−22 3
2

2 2530 10 500 10 2 08 10. . . .A m m m J Tc h c h c h  



  

 
 

40. Reviewing Sample Problem 32-3 before doing this exercise is helpful. Let 

 

K kT B B B= = ⋅ − − ⋅ =
3

2
2

f f f f
µ µ µd i  

which leads to 

T
B

k
= =

×

×
=

−

−

4

3

4 10 10 050

3 138 10
0 48

23

23

µ . .

.
. .

J T T

J K
K

c hb g
c h  



 

41. For the measurements carried out, the largest ratio of the magnetic field to the 

temperature is (0.50 T)/(10 K) = 0.050 T/K. Look at Fig. 32-14 to see if this is in the 

region where the magnetization is a linear function of the ratio. It is quite close to the 

origin, so we conclude that the magnetization obeys Curie’s law. 



 

42. (a) From Fig. 32-14 we estimate a slope of B/T = 0.50 T/K when M/Mmax = 50%. So  

 

B = 0.50 T = (0.50 T/K)(300 K) = 1.5×10
2
 T. 

 

(b) Similarly, now B/T ≈ 2 so B = (2)(300) = 6.0×10
2
 T. 

 

(c) Except for very short times and in very small volumes, these values are not attainable 

in the lab. 



The magnetic force − ×ev B
f f

 must point toward the center of the circular path. If the 

magnetic field is directed out of the page (defined to be +z direction), the electron will 

travel counterclockwise around the circle. Since the electron is negative, the current is in 

the opposite direction, clockwise and, by the right-hand rule for dipole moments, the 

dipole moment is into the page, or in the –z direction. That is, the dipole moment is 

directed opposite to the magnetic field vector. 

 

(b) We note that the charge canceled in the derivation of µ = Ke/B. Thus, the relation µ = 

Ki/B holds for a positive ion.  

 

(c) The direction of the dipole moment is –z, opposite to the magnetic field. 

 

(d) The magnetization is given by M = µene + µini, where µe is the dipole moment of an 

electron, ne is the electron concentration, µi is the dipole moment of an ion, and ni is the 

ion concentration. Since ne = ni, we may write n for both concentrations. We substitute µe 

= Ke/B and µi = Ki/B to obtain 

 

( ) ( )
21 3

20 21 25.3 10 m
6.2 10 J+7.6 10 J 3.1 10 A m.

1.2T
e i

n
M K K

B

−
− −×

= + = × × = ×  

 

43. (a) A charge e traveling with uniform speed v around a circular path of radius r takes 

time T = 2πr/v to complete one orbit, so the average current is 

 

i
e

T

ev

r
= =

2π
.  

 

The magnitude of the dipole moment is this multiplied by the area of the orbit: 

 

µ = =
ev

r
r

evr

2 2

2

π
π .  

 

Since the magnetic force with magnitude evB is centripetal, Newton’s law yields evB = 

mev
2
/r, so / .er m v eB=  Thus, 

 

µ = F
HG
I
KJ = FHG
I
KJ
F
HG
I
KJ =

1

2

1 1

2

2ev
m v

eB B
m v

K

B

e
e

eb g .  

 



 

44. Section 32-10 explains the terms used in this problem and the connection between M 

and µ. The graph in Fig. 32-39 gives a slope of 

 

max

ext

/ 0.15
0.75 K/T

/ 0.20 T/K

M M

B T
= =  .  

Thus we can write 

 
max

0.800 T
(0.75 K/T) 0.30

2.00 K

µ
µ

= = . 



(c) For µB kT>>  we have tanh (µB/kT) ≈ 1, so M N
B

kT
N= F

HG
I
KJ ≈µ µ µtanh .  

 

(d) One can easily plot the tanh function using, for instance, a graphical calculator. One 

can then note the resemblance between such a plot and Fig. 32-14. By adjusting the 

parameters used in one’s plot, the curve in Fig. 32-14 can reliably be fit with a tanh 

function. 

