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1. (a) The center of mass is given by  
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(b) Similarly, we have  
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(c) Using Eq. 12-14 and noting that the gravitational effects are different at the different 

locations in this problem, we have 
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(d) Similarly, ycog = [0 + (2.00)(m)(7.80) + (4.00)(m)(7.60) + (4.00)(m)(7.40) + 

(2.00)(m)(7.60) + 0]/(8.00m + 7.80m + 7.60m + 7.40m + 7.60m + 7.80m) = 1.97 m. 
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2. The situation is somewhat similar to that depicted for problem 10 (see the figure that 

accompanies that problem). By analyzing the forces at the “kink” where F  is exerted, we 

find (since the acceleration is zero) 2T sin θ = F, where θ is the angle (taken positive) 

between each segment of the string and its “relaxed” position (when the two segments are 

collinear). Setting T = F therefore yields θ = 30º. Since α = 180º – 2θ is the angle 

between the two segments, then we find α = 120º. 



3. The object exerts a downward force of magnitude F = 3160 N at the midpoint of the 

rope, causing a “kink” similar to that shown for problem 10 (see the figure that 

accompanies that problem). By analyzing the forces at the “kink” where F  is exerted, we 

find (since the acceleration is zero) 2T sinθ = F, where θ is the angle (taken positive) 

between each segment of the string and its “relaxed” position (when the two segments are 

colinear). In this problem, we have 

1 0.35m
tan 11.5 .

1.72 m
θ −= = °

Therefore, T = F/(2sinθ ) = 7.92 × 10
3
 N. 



4. From τ = ×r F , we note that persons 1 through 4 exert torques pointing out of the 

page (relative to the fulcrum), and persons 5 through 8 exert torques pointing into the 

page.

(a) Among persons 1 through 4, the largest magnitude of torque is (330 N)(3 m) = 990 

N·m, due to the weight of person 2. 

(b) Among persons 5 through 8, the largest magnitude of torque is (330 N)(3 m) = 990 

N·m, due to the weight of person 7. 



5. Three forces act on the sphere: the tension force T  of the rope 

(acting along the rope), the force of the wall NF  (acting horizontally 

away from the wall), and the force of gravity mg  (acting 

downward). Since the sphere is in equilibrium they sum to zero. Let 

θ be the angle between the rope and the vertical. Then Newton’s 

second law gives

          vertical component :     T cos θ – mg = 0

       horizontal component:      FN – T sin θ = 0.

(a) We solve the first equation for the tension: T = mg/ cos θ. We 

substitute cosθ = +L L r/ 2 2 to obtain 

2 2 22 2 (0.85 kg)(9.8 m/s ) (0.080 m) (0.042 m)
9.4 N

0.080 m
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T

L

++
= = = .

(b) We solve the second equation for the normal force: sinNF T θ= .

Using sinθ = +r L r/ 2 2 , we obtain 
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6. Our notation is as follows: M = 1360 kg is the mass of the automobile; L = 3.05 m is 

the horizontal distance between the axles; (3.05 1.78) m 1.27 m= − = is the horizontal 

distance from the rear axle to the center of mass; F1 is the force exerted on each front 

wheel; and, F2 is the force exerted on each back wheel. 

(a) Taking torques about the rear axle, we find 

2
3

1

(1360kg) (9.80m/s ) (1.27 m)
2.77 10 N.
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(b) Equilibrium of forces leads to 1 22 2 ,F F Mg+ = from which we obtain F2

3389 10= ×. N . 



7. We take the force of the left pedestal to be F1 at x = 0, where the x axis is along the 

diving board. We take the force of the right pedestal to be F2 and denote its position as x

= d. W is the weight of the diver, located at x = L. The following two equations result 

from setting the sum of forces equal to zero (with upwards positive), and the sum of 

torques (about x2) equal to zero: 
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(a) The second equation gives 

1

3.0 m
(580 N)= 1160 N

1.5m

L d
F W

d

−
= − = − −

which should be rounded off to 3

1 1.2 10  NF = − × . Thus, 3

1| | 1.2 10  N.F = ×

(b) Since F1 is negative, indicating that this force is downward. 

(c) The first equation gives 2 1 580 N+1160 N=1740 NF W F= − =

which should be rounded off to 3

2 1.7 10  NF = × . Thus, 3

2| | 1.7 10  N.F = ×

(d) The result is positive, indicating that this force is upward. 

(e) The force of the diving board on the left pedestal is upward (opposite to the force of 

the pedestal on the diving board), so this pedestal is being stretched.

(f) The force of the diving board on the right pedestal is downward, so this pedestal is 

being compressed. 
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(b) Equilibrium of forces leads to 

2 3

1 2 (60kg+80kg) (9.8m/s ) 1.4 10 Ns wF F m g m g+ = + = = ×

which (using our result from part (a)) yields F2

253 10= ×. N . 

8. Let 1 15= . m and 2 (5.0 1.5) m 3.5  m= − = . We denote tension in the cable closer to 

the window as F1 and that in the other cable as F2. The force of gravity on the scaffold 

itself (of magnitude msg) is at its midpoint, 3 2 5= . m from either end. 

(a) Taking torques about the end of the plank farthest from the window washer, we find 



2 2

2 ( ) (75kg 10kg) (9.8m/s ) 8.3 10 NF M m g= + = + = ×

The magnitude of the force of the ground on the ladder is given by the square root of the 

sum of the squares of its components: 

F F F= + = × + × = ×2

2

3

2 2 2 22 8 10 8 3 10 8 8 10( . ( . .N) N) N.2 2

(c) The angle φ between the force and the horizontal is given by  

tan φ  = F3/F2 = 830/280 = 2.94, 

so φ = 71º. The force points to the left and upward, 71º above the horizontal. We note that 

this force is not directed along the ladder. 

9. The forces on the ladder are shown in the diagram on the right. F1 is 

the force of the window, horizontal because the window is frictionless. 

F2 and F3 are components of the force of the ground on the ladder. M is 

the mass of the window cleaner and m is the mass of the ladder. 

The force of gravity on the man acts at a point 3.0 m up the ladder and 

the force of gravity on the ladder acts at the center of the ladder. Let θ
be the angle between the ladder and the ground. We use 

2 2cos /  or sin /  d L L d Lθ θ= = − to find θ = 60º. Here L is the length 

of the ladder (5.0 m) and d is the distance from the wall to the foot of 

the ladder (2.5 m). 

(a) Since the ladder is in equilibrium the sum of the torques about its 

foot (or any other point) vanishes. Let be the distance from the foot of the ladder to the 

position of the window cleaner. Then,

( ) 1cos / 2 cos sin 0Mg mg L F Lθ θ θ+ − = ,

and
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This force is outward, away from the wall. The force of the ladder on the window has the 

same magnitude but is in the opposite direction: it is approximately 280 N, inward. 