 

45. (a) We use the notation P(µ) for the probability of a dipole being parallel to 
f
B , and 

P(–µ) for the probability of a dipole being antiparallel to the field. The magnetization 

may be thought of as a “weighted average” in terms of these probabilities: 

 

( ) ( )
( ) ( )

( )
tanh .

B KT B KT

B KT B KT

N e eN P N P B
M N

P P e e kT

µ µ

µ µ

µµ µ µ µ µµ
µ µ

−

−

−− − ⎛ ⎞= = = ⎜ ⎟+ − + ⎝ ⎠
 

 

(b) For µB kT<<  (that is, µB kT/ << 1) we have e
±µB/kT

 ≈ 1 ± µB/kT, so 

 

M N
B

kT

N B kT B kT

B kT B kT

N B

kT
= F

HG
I
KJ ≈

+ − −

+ + −
=µ µ µ µ µ

µ µ
µ

tanh .
1 1

1 1

2b g b g
b g b g  

 



 

46. (a) The number of iron atoms in the iron bar is 

 

N =
×

= ×
7 9 50 10

55847 6 022 10
4 3 10

23

23
. . .

. .
. .

g cm cm cm

g mol mol

3 2c hb gc h
b g c h  

 

Thus the dipole moment of the iron bar is 

 

µ = × × = ⋅−21 10 4 3 10 8 923 23. . . .J T A m2c hc h  

 

(b) τ = µB sin 90° = (8.9 A · m
2
)(1.57 T) = 13 N · m. 

 



47. (a) The field of a dipole along its axis is given by Eq. 30-29: B
z

=
µ µ0

32π
,  where µ is 

the dipole moment and z is the distance from the dipole. Thus, 

 

B
A

=
× ⋅ ×

×
= ×

− −
−

4 10 15 10

2
30 10

7 23

6
π

π 10 10−9

T m J T

m
T.

c hc h
c h

.
.  

 

(b) The energy of a magnetic dipole 
f
µ  in a magnetic field 

f
B  is given by 

 

U B B= − ⋅ = −
f f
µ µ φcos , 

 

where φ is the angle between the dipole moment and the field. The energy required to 

turn it end-for-end (from φ = 0° to φ = 180°) is 

 

∆U B= = × × = × ×− − − −2 2 15 10 30 10 9 0 1023 6 29 10µ . . .J T T J = 5.6 10 eV.c hc h  

 

The mean kinetic energy of translation at room temperature is about 0.04 eV. Thus, if 

dipole-dipole interactions were responsible for aligning dipoles, collisions would easily 

randomize the directions of the moments and they would not remain aligned. 



  

 

48. The Curie temperature for iron is 770°C. If x is the depth at which the temperature 

has this value, then 10°C + (30°C/km)x = 770°C. Therefore, 

 

x =
° − °
°

=
770 10

25
C C

30 C km
km. 



 

49. The saturation magnetization corresponds to complete alignment of all atomic dipoles 

and is given by Msat = µn, where n is the number of atoms per unit volume and µ is the 

magnetic dipole moment of an atom. The number of nickel atoms per unit volume is n = 

ρ/m, where ρ is the density of nickel. The mass of a single nickel atom is calculated using 

m = M/NA, where M is the atomic mass of nickel and NA is Avogadro’s constant. Thus, 

 

( )( )3 23

22 3

28 3

8.90g cm 6.02 10 atoms mol
9.126 10 atoms cm

58.71g mol

9.126 10 atoms m .

AN
n

M

ρ ×
= = = ×

= ×

 

 

The dipole moment of a single atom of nickel is 

 

µ = =
×
×

= × ⋅−M

n

sat

3

2A m

m
A m

4 70 10

9126 10
515 10

5

28

24.

.
. .  



 

50. From Eq. 29-37 (see also Eq. 29-36) we write the torque as τ  =  −µBh sinθ where the 

minus indicates that the torque opposes the angular displacement θ (which we will 

assume is small and in radians).  The small angle approximation leads to 

hBτ µ θ≈ − , which is an indicator for simple harmonic motion (see section 16-5, 

especially Eq. 16-22).  Comparing with Eq. 16-23, we then find the period of oscillation 

is 

T = 2π 
I

 µBh
  

 

where I is the rotational inertial that we asked to solve for. Since the frequency is given as 

0.312 Hz, then the period is T = 1/f = 1/(0.312 Hz) = 3.21 s. Similarly, Bh = 18.0 × 10
−6

 T 

and µ = 6.80 × 10
−4

 J/T.  The above relation then yields I = 3.19 × 10
−9 

kg
.
m

2
. 



(b) If Φ is the magnetic flux through the secondary coil, then the magnitude of the emf 

induced in that coil is ε = N(dΦ/dt) and the current in the secondary is is = ε/R, where R is 

the resistance of the coil. Thus, 

i
N

R

d

dt
s = FHG
I
KJ

Φ
.  

 

The charge that passes through the secondary when the primary current is turned on is 

 

0
.s

N d N N
q i dt dt d

R dt R R

ΦΦ Φ
= = = Φ =∫ ∫ ∫  

 

The magnetic field through the secondary coil has magnitude B = B0 + BM = 801B0, 

where BM is the field of the magnetic dipoles in the magnetic material. The total field is 

perpendicular to the plane of the secondary coil, so the magnetic flux is Φ = AB, where A 

is the area of the Rowland ring (the field is inside the ring, not in the region between the 

ring and coil). If r is the radius of the ring’s cross section, then A = πr
2
. Thus, 

 

Φ = 801 2

0πr B .  

 

The radius r is (6.0 cm – 5.0 cm)/2 = 0.50 cm and 

 

Φ = × × ×− − −801 0 20 102 3π(0.50 10 m) T) = 1.26 10 Wb .2 5( .  

 

Consequently, 
5

550(1.26 10 Wb)
7.9 10 C .

8.0
q

−
−×

= = ×
Ω

 

 

51. (a) The magnitude of the toroidal field is given by B0 = µ0nip, where n is the number 

of turns per unit length of toroid and ip is the current required to produce the field (in the 

absence of the ferromagnetic material). We use the average radius (ravg = 5.5 cm) to 

calculate n: 

3

2

avg

400 turns
1.16 10 turns/m .

2 2 m)

N
n

r −= = = ×
π π(5.5×10

 

Thus, 

i
B

n
p = =

×
× ⋅ ×

=
−

−
0

0

3

7

0 20 10

4
014

µ
.

( /
.

T

T m / A)(1.16 10 m)
 A .

3π 10
 

 



52. (a)  Eq. 29-36 gives  

 

τ  =  µrod B sinθ = (2700 A/m)(0.06 m)π(0.003 m)
2
(0.035 T)sin(68°) = 1.49 × 10

−4  
N m⋅ . 

 

We have used the fact that the volume of a cylinder is its length times its (circular) cross 

sectional area. 

 

(b) Using Eq. 29-38, we have 

 

∆U = – µrod B(cos θf  – cos θi) 

                     = –(2700 A/m)(0.06 m)π(0.003m)
2
(0.035T)[cos(34°) – cos(68°)] 

=  –72.9 µJ. 



 

N
R

m
=

4

3

3πρ
.  

 

We substitute this into µtotal = Nµ  to obtain 

 
1 33

total
total

34
.

3 4

mR
R

m

µρ µµ
ρµ

⎛ ⎞π
= ⇒ = ⎜ ⎟π⎝ ⎠

 

 

The mass of an iron atom is m = = × = ×− −56 56 166 10 9 30 1027 26u u kg u kg.b gc h. .  