(b) The sum of the horizontal forces and the sum of the vertical forces also vanish: 

F F

F Mg mg

1 3

2

0

0

− =

− − =

The first of these equations gives F F3 1

22 8 10= = ×. N and the second gives 



10. The angle of each half of the rope, measured from the dashed line, is 

1 0.30 m
tan 1.9 .

9.0 m
θ −= = °

Analyzing forces at the “kink” (where F  is exerted) we find 

3550 N
8.3 10 N.

2sin 2sin1.9

F
T

θ
= = = ×

°



11. The x axis is along the meter stick, with the origin at the 

zero position on the scale. The forces acting on it are shown 

on the diagram below. The nickels are at x = x1 = 0.120 m, 

and m is their total mass. The knife edge is at x = x2 = 0.455 m 

and exerts force F . The mass of the meter stick is M, and the 

force of gravity acts at the center of the stick, x = x3 = 0.500 m. 

Since the meter stick is in equilibrium, the sum of the torques 

about x2 must vanish:  

Mg(x3 – x2) – mg(x2 – x1) = 0. 

Thus,

2 1

3 2

0.455m 0.120 m
(10.0g)=74.4 g.

0.500 m 0.455m

x x
M m

x x

− −
= =

− −



(b) Looking at the horizontal forces at that point leads to 

2 1 sin 35 (49N)sin 35 28 N.T T= ° = ° =

(c) We denote the components of T3 as Tx (rightward) and Ty (upward). Analyzing 

horizontal forces where string 2 and string 3 meet, we find Tx = T2 = 28 N. From the 

vertical forces there, we conclude Ty = wB =50 N. Therefore, 

2 2

3 57 N.x yT T T= + =

(d) The angle of string 3 (measured from vertical) is 

1 1 28
tan tan 29 .

50

x

y

T

T
θ − −= = = °

12. (a) Analyzing vertical forces where string 1 and string 2 meet, we find 

1

40N
49N.

cos cos35

Aw
T

φ
= = =

°



13. (a) Analyzing the horizontal forces (which add to zero) we find Fh = F3 = 5.0 N. 

(b) Equilibrium of vertical forces leads to Fv = F1 + F2 = 30 N. 

(c) Computing torques about point O, we obtain 

( )( ) ( )( )
2 3

10 N 3.0m + 5.0 N 2.0m
= + = = 1.3m.

30 N
vF d F b F a d



14. The forces exerted horizontally by the obstruction and vertically (upward) by the 

floor are applied at the bottom front corner C of the crate, as it verges on tipping. The 

center of the crate, which is where we locate the gravity force of magnitude mg = 500 N, 

is a horizontal distance = 0 375. mfrom C. The applied force of magnitude F = 350 N is 

a vertical distance h from C. Taking torques about C, we obtain 

(500 N) (0.375m)
0.536m.

350 N

mg
h

F
= = =



15. Setting up equilibrium of torques leads to a simple “level principle” ratio: 

2.6cm
(40 N) (40 N) 8.7 N.

12cm

d
F

L
⊥ = = =



16. With pivot at the left end, Eq. 12-9 leads to 

– ms g
L

2
 – Mgx + TR L  = 0 

where ms is the scaffold’s mass (50 kg) and M is the total mass of the paint cans (75 kg). 

The variable x indicates the center of mass of the paint can collection (as measured from 

the left end), and TR is the tension in the right cable (722 N).  Thus we obtain x = 0.702 m.



17. The (vertical) forces at points A, B and P are FA, FB and FP, respectively. We note 

that FP = W and is upward. Equilibrium of forces and torques (about point B) lead to 

0

0.
A B

A

F F W

bW aF

+ + =
− =

(a) From the second equation, we find  

FA = bW/a = (15/5)W = 3W = 33(900 N)=2.7 10  N× .

(b) The direction is upward since FA > 0. 

(c) Using this result in the first equation above, we obtain

34 4(900 N) 3.6 10 NB AF W F W= − = − = − = − × ,

or 3| | 3.6 10 NBF = × .

(d) FB points downward, as indicated by the minus sign. 



18. Our system consists of the lower arm holding a 

bowling ball. As shown in the free-body diagram, the 

forces on the lower arm consist of T  from the biceps 

muscle, F  from the bone of the upper arm, and the 

gravitational forces, mg  and Mg . Since the system is 

in static equilibrium, the net force acting on the system 

is zero: 

net ,0 ( )yF T F m M g= = − − +

In addition, the net torque about O must also vanish: 

net0 ( )( ) (0) ( )( ) ( )
O

d T F D mg L Mgτ= = + − − .

(a) From the torque equation, we find the force on the lower arms by the biceps muscle to 

be
2

2

( ) [(1.8 kg)(0.15 m) (7.2 kg)(0.33 m)](9.8 m/s )

0.040 m

648 N 6.5 10 N.

mD ML g
T

d

+ +
= =

= ≈ ×

(b) Substituting the above result into the force equation, we find F  to be 

2 2( ) 648 N (7.2 kg 1.8 kg)(9.8 m/s ) 560 N 5.6 10 N.F T M m g= − + = − + = = ×



19. (a) With the pivot at the hinge, Eq. 12-9 gives TLcosθ – mg
L

2
 = 0 . This leads to 

78 .θ = °   Then the geometric relation tanθ = L/D gives D = 0.64 m. 

(b) A higher (steeper) slope for the cable results in a smaller tension.  Thus, making D

greater than the value of part (a) should prevent rupture. 



20. With pivot at the left end of the lower scaffold, Eq. 12-9 leads to 

– m2 g
L2

2
 – mgd + TR L2  = 0 

where m2 is the lower scaffold’s mass (30 kg) and L2 is the lower scaffold’s length (2.00 

m).  The mass of the package (m = 20 kg) is a distance d = 0.50 m from the pivot, and TR

is the tension in the rope connecting the right end of the lower scaffold to the larger 

scaffold above it.  This equation yields TR = 196 N.  Then Eq. 12-8 determines TL (the 

tension in the cable connecting the right end of the lower scaffold to the larger scaffold 

above it):  TL = 294 N.  Next, we analyze the larger scaffold (of length L1 = L2 + 2d and 

mass m1, given in the problem statement) placing our pivot at its left end and using Eq. 

12-9:

– m1 g
L1

2
 – TL d – TR (L1 – d) + T L1   =  0 . 

This yields T = 457 N. 



We calculate the torque around the step corner. The second diagram indicates that the 

distance from the line of F to the corner is r – h, where r is the radius of the wheel and h

is the height of the step.

The distance from the line of mg to the corner is r r h rh h2 2 22+ − = −b g . Thus, 

F r h mg rh h− − − =b g 2 02 .

The solution for F is 

2 2 2 22
2

2 2

2(6.00 10 m)(3.00 10 m) (3.00 10 m)2
= (0.800 kg)(9.80 m/s )

(6.00 10 m) (3.00 10 m)

13.6 N.

rh h
F mg

r h

− − −

− −

× × − ×−
=

− × − ×

=

21. We consider the wheel as it leaves the lower floor. The floor no longer exerts a force 

on the wheel, and the only forces acting are the force F applied horizontally at the axle, 

the force of gravity mg acting vertically at the center of the wheel, and the force of the 

step corner, shown as the two components fh and fv. If the minimum force is applied the 

wheel does not accelerate, so both the total force and the total torque acting on it are zero. 



22. As shown in the free-body diagram, the forces on the climber 

consist of T  from the rope, normal force NF  on her feet, upward static 

frictional force sf  and downward gravitational force mg . Since the 

climber is in static equilibrium, the net force acting on her is zero. 

Applying Newton’s second law to the vertical and horizontal 

directions, we have 

net,

net ,

0 sin

0 cos .

x N

y s

F F T

F T f mg

φ

φ

= = −

= = + −

In addition, the net torque about O (contact point between her feet 

and the wall) must also vanish: 

net0 sin sin(180 )
O

mgL TLτ θ θ φ= = − ° − −

From the torque equation, we obtain sin / sin(180 ).T mg θ θ φ= ° − −  Substituting the 

expression into the force equations, and noting that s s Nf Fµ= , we find the coefficient of 

static friction to be 

cos sin cos / sin(180 )

sin sin sin / sin(180 )

1 sin cos / sin(180 )

sin sin / sin(180 )

s
s

N

f mg T mg mg

F T mg

φ θ φ θ φ
µ

φ θ φ θ φ

θ φ θ φ

θ φ θ φ

− − ° − −
= = =

° − −

− ° − −
=

° − −

With 40θ = °  and 30φ = ° , the result is

1 sin cos / sin(180 ) 1 sin 40 cos30 / sin(180 40 30 )
1.19.

sin sin / sin(180 ) sin 40 sin 30 / sin(180 40 30 )
s

θ φ θ φ
µ

θ φ θ φ

− ° − − − ° ° ° − ° − °
= = =

° − − ° ° ° − ° − °



23. (a) All forces are vertical and all distances are measured along an axis inclined at θ = 

30º. Thus, any trigonometric factor cancels out and the application of torques about the 

contact point (referred to in the problem) leads to 

( ) ( ) ( ) ( ) ( ) ( )2 2

3

tripcep

15kg 9.8m/s 35cm 2.0 kg 9.8m/s 15cm
= = 1.9 10 N.

2.5cm
F

−
×

(b) The direction is upward since tricep 0F >

(c) Equilibrium of forces (with upwards positive) leads to 

( ) ( ) ( ) ( )2 2

tripcep humer+ + 15kg 9.8m/s 2.0kg 9.8m/s = 0F F −

and thus to 3

humer 2.1 10 NF = − × , or 3

humer| | 2.1 10 NF = × .

(d) The minus sign implies that humerF points downward. 



On the other hand, the frictional force can also be written as 1s s Nf Fµ= , where sµ  is the 

coefficient of static friction between his feet and the ground. From the above equation 

and the values given in the problem statement, we find sµ  to be  

2 2 2 2

0.914 m 0.940 m
cot 0.216

2.10 m(2.10 m) (0.914 m)
s

d a d

L LL a
µ θ= = = =

− −
.

24. As shown in the free-body diagram, the forces on the climber 

consist of the normal forces 1NF  on his hands from the ground and 

2NF  on his feet from the wall, static frictional force sf  and 

downward gravitational force mg . Since the climber is in static 

equilibrium, the net force acting on him is zero. Applying Newton’s 

second law to the vertical and horizontal directions, we have 

net , 2

net , 1

0

0 .

x N s

y N

F F f

F F mg

= = −

= = −

In addition, the net torque about O (contact point between his feet 

and the wall) must also vanish: 

net 20 cos sinN

O

mgd F Lτ θ θ= = − .

The torque equation gives 2 cos / sin cot /NF mgd L mgd Lθ θ θ= = . On the other hand, 

from the force equation we have 2N sF f=  and 1 .NF mg=  These expressions can be 

combined to yield 

2 1 cots N N

d
f F F

L
θ= = .



25. The beam is in equilibrium: the sum of the forces and the sum of the torques acting 

on it each vanish. As shown in the figure, the beam makes an angle of 60º with the 

vertical and the wire makes an angle of 30º with the vertical. 

(a) We calculate the torques around the hinge. Their sum is  

TL sin 30º – W(L/2) sin 60º = 0. 

Here W is the force of gravity acting at the center of the beam, and T is the tension force 

of the wire. We solve for the tension: 

( )222N sin 60sin60
= = = 192 N.

2 sin30 2 sin 30

W
T

°°

° °

(b) Let Fh be the horizontal component of the force exerted by the hinge and take it to be 

positive if the force is outward from the wall. Then, the vanishing of the horizontal 

component of the net force on the beam yields Fh – T sin 30º = 0 or 

( )= sin30 = 192.3 N sin 30 = 96.1N.hF T ° °

(c) Let Fv be the vertical component of the force exerted by the hinge and take it to be 

positive if it is upward. Then, the vanishing of the vertical component of the net force on 

the beam yields Fv + T cos 30º – W = 0 or 

( )= cos30 = 222 N 192.3 N cos30 = 55.5 N.vF W T− ° − °



(b) Computing torques about the point where his feet come in contact with the rock, we 

find

( )
( ) 1 1

1 1

1

+
+ = 0  = = 0.88 m.

N

N

N

mg d w F w
mg d w f w F h h

F

µ−
− −

(c) Both intuitively and mathematically (since both coefficients are in the denominator) 

we see from part (a) that 1NF  would increase in such a case.  

(d) As for part (b), it helps to plug part (a) into part (b) and simplify: 

h d w d= + +2 1a fµ µ

from which it becomes apparent that h should decrease if the coefficients decrease. 

26. (a) The problem asks for the person’s pull (his force exerted on the rock) but since we 

are examining forces and torques on the person, we solve for the reaction force 

1NF (exerted leftward on the hands by the rock). At that point, there is also an upward 

force of static friction on his hands f1 which we will take to be at its maximum value 

1 1NFµ . We note that equilibrium of horizontal forces requires 1 2N NF F= (the force exerted 

leftward on his feet); on this feet there is also an upward static friction force of magnitude 

µ2FN2. Equilibrium of vertical forces gives 

2

1 2 1

1 2

+ = 0 = = 3.4 10 N.
+

N

mg
f f mg F

µ µ
− ×



27. (a) We note that the angle between the cable and the strut is  

α =θ – φ = 45º – 30º = 15º. 

The angle between the strut and any vertical force (like the weights in the problem) is β = 

90º – 45º = 45º. Denoting M = 225 kg and m = 45.0 kg, and  as the length of the boom, 

we compute torques about the hinge and find 

( )2
sin sin sin sin / 2

.
sin sin

Mg mg Mg mg
T

β β β β

α α

+ +
= =

The unknown length  cancels out and we obtain T = 6.63 × 10
3
 N. 