Therefore, 

R =
× ×

× ×

L
N
M
M

O
Q
P
P

= ×
−

−

3 9 30 10 8 0 10

4 21 10
18 10

26 22

23

1 3

5
. .

.
.

kg J T

kg m J T
m.

3

c hc h
c hc hπ 14 103

 

 

(b) The volume of the sphere is V Rs = = × = ×
4 4

182 10 2 53 103 5
3

16π
3

π
3

. .m m3c h  and the 

volume of the Earth is 

Ve = × = ×
4

6 37 10 108 106
3

21π
3

. . ,m m3c h  

 

so the fraction of the Earth’s volume that is occupied by the sphere is 

 

2 53 10

108 10
2 3 10

16

21

5.

.
. .

×
×

= × −m

m

3

3
 

  

 

53. (a) If the magnetization of the sphere is saturated, the total dipole moment is µtotal = 

Nµ, where N is the number of iron atoms in the sphere and µ is the dipole moment of an 

iron atom. We wish to find the radius of an iron sphere with N iron atoms. The mass of 

such a sphere is Nm, where m is the mass of an iron atom. It is also given by 4πρR
3
/3, 

where ρ is the density of iron and R is the radius of the sphere. Thus Nm = 4πρR
3
/3 and 



 

54. (a)  Inside the gap of the capacitor, B1 =  µoid r1 /2πR
2
 (Eq. 32-16); outside the gap the 

magnetic field is B2 =  µoid /2πr2 (Eq. 32-17).  Consequently, B2 = B1R
2
/r1 r2 = 16.7 nT. 

 

(b) The displacement current is id  = 2πB1R
2
/µor1  = 5.00 mA. 



 

55. (a) The Pythagorean theorem leads to 

 
2 2

2 2 2 20 0 0

3 3 3

20

3

cos sin cos 4sin
4 2 4

1 3sin ,
4

h v m m m m

m

B B B
r r r

r

µ µ µ µ µ µ

µ µ

⎛ ⎞ ⎛ ⎞= + = λ + λ = λ + λ⎜ ⎟ ⎜ ⎟π π π⎝ ⎠ ⎝ ⎠

= + λ
π

 

 

where cos
2
 λm + sin

2
 λm = 1 was used. 

 

(b) We use Eq. 3-6: 

( )
( )

3

0

3

0

2 sin
tan 2 tan .

4 cos

mv
i m

h m

rB

B r

µ µ
φ

µ µ

π λ
= = = λ

π λ
 



  

 

56. (a) At the magnetic equator (λm = 0), the field is 

 

( ) ( )
( )

7 22 2

50

33 6

4 10 T m A 8.00 10 A m
3.10 10 T.

4 4 6.37 10 m
B

r

µ µ
−

−
π× ⋅ × ⋅

= = = ×
π π ×

 

 

(b) φi = tan
–1

 (2 tan λm) = tan
–1

 (0) = 0° . 

 

(c) At λm = 60.0°, we find 

 

( )2 5 2 50

3
1 3sin 3.10 10 1 3sin 60.0 5.59 10 T.

4
mB

r

µ µ − −= + λ = × + ° = ×
π

 

 

(d)φi = tan
–1

 (2 tan 60.0°) = 73.9°. 

 

(e) At the north magnetic pole (λm = 90.0°), we obtain 

 

( ) ( )22 5 50

3
1 3sin 3.10 10 1 3 1.00 6.20 10 T.

4
mB

r

µ µ − −= + λ = × + = ×
π

 

 

(f) φi = tan
–1

 (2 tan 90.0°) = 90.0°. 



 

57. (a) From 2

eiA i Rµ = = π  we get 

 

i
Re

= =
×

×
= ×

µ
π π(6.37 102
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6
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.
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J / T
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(b) Yes, because far away from the Earth the fields of both the Earth itself and the current 

loop are dipole fields. If these two dipoles cancel each other out, then the net field will be 

zero. 