(b) Since the cable is at 30º from horizontal, then horizontal equilibrium of forces 

requires that the horizontal hinge force be 

3= cos30 = 5.74 10 N.xF T ° ×

(c) And vertical equilibrium of forces gives the vertical hinge force component: 

3= + + sin 30 = 5.96 10 N.yF Mg mg T ×



and the force exerted there is the tension T. Computing torques about the hinge, we find 

( ) ( ) ( )

( )( )

2 21 11 1
2 21 22 2

2

50.0 kg 9.8 m/s 1.00 m (50.0 kg) (9.8m/s ) (3.00 m)
=

sin 3.00 m 0.800

408 N.

mgx mgx
T

x θ

++
=

=

(b) Equilibrium of horizontal forces requires the horizontal hinge force be

Fx = T cos θ = 245 N. 

(c) The direction of the horizontal force is rightward. 

(d) Equilibrium of vertical forces requires the vertical hinge force be  

Fy = mg – T sin θ = 163 N. 

(e) The direction of the vertical force is upward. 

28. (a) The sign is attached in two places: at x1 = 1.00 m (measured rightward from the 

hinge) and at x2 = 3.00 m. We assume the downward force due to the sign’s weight is 

equal at these two attachment points: each being half the sign’s weight of mg. The angle 

where the cable comes into contact (also at x2) is  

θ = tan
–1

(dv/dh) =tan
–1

(4.00 m/3.00 m) 



29. The bar is in equilibrium, so the forces and the torques acting on it each sum to zero. 

Let Tl be the tension force of the left–hand cord, Tr be the tension force of the right–hand 

cord, and m be the mass of the bar. The equations for equilibrium are: 

vertical force components

horizontal force components

torques

cos cos 0

sin sin 0

cos 0.

l r

l r

r

T T mg

T T

mgx T L

θ φ

θ φ

φ

+ − =

− + =

− =

The origin was chosen to be at the left end of the bar for purposes of calculating the 

torque. The unknown quantities are Tl, Tr, and x. We want to eliminate Tl and Tr, then 

solve for x. The second equation yields Tl = Tr sin φ /sin θ and when this is substituted 

into the first and solved for Tr the result is  

sin

sin cos cos sin
r

mg
T

θ

φ θ φ θ
=

+
.

This expression is substituted into the third equation and the result is solved for x:

x L L=
+

=
+

.
sin cos

sin cos cos sin

sin cos

sin

θ φ

φ θ φ θ

θ φ

θ φb g

The last form was obtained using the trigonometric identity sin(A + B) = sin A cos B + 

cos A sin B. For the special case of this problem θ + φ = 90º and sin(θ + φ) = 1. Thus, 

( )= sin cos = 6.10 m  sin 36.9 cos53.1 = 2.20  m.x L θ φ ° °



30. (a) Computing torques about point A, we find 

T L Wx W
L

bmax maxsinθ = +
2

F
HG
I
KJ.

We solve for the maximum distance: 

( )max
max

sin / 2 (500 N)sin 30.0 (200 N) / 2
3.00 m 1.50 m.

300 N

bT W
x L

W

θ − ° −
= = =

(b) Equilibrium of horizontal forces gives max= cos = 433N.xF T θ

(c) And equilibrium of vertical forces gives max= + sin = 250 N.y bF W W T θ−



31. The problem states that each hinge supports half the door’s weight, so each vertical 

hinge force component is Fy = mg/2 = 1.3 × 10
2
 N. Computing torques about the top 

hinge, we find the horizontal hinge force component (at the bottom hinge) is 

( )2(27 kg) (9.8m/s ) 0.91 m/2
80 N.

2.1m 2(0.30m)
hF = =

−

Equilibrium of horizontal forces demands that the horizontal component of the top hinge 

force has the same magnitude (though opposite direction).

(a) In unit-vector notation, the force on the door at the top hinge is 

2

top
ˆ ˆ( 80 N)i (1.3 10 N) jF = − + × .

(b) Similarly, the force on the door at the bottom hinge is 

2

bottom
ˆ ˆ( 80 N)i (1.3 10 N) jF = + + ×



F
Wx

L

Wx

L
x = = .

sin
cos

tanθ
θ

θ

F
HG
I
KJ

(c) The vertical component of the tension is T sin θ, so equilibrium of vertical forces 

requires that the vertical component of the hinge force is 

F W
Wx

L
W

x

L
y = = 1 .−
F
HG
I
KJ −

F
HG
I
KJsin

sin
θ

θ

32. (a) Computing torques about the hinge, we find the tension in the wire: 

TL Wx T
Wx

L
sin

sin
θ

θ
− = 0 = .  

(b) The horizontal component of the tension is T cos θ, so equilibrium of horizontal 

forces requires that the horizontal component of the hinge force is 



33. We examine the box when it is about to tip. Since it will rotate about the lower right 

edge, that is where the normal force of the floor is exerted. This force is labeled NF on

the diagram below. The force of friction is denoted by f, the applied force by F, and the 

force of gravity by W. Note that the force of gravity is applied at the center of the box. 

When the minimum force is applied the box does not accelerate, so the sum of the 

horizontal force components vanishes: F – f = 0, the sum of the vertical force components 

vanishes: 0NF W− = , and the sum of the torques vanishes:  

FL – WL/2 = 0. 

Here L is the length of a side of the box and the origin was chosen to be at the lower right 

edge.

(a) From the torque equation, we find 

890 N
445 N.

2 2

W
F = = =

(b) The coefficient of static friction must be large enough that the box does not slip. The 

box is on the verge of slipping if µs = f/FN. According to the equations of equilibrium  

FN = W = 890 N and f = F = 445 N, 

so

445 N
0.50.

890 N
sµ = =

(c) The box can be rolled with a smaller applied force if the force points upward as well 

as to the right. Let θ be the angle the force makes with the horizontal. The torque 

equation then becomes  

FL cos θ + FL sin θ – WL/2 = 0, 

with the solution 

F
W

=
+2(cos sin )

.
θ θ



We want cosθ + sinθ to have the largest possible value. This occurs if θ = 45º, a result we 

can prove by setting the derivative of cosθ + sinθ equal to zero and solving for θ. The 

minimum force needed is  

890 N
315 N.

4cos 45 4cos 45

W
F = = =

° °



2(70 kg)(9.8 m/s )(0.20 m)
17 N.

4 4(2.0 m)
h

mga
F

H
= = ≈

(b) From the y-component of the force equation, we obtain 

2
2(70 kg)(9.8 m/s )

1.7 10 N.
4 4

v

mg
F = = ≈ ×

34. As shown in the free-body diagram, the forces on the climber 

consist of the normal force from the wall, the vertical component vF

and the horizontal component hF  of the force acting on her four 

fingertips, and the downward gravitational force mg . Since the 

climber is in static equilibrium, the net force acting on her is zero. 

Applying Newton’s second law to the vertical and horizontal 

directions, we have 

net ,

net ,

0 4

0 4 .

x h N

y v

F F F

F F mg

= = −

= = −

In addition, the net torque about O (contact point between her feet 

and the wall) must also vanish: 

net0 ( ) (4 )h

O

mg a F Hτ= = − .

(a) From the torque equation, we find the horizontal component of the force on her 

fingertip to be 



35. (a) With the pivot at the hinge, Eq. 12-9 yields 

 cos 0aTL F yθ − = .

This leads to T = (Fa/cosθ)(y/L) so that we can interpret Fa/cosθ as the slope on the 

tension graph (which we estimate to be 600 in SI units).  Regarding the Fh graph, we use 

Eq. 12−7 to get

Fh = Tcosθ − Fa = (−Fa)(y/L) − Fa

after substituting our previous expression. The result implies that the slope on the Fh

graph (which we estimate to be  –300) is equal to −Fa , or Fa = 300 N and (plugging back 

in) θ = 60.0°.

(b) As mentioned in the previous part, Fa = 300 N. 



36. (a) With kF ma mgµ= = − the magnitude of the deceleration is  

|a| = µkg = (0.40)(9.8 m/s
2
) = 3.92 m/s

2
.

(b) As hinted in the problem statement, we can use Eq. 12-9, evaluating the torques about 

the car’s center of mass, and bearing in mind that the friction forces are acting 

horizontally at the bottom of the wheels; the total friction force there is fk = µkgm = 3.92m

(with SI units understood – and m is the car’s mass), a vertical distance of 0.75 meter 

below the center of mass.  Thus, torque equilibrium leads to 

             (3.92m)(0.75) + FNr (2.4)  – FNf (1.8)  = 0 . 

Eq. 12-8 also holds (the acceleration is horizontal, not vertical), so we have FNr + FNf = 

mg, which we can solve simultaneously with the above torque equation.  The mass is 

obtained from the car’s weight: m = 11000/9.8, and we obtain FNr = 3929 ≈ 4000 N. 

Since each involves two wheels then we have (roughly) 2.0×10
3
 N on each rear wheel. 

(c) From the above equation, we also have FNf = 7071 ≈ 7000 N, or 3.5×10
3
 N on each 

front wheel, as the values of the individual normal forces. 

(d) Eq. 6-2 directly yields (approximately) 27.9 10 N×  of friction on each rear wheel,  

(e) Similarly, Eq. 6-2 yields 31.4 10 N×  on each front wheel. 



37. The free-body diagram on the right shows the forces acting on 

the plank. Since the roller is frictionless the force it exerts is 

normal to the plank and makes the angle θ with the vertical. Its 

magnitude is designated F. W is the force of gravity; this force 

acts at the center of the plank, a distance L/2 from the point where 

the plank touches the floor. NF  is the normal force of the floor 

and f is the force of friction. The distance from the foot of the 

plank to the wall is denoted by d. This quantity is not given 

directly but it can be computed using d = h/tanθ.

The equations of equilibrium are: 

horizontal force components

vertical force components

torques ( )2

sin 0

cos 0

cos 0.

N

L
N

F f

F W F

F d fh W d

θ

θ

θ

− =

− + =

− − − =

The point of contact between the plank and the roller was used as the origin for writing 

the torque equation. 

When θ = 70º the plank just begins to slip and f = µsFN, where µs is the coefficient of 

static friction. We want to use the equations of equilibrium to compute FN and f for θ = 

70º, then use µs = f/FN to compute the coefficient of friction. 

The second equation gives F = (W – FN)/cos θ and this is substituted into the first to 

obtain

f = (W – FN) sin θ/cos θ = (W – FN) tan θ.

This is substituted into the third equation and the result is solved for FN:

( ) 2

2

/2 cos + tan (1 tan ) ( / 2)sin
= ,

+ tan (1 tan )
N

d L h h L
F W W

d h h

θ θ θ θ

θ θ

− + −
=

+

where we have use d = h/tanθ and multiplied both numerator and denominator by tan θ.

We use the trigonometric identity 1+ tan
2θ = 1/cos

2θ and multiply both numerator and 

denominator by cos
2θ  to obtain 

2= 1 cos sin .
2

N

L
F W

h
θ θ−

Now we use this expression for FN in f = (W – FN) tan θ to find the friction: 

f
WL

h
=

2
.2sin cosθ θ



We substitute these expressions for f and FN into µs = f/FN and obtain 

µ
θ θ

θ θs

L

h L
=

2
.

2

2

sin cos

sin cos−

Evaluating this expression for θ = 70º, we obtain 

( )
( ) ( )

2

2

6.1m sin 70 cos70
= = 0.34.

2 3.05m 6.1m sin70 cos 70
sµ

° °

− ° °



(c) Considering again the combined A∪Β system, equilibrium of horizontal and vertical 

forces readily yields Hx = – Fx = 797 N and Hy = Mg – Fy = 931 N. In unit-vector notation, 

we have 
ˆ ˆ ˆ ˆi j ( 797 N)i (931 N)jx yH H H= + = + +

(d) As mentioned above, Newton’s third law (and the results from part (b)) immediately 

provide – Gx = – 797 N and – Gy = – 265 N for the force components acting on B at the 

bolt. In unit-vector notation, we have 

ˆ ˆ ˆ ˆi j ( 797 N)i (265 N)jx yG G G− = − − = − −

38. The phrase “loosely bolted” means that there is no torque exerted by the bolt at that 

point (where A connects with B). The force exerted on A at the hinge has x and y

components Fx and Fy. The force exerted on A at the bolt has components Gx and Gy and 

those exerted on B are simply –Gx and – Gy by Newton’s third law. The force exerted on 

B at its hinge has components Hx and Hy. If a horizontal force is positive, it points 

rightward, and if a vertical force is positive it points upward. 

(a) We consider the combined A∪Β system, which has a total weight of Mg where M = 

122 kg and the line of action of that downward force of gravity is x = 1.20 m from the 

wall. The vertical distance between the hinges is y = 1.80 m. We compute torques about 

the bottom hinge and find 

797 N.x

Mgx
F

y
= − = −

If we examine the forces on A alone and compute torques about the bolt, we instead find 

265 NA
y

m gx
F = =

where mA = 54.0 kg and  = 2.40 m (the length of beam A). Thus, in unit-vector notation, 

we have 
ˆ ˆ ˆ ˆi j ( 797 N)i (265 N)jx yF F F= + = − + .

(b) Equilibrium of horizontal and vertical forces on beam A readily yields Gx = – Fx = 

797 N and Gy = mAg – Fy = 265 N. In unit-vector notation, we have 

ˆ ˆ ˆ ˆi j ( 797 N)i (265 N)jx yG G G= + = + +



1 1 1.2m
tan tan 33.7 .