 

(c) No, because the field of the current loop is not that of a magnetic dipole in the region 

close to the loop. 



where µ is the Earth’s dipole moment and λm is the magnetic latitude. The ratio of the 

field magnitudes for two different distances at the same latitude is 

 

B

B

r

r

2

1

1

3

2

3
= .  

 

With B1 being the value at the surface and B2 being half of B1, we set r1 equal to the 

radius Re of the Earth and r2 equal to Re + h, where h is altitude at which B is half its 

value at the surface. Thus, 

1

2

3

3
=

+

R

R h

e

eb g
.  

 

Taking the cube root of both sides and solving for h, we get 

 

( ) ( )( )1 3 1 3 32 1 2 1 6370km 1.66 10 km.eh R= − = − = ×  

 

(b) We use the expression for B obtained in Problem 32-55, part (a). For maximum B, we 

set sin λm = 1.00. Also, r = 6370 km – 2900 km = 3470 km. Thus, 

 

( ) ( )
( )

( )
7 22 2
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6
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4 4 m
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µ µ
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−
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π π 3.47×10

= ×

 

 

(c) The angle between the magnetic axis and the rotational axis of the Earth is 11.5°, so 

λm = 90.0° – 11.5° = 78.5° at Earth’s geographic north pole. Also r = Re = 6370 km. Thus, 

 

( ) ( )
( )
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(d)φ i = ° = °−tan tan . . .1 2 785 84 2b g  

 

(e) A plausible explanation to the discrepancy between the calculated and measured 

values of the Earth’s magnetic field is that the formulas we obtained in Problem 32-55 are 

based on dipole approximation, which does not accurately represent the Earth’s actual 

magnetic field distribution on or near its surface. (Incidentally, the dipole approximation 

becomes more reliable when we calculate the Earth’s magnetic field far from its center.) 

 

58. (a) At a distance r from the center of the Earth, the magnitude of the magnetic field is 

given by 

B
r

m= +
µ µ0

3

2

4
1 3

π
λsin ,  

 



 

B
r dE

dt
=

µ ε0 0

2
,  

and for r ≥ R, it is 

B
R

r

dE

dt
=

µ ε0 0

2

2
. 

 

The maximum magnetic field occurs at points for which r = R, and its value is given by 

either of the formulas above: 

 

B
R dE

dt
max .=

µ ε0 0

2
 

 

There are two values of r for which B = Bmax/2: one less than R and one greater.  

 

(a) To find the one that is less than R, we solve 

 

µ ε µ ε0 0 0 0

2 4

r dE

dt

R dE

dt
=  

 

for r. The result is r = R/2 = (55.0 mm)/2 = 27.5 mm.  

 

(b) To find the one that is greater than R, we solve 

 

µ ε µ ε0 0

2

0 0

2 4

R

r

dE

dt

R dE

dt
=  

 

for r. The result is r = 2R = 2(55.0 mm) = 110 mm. 

 

59. Let R be the radius of a capacitor plate and r be the distance from axis of the capacitor. 

For points with r ≤ R, the magnitude of the magnetic field is given by 



 

60. (a) The period of rotation is T = 2π/ω and in this time all the charge passes any fixed 

point near the ring. The average current is i = q/T = qω/2π and the magnitude of the 

magnetic dipole moment is 

µ ω ω= = =iA
q

r q r
2

1

2

2 2

π
π .  

 

(b) We curl the fingers of our right hand in the direction of rotation. Since the charge is 

positive, the thumb points in the direction of the dipole moment. It is the same as the 

direction of the angular momentum vector of the ring. 



 

(c) Since Lorb,z = m` h/2π, the greatest allowed value of Lorb,z is given by | m` |maxh/2π = 

3h/2π. 

 

(d) Similar to part (c), since µorb,z = – m` µB, the greatest allowed value of µorb,z is given by 

| m` |maxµB = 3eh/4πme. 