2 2(0.90m)h
θ − −= = = °

As θ is increased from zero the crate slides before it tips.  

(b) It starts to slide when θ = 31º. 

(c) The crate begins to slide when θ = tan
–1 µs = tan

–1
 0.70 = 35.0º and begins to tip when 

θ = 33.7º. Thus, it tips first as the angle is increased. 

(d) Tipping begins at θ = 33.7° ≈ 34°.

39. The force diagram shown below depicts the situation just 

before the crate tips, when the normal force acts at the front 

edge. However, it may also be used to calculate the angle for 

which the crate begins to slide. W is the force of gravity on the 

crate, NF is the normal force of the plane on the crate, and f is 

the force of friction. We take the x axis to be down the plane 

and the y axis to be in the direction of the normal force. We 

assume the acceleration is zero but the crate is on the verge of 

sliding.

(a) The x and y components of Newton’s second law are 

sin 0 and cos 0NW f F Wθ θ− = − =

respectively. The y equation gives FN = W cos θ. Since the crate is about to slide

f = µsFN = µsW cos θ,

where µs is the coefficient of static friction. We substitute into the x equation and find 

W Ws ssin cos tan .θ µ θ θ µ− = =0

This leads to θ = tan
–1 µs = tan

–1
 0.60 = 31.0º. 

In developing an expression for the total torque about the center of mass when the crate is 

about to tip, we find that the normal force and the force of friction act at the front edge. 

The torque associated with the force of friction tends to turn the crate clockwise and has 

magnitude fh, where h is the perpendicular distance from the bottom of the crate to the 

center of gravity. The torque associated with the normal force tends to turn the crate 

counterclockwise and has magnitude / 2NF , where  is the length of an edge. Since the 

total torque vanishes, / 2Nfh F= . When the crate is about to tip, the acceleration of the 

center of gravity vanishes, so f = W sin θ and FN = W cos θ. Substituting these 

expressions into the torque equation, we obtain 



Substituting the values given in the problem statement (with 2 2 7.58 ma L h= − = ), the 

fraction of ladder climbed is 

( ) ( / 3) (9.3 m)(0.53)(72 kg 45 kg) (7.58 m / 3)(45 kg)

(72 kg)(7.58 m)

0.848 85%.

sh M m a mx

a Ma

µ + − + −
= =

= ≈

40. Let x be the horizontal distance between the firefighter and 

the origin O (see figure) that makes the ladder on the verge of 

sliding. The forces on the firefighter + ladder system consist of 

the horizontal force wF  from the wall, the vertical component 

pyF  and the horizontal component pxF  of the force pF  on the 

ladder from the pavement, and the downward gravitational 

forces Mg  and mg , where M and m are the masses of the 

firefighter and the ladder, respectively. Since the system is in 

static equilibrium, the net force acting on the system is zero. 

Applying Newton’s second law to the vertical and horizontal 

directions, we have 

net ,

net ,

0

0 ( ) .

x w px

y py

F F F

F F M m g

= = −

= = − +

Since the ladder is on the verge of sliding, px s pyF Fµ= . Therefore, we have

( )w px s py sF F F M m gµ µ= = = + .

In addition, the net torque about O (contact point between the ladder and the wall) must 

also vanish: 

net0 ( ) ( ) ( ) 0
3

w

O

a
h F x Mg mgτ= = − + + = .

Solving for x, we obtain

( / 3) ( ) ( / 3) ( ) ( / 3)w s shF a mg h M m g a mg h M m a m
x

Mg Mg M

µ µ− + − + −
= = =



41. The diagrams below show the forces on the two sides of the ladder, separated. FA and 

FE are the forces of the floor on the two feet, T is the tension force of the tie rod, W is the 

force of the man (equal to his weight), Fh is the horizontal component of the force exerted 

by one side of the ladder on the other, and Fv is the vertical component of that force. Note 

that the forces exerted by the floor are normal to the floor since the floor is frictionless. 

Also note that the force of the left side on the right and the force of the right side on the 

left are equal in magnitude and opposite in direction. 

Since the ladder is in equilibrium, the vertical components of the forces on the left side of 

the ladder must sum to zero: Fv + FA – W = 0. The horizontal components must sum to 

zero: T – Fh = 0. The torques must also sum to zero. We take the origin to be at the hinge 

and let L be the length of a ladder side. Then

FAL cos θ – W(L/4) cos θ – T(L/2) sin θ = 0. 

Here we recognize that the man is one–fourth the length of the ladder side from the top 

and the tie rod is at the midpoint of the side. 

The analogous equations for the right side are FE – Fv = 0, Fh – T = 0, and FEL cos θ – 

T(L/2) sin θ = 0. 

There are 5 different equations: 

0,

0

cos ( / 4)cos ( / 2)sin 0

0

cos ( / 2)sin 0.

v A

h

A

E v

E

F F W

T F

F L W L T L

F F

F L T L

θ θ θ

θ θ

+ − =

− =

− − =

− =

− =

The unknown quantities are FA, FE, Fv, Fh, and T.



(a) First we solve for T by systematically eliminating the other unknowns. The first 

equation gives FA = W – Fv and the fourth gives Fv = FE. We use these to substitute into 

the remaining three equations to obtain 

0

cos cos ( / 4)cos ( / 2)sin 0

cos ( / 2)sin 0.

h

E

E

T F

WL F L W L T L

F L T L

θ θ θ θ

θ θ

− =

− − − =

− =

The last of these gives FE = Tsinθ /2cosθ = (T/2) tanθ. We substitute this expression into 

the second equation and solve for T. The result is 

T
W

=
3

4 tan
.

θ

To find tanθ, we consider the right triangle formed by the upper half of one side of the 

ladder, half the tie rod, and the vertical line from the hinge to the tie rod. The lower side 

of the triangle has a length of 0.381 m, the hypotenuse has a length of 1.22 m, and the 

vertical side has a length of 122 0 381 116
2 2

. . .m m mb g b g− = . This means  

tan θ = (1.16m)/(0.381m) = 3.04. 

Thus,

3(854 N)
211N.

4(3.04)
T = =

(b) We now solve for FA. Since Fv = FE and FE = T sinθ/ 2cosθ, Fv = 3W/8. We substitute 

this into Fv + FA – W = 0 and solve for FA. We find 

3 / 8 5 / 8 5(884 N)/8=534 N.A vF W F W W W= − = − = =

(c) We have already obtained an expression for FE: FE = 3W/8. Evaluating it, we get FE = 

320 N. 



TLsinθ – mpgx – mbg
L

2
 =  0  . 

This can be written in the form of a straight line (in the graph) with 

T = (“slope”) 
x

L
  +  “y-intercept”,

where “slope” = mpg/sinθ  and “y-intercept” = mbg/2sinθ.  The graph suggests that the 

slope (in SI units) is 200 and the y-intercept is 500.  These facts, combined with the given 

mp + mb = 61.2 kg datum, lead to the conclusion:

sinθ = 61.22g/1200 θ = 30.0º. 

(b) It also follows that mp = 51.0 kg. 

(c) Similarly, mb = 10.2 kg. 

42. (a) Eq. 12-9 leads to 



43. (a) The shear stress is given by F/A, where F is the magnitude of the force applied 

parallel to one face of the aluminum rod and A is the cross–sectional area of the rod. In 

this case F is the weight of the object hung on the end: F = mg, where m is the mass of 

the object. If r is the radius of the rod then A = πr
2
. Thus, the shear stress is 

2
6 2

2 2

(1200 kg) (9.8m/s )
6.5 10 N/m .

(0.024m)

F mg

A rπ π
= = = ×

(b) The shear modulus G is given by 

G
F A

x L
=

/

/∆

where L is the protrusion of the rod and ∆x is its vertical deflection at its end. Thus, 

6 2
5

10 2

( / ) (6.5 10 N/m )(0.053m)
1.1 10 m.

3.0 10 N/m

F A L
x

G

−×
∆ = = = ×

×



44. (a) The Young’s modulus is given by 

6 2
10 2stress 150 10 N/m

slope of the stress-strain curve 7.5 10 N/m .
strain 0.002

E
×

= = = = ×

(b) Since the linear range of the curve extends to about 2.9 × 10
8
 N/m

2
, this is 

approximately the yield strength for the material. 



stretching of the wires allows us to find a relationship between FA and FB. If wire A

originally had a length LA and stretches by ∆LA , then ∆L F L AEA A A= / , where A is the 

cross–sectional area of the wire and E is Young’s modulus for steel (200 × 10
9
 N/m

2
).

Similarly, ∆L F L AEB B B= / . If  is the amount by which B was originally longer than A

then, since they have the same length after the log is attached, A BL L∆ = ∆ + . This means 

F L

AE

F L

AE

A A B B= + .

We solve for FB:

F
F L

L

AE

L
B

A A

B B

= − .

We substitute into FA + FB – mg = 0 and obtain 

F
mgL AE

L L
A

B

A B

=
+

+
.

The cross–sectional area of a wire is  

A r= = × = ×− −π π2 3
2

6120 10 4 52 10. .m m2c h .

Both LA and LB may be taken to be 2.50 m without loss of significance. Thus 

2 6 2 9 2 3(103kg) (9.8m/s ) (2.50m)+(4.52 10 m )(200 10 N/m ) (2.0 10 m)

2.50m+2.50m

866 N.

AF
− −× × ×

=

=

(b) From the condition FA + FB – mg = 0, we obtain 

2(103kg) (9.8m/s ) 866 N=143 N.B AF mg F= − = −

(c) The net torque must also vanish. We place the origin on the surface of the log at a 

point directly above the center of mass. The force of gravity does not exert a torque about 

this point. Then, the torque equation becomes FAdA – FBdB = 0, which leads to 

143N
0.165.

866 N

A B

B A

d F

d F
= = =

45. (a) Let FA and FB be the forces exerted by the wires on the log and let m be the mass 

of the log. Since the log is in equilibrium FA + FB – mg = 0. Information given about the 



which means the work is  (wire-area) × (wire-length) × (graph-area-under-curve).  Since 

the area of a triangle (see the graph in the problem statement) is  
1

2
(base)(height)  then we 

determine the work done to be 

W = (2.00 x 10
−6

 m
2
)(0.800 m)

1

2
(1.0 × 10

−3
)(7.0 × 10

7
N/m

2
) = 0.0560 J . 

46. Since the force is (stress × area) and the displacement is (strain × length), we can 

write the work integral (eq. 7-32) as 

W = Fdx  = (stress) A (differential strain)L  = AL (stress) (differential strain) 



47. (a) Since the brick is now horizontal and the cylinders were initially the same length 

, then both have been compressed an equal amount ∆ . Thus, 

∆ ∆
= =

FA

A E

F

A EA A

B

B B

and  

which leads to 

F

F

A E

A E

A E

A E

A

B

A A

B B

B B

B B

= = =
( )( )

.
2 2

4

When we combine this ratio with the equation FA + FB = W, we find FA/W = 4/5 = 0.80 .

(b) This also leads to the result FB/W = 1/5 = 0.20. 

(c) Computing torques about the center of mass, we find FAdA = FBdB which leads to 

1
0.25.

4

A B

B A

d F

d F
= = =



12 2 3 8 2 5(graph area) (8.0 10  m )(8.0 10  m)(4.74 10 N/m ) 3.03 10  J.K W AL − − −= = = × × × = ×

(b) The kinetic energy of the fruit fly of mass 6.00 mg and speed 1.70 m/s is 

2 6 2 61 1
(6.00 10 kg)(1.70 m/s) 8.67 10  J.

2 2
f f fK m v − −= = × = ×

(c) Since 
fK W< , the fruit fly will not be able to break the thread. 

(d) The kinetic energy of a bumble bee of mass 0.388 g and speed 0.420 m/s is  

2 4 2 51 1
(3.99 10 kg)0.420 m/s) 3.42 10  J.

2 2
b b bK m v − −= = × = ×

(e) On the other hand, since bK W> , the bumble bee will be able to break the thread. 

48. Since the force is (stress × area) and the displacement is (strain × length), we can 

write the work integral (eq. 7-32) as 

W = Fdx  = (stress) A (differential strain)L  = AL (stress) (differential strain) 

which means the work is  (thread cross-sectional area) × (thread length) × (graph-area-

under-curve). The area under the curve is

[ ]1 2 1 3 2 2 3 1 3 2

9 2 9 2 9 2

8 2

1 1 1 1
graph area ( )( ) ( )( ) ( ) ( )

2 2 2 2

1
(0.12 10 N/m )(1.4) (0.30 10 N/m )(1.0) (0.80 10 N/m )(0.60)

2

4.74 10 N/m .

as a b s s b c s s as b s s c s s= + + − + + − = + − + −

= × + × + ×

= ×

(a) The kinetic energy that would put the thread on the verge of breaking is simply equal 

to W:



49. The flat roof (as seen from the air) has area A = 150 m × 5.8 m = 870 m
2
. The volume 

of material directly above the tunnel (which is at depth d = 60 m) is therefore  

V = A × d = (870 m
2
) × (60m) = 52200 m

3
.

Since the density is ρ = 2.8 g/cm
3
 = 2800 kg/m

3
, we find the mass of material supported 

by the steel columns to be m = ρV = 1.46 × 10
8
 m

3
.

(a) The weight of the material supported by the columns is mg = 1.4 × 10
9
 N. 

(b) The number of columns needed is 

n =
×

× ×
=

−

143 10

400 10 960 10
75

9

1
2

6 4 2

.