 

(e) From Eqs. 32-23 and 32-29 the z component of the net angular momentum of the 

electron is given by 

net , orb, , .
2 2

s
z z s z

m hm h
L L L= + = +

π π
`  

 

For the maximum value of Lnet,z let m`  = [ m` ]max = 3 and ms = 1
2

. Thus 

 

L
h h

znet ,
max

.
.= +FHG

I
KJ =3

1

2 2

35

2π π
 

 

(f) Since the maximum value of Lnet,z is given by [mJ]maxh/2π with [mJ]max = 3.5 (see the 

last part above), the number of allowed values for the z component of Lnet,z is given by 

2[mJ]max + 1 = 2(3.5) + 1 = 8. 

 

  

 

61. (a) For a given value of ` , m`  varies from – `  to + ` . Thus, in our case `  = 3, and the 

number of different m` ’s is 2 `  + 1 = 2(3) + 1 = 7. Thus, since Lorb,z ∝ m` , there are a total 

of seven different values of Lorb,z. 

 

(b) Similarly, since µorb,z ∝ m` , there are also a total of seven different values of µorb,z. 



62. (a) Eq. 30-22 gives  0

2
222 T

2

ir
B

R

µ µ
π

= = .  

 

(b) Eq. 30-19 (or Eq. 30-6) gives 0 167 T
2

i
B

r

µ µ
π

= = .  

 

(c) As in part (b), we obtain a field of 0 22.7 T
2

i
B

r

µ µ
π

= = . 

 

(d) Eq. 32-16 (with Eq. 32-15) gives 0

2
1.25 T

2

di r
B

R

µ µ
π

= = .   

 

(e) As in part (d), we get 0

2
3.75 T

2

di r
B

R

µ µ
π

= = .   

 

(f) Eq. 32-17 yields B = 22.7 µT. 

 

(g) Because the displacement current in the gap is spread over a larger cross-sectional 

area, values of B within that area are relatively small. Outside that cross-sectional area, 

the two values of B are identical. See Fig. 32-22b. 



 

{−4, −3, −2, −1, 0, +1, +2, +3, +4}   ⇒     nine values in all. 

 

(b) The maximum value is 4µB = 3.71 × 10
−23 

J/T. 

 

(c) Multiplying our result for part (b) by 0.250 T gives U = +9.27 × 10
−24 

J. 

 

(d) Similarly, for the lower limit, U = −9.27 × 10
−24 

J. 

 

63. (a) The complete set of values are  



 

64. (a) Using Eq. 32-31, we find  

 

µorb,z = –3µB = –2.78 × 10
–23

 J/T. 

 

(That these are acceptable units for magnetic moment is seen from Eq. 32-32 or Eq. 32-

27; they are equivalent to A·m
2
). 

 

(b) Similarly, for m` = −4 we obtain µorb,z = 3.71 × 10
–23

 J/T. 
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65. The interacting potential energy between the magnetic dipole of the compass and the 

Earth’s magnetic field is  

U B Be e= − ⋅ = −
f f
µ µ θcos , 

 

where θ is the angle between 
f
µ  and 

f
Be . For small angle θ 

 

U B B Be e eθ µ θ µ θ κθ µb g = − ≈ − −
F
HG
I
KJ = −cos 1

2

1

2

2
2  

 

where κ = µBe. Conservation of energy for the compass then gives 

 
2

21 1
const.

2 2

d
I
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⎝ ⎠

 

 

This is to be compared with the following expression for the mechanical energy of a 

spring-mass system: 

1

2

1

2

2

2m
dx

dt
kx

F
HG
I
KJ + = const. ,  

 

which yields ω = k m . So by analogy, in our case 

 

ω κ µ µ
= = =

I

B

I

B

ml

e e

2 12
,  

which leads to 



 

66. The definition of displacement current is Eq. 32-10, and the formula of greatest 

convenience here is Eq. 32-17: 
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67. (a) Using Eq. 32-13 but noting that the capacitor is being discharged, we have 

 

15

12 2 2 2

0
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d E i
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f
 . 

 

(b) Assuming a perfectly uniform field, even so near to an edge (which is consistent with 

the fact that fringing is neglected in §32-4), we follow part (a) of Sample Problem 32-2 

and relate the (absolute value of the) line integral to the portion of displacement current 

enclosed: 

7

0 ,enc 0 2
5.9 10 Wb/m.d

WH
B ds i i

L
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68. (a) From Eq. 32-1, we have 

 

( ) ( ) ( )( )2 3

in out
0.0070Wb 0.40T 9.2 10 Wb.B B r −Φ = Φ = + π = ×  

 

Thus, the magnetic of the magnetic flux is 9.2 mWb. 

 

(b) The flux is inward. 
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The magnitude is ( )13 12 ms( ) 1.2 10 T .tB t e− −= ×  

 

(b) At time t = 3τ,  B(t) = –(1.2 × 10
–13

 T)e
–3τ/τ

 = –5.9 × 10
–15

 T, with a magnitude |B(t)|= 

5.9 × 10
–15

 T. 

 

69. (a) We use the result of part (a) in Sample Problem 32-1: 

 

B
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2
forb g ,  

where r = 0.80R , and 
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Here V0 = 100 V. Thus, 

 



 

70. (a) Again from Fig. 32-14, for M/Mmax = 50% we have B/T = 0.50. So T = B/0.50 = 

2/0.50 = 4 K. 

 

(b) Now B/T = 2.0, so T = 2/2.0 = 1 K. 



 

71. Let the area of each circular plate be A and that of the central circular section be a, 

then 

A

a

R

R
= =

π

π

2

2
2

4
b g

.  

 

Thus, from Eqs. 32-14 and 32-15 the total discharge current is given by i = id = 4(2.0 A) 

= 8.0 A. 



 

72. Ignoring points where the determination of the slope is problematic, we find the 

interval of largest ∆ ∆
f
E t  is 6 µs < t < 7 µs. During that time, we have, from Eq. 32-14, 
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t
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∆
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f
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which yields id = 3.5 × 10
–5

 A. 



(b) For paramagnetic materials, the dipole moment
f
µ  is in the same direction as 

f
B . From 

the above figure,
f
µ  points in the –x direction. 

 

(c) Form the right-hand rule, since 
f
µ  points in the –x direction, the current flows 

counterclockwise, from the perspective of the bar magnet. 

 

(d) The effect of 
f
F  is to move the material towards regions of larger 

f
B  values. Since 

the size of 
f
B  relates to the “crowdedness” of the field lines, we see that 

f
F  is towards 

the left, or –x. 

 

73. (a) A sketch of the field lines (due to the presence of the bar magnet) in the vicinity of 

the loop is shown below: 

 
 



 

74. (a) From Eq. 21-3, 
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(b) We use Eq. 29-28: 

 

B
r

p= =
× ⋅ ×

×
= ×

− −

−

−µ µ
0

3

7 26

11
3

2

2

4 10 14 10

2 5 2 10
2 0 10

π

π

π

T m A J T

m
T

c hc h
c h

.

.
. .  

 

(c) From Eq. 32-30, 
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75. (a) Since the field lines of a bar magnet point towards its South pole, then the 
f
B  

arrows in one’s sketch should point generally towards the left and also towards the 

central axis. 

 

(b) The sign of 
f f
B dA⋅  for every dA

f
 on the side of the paper cylinder is negative. 

 

(c) No, because Gauss’ law for magnetism applies to an enclosed surface only. In fact, if 

we include the top and bottom of the cylinder to form an enclosed surface S then 

s
B dAz ⋅ =
f f

0  will be valid, as the flux through the open end of the cylinder near the 

magnet is positive. 