( )( )
.

N

N / m m2



where m is the mass of the insect and  (stress)T A= . Since the volume of the thread 

remains constant is it is being stretched, we have 0 0V A L AL= = , or 

0 0 0( / ) / 3A A L L A= = . The vertical distance y∆  is 

2 2
2 2 0 0

0

9
( / 2) ( 0 / 2) 2

4 4

L L
y L L L∆ = − = − = .

Thus, the mass of the insect is  

0 0 0

0

12 2 8 2

2

4

2( / 3)(stress)sin 2 (stress) 4 2 (stress)2 sin

3 3 / 2 9

4 2(8.00 10  m )(8.20 10 N/m )

9(9.8 m/s )

4.21 10 kg

A A AT y
m

g g g L g

θθ

−

−

∆
= = = =

× ×
=

= ×

or 0.421 g.

50. On the verge of breaking, the length of the thread is 

0 0 0 0 0(1 / ) (1 2) 3L L L L L L L L= + ∆ = + ∆ = + = ,

where 0 0.020 mL = is the original length, and 

0strain / 2L L= ∆ = , as given in the problem. The free-

body diagram of the system is shown on the right. The 

condition for equilibrium is

2 sinmg T θ=



51. Let the forces that compress stoppers A and B be FA and FB, respectively. Then 

equilibrium of torques about the axle requires FR = rAFA + rBFB. If the stoppers are 

compressed by amounts |∆yA| and |∆yB| respectively, when the rod rotates a (presumably 

small) angle θ (in radians), then | | | .∆ ∆y r y rA A B B= =θ θand |

Furthermore, if their “spring constants” k are identical, then k = |F/∆y| leads to the 

condition FA/rA = FB/rB which provides us with enough information to solve. 

(a) Simultaneous solution of the two conditions leads to 

2

2 2 2 2

(5.0 cm)(7.0 cm)
(220 N) 118 N 1.2 10  N.

(7.0 cm) +(4.0 cm)

A
A

A B

Rr
F F

r r
= = = ≈ ×

+

(b) It also yields 

2 2 2 2

(5.0 cm)(4.0 cm)
(220 N) 68 N.

(7.0 cm) +(4.0 cm)

B
B

A B

Rr
F F

r r
= = =

+



Fh = (“slope”)x  +  (“y-intercept”), 

where the “slope” is mg/h and the “y-intercept” is MgD/2h. Since h = 0.480 m and D = 

4.00 m, and the graph seems to intercept the vertical axis at 20 kN, then we find M = 500 

kg.

(b) Since the “slope” (estimated from the graph) is  (5000 N)/(4 m), then the man’s mass 

must be m = 62.5 kg. 

52. (a) With pivot at the hinge (at the left end), Eq. 12-9 gives 

                    – mgx – Mg
L

2
  + Fh h = 0 

where m is the man’s mass and M is that of the ramp; Fh is the leftward push of the right 

wall onto the right edge of the ramp.  This equation can be written to be of the form (for a 

straight line in a graph)



53. With the x axis parallel to the incline (positive uphill), then 

Σ Fx = 0 T cos 25° − mg sin 45°  =  0. 

Therefore, T = 76 N. 



54. The beam has a mass M = 40.0 kg and a length L = 0.800 m. The mass of the package 

of tamale is m = 10.0 kg. 

(a) Since the system is in static equilibrium, the normal force on the beam from roller A is 

equal to half of the weight of the beam:  

FA = Mg/2 = (40.0 kg)(9.80 m/s
2
)/2 = 196 N. 

(b) The normal force on the beam from roller B is equal to half of the weight of the beam 

plus the weight of the tamale:  

FB = Mg/2 + mg = (40.0 kg)(9.80 m/s
2
)/2 + (10.0 kg)(9.80 m/s

2
)= 294 N. 

(c) When the right-hand end of the beam is centered over roller B, the normal force on the 

beam from roller A is equal to the weight of the beam plus half of the weight of the 

tamale:  

FA = Mg + mg/2 = (40.0 kg)(9.8 m/s
2
) + (10.0 kg)(9.80 m/s

2
)/2 = 441 N. 

(d) Similarly, the normal force on the beam from roller B is equal to half of the weight of 

the tamale:  

FB = mg/2 = (10.0 kg)(9.80 m/s
2
)/2 = 49.0 N. 

(e) We choose the rotational axis to pass through roller B. When the beam is on the verge 

of losing contact with roller A, the net torque is zero. The balancing equation may be 

written as

( / 4 )     
4

L M
mgx Mg L x x

M m
= − =

+
.

Substituting the values given, we obtain x = 0.160 m. 



55. (a) The forces acting on bucket are the force of gravity, down, and the tension force 

of cable A, up. Since the bucket is in equilibrium and its weight is 

( )( )2 3817k 9.80m/s 8.01 10 NB BW m g g= = = × ,

the tension force of cable A is TA = ×8 01 103. N . 

(b) We use the coordinates axes defined in the diagram. Cable A makes an angle of θ2 = 

66.0º with the negative y axis, cable B makes an angle of 27.0º with the positive y axis, 

and cable C is along the x axis. The y components of the forces must sum to zero since 

the knot is in equilibrium. This means TB cos 27.0º – TA cos 66.0º = 0 and 

3 3cos 66.0 cos 66.0
(8.01 10 N) 3.65 10 N.

cos 27.0 cos 27.0
B AT T

° °
= = × = ×

° °

(c) The x components must also sum to zero. This means  

TC + TB sin 27.0º – TA sin 66.0º = 0 

Which yields 

3 3

3

sin 66.0 sin 27.0 (8.01 10 N)sin 66.0 (3.65 10 N)sin 27.0

5.66 10 N.

C A BT T T= ° − ° = × ° − × °

= ×



56. (a) Eq. 12-8 leads to T1 sin40º  + T2 sinθ = mg . Also, Eq. 12-7 leads to 

T1 cos40º − T2 cosθ = 0. 

Combining these gives the expression  

2
cos tan 40 sin

mg
T

θ θ
=

° +
.

To minimize this, we can plot it or set its derivative equal to zero.  In either case, we find 

that it is at its minimum at θ = 50°.

(b) At θ = 50°,  we find T2 = 0.77mg.



1 2 3 8.96 N.
7

mg
T T T mg F+ + = = =

Therefore, T = 8(8.96 N) = 71.7 N. 

57. The cable that goes around the lowest pulley is cable 1 and has tension T1 = F. That 

pulley is supported by the cable 2 (so T2 = 2T1 = 2F) and goes around the middle pulley. 

The middle pulley is supported by cable 3 (so T3 = 2T2 = 4F) and goes around the top 

pulley. The top pulley is supported by the upper cable with tension T, so T = 2T3 = 8F.

Three cables are supporting the block (which has mass m = 6.40 kg): 



58. Since all surfaces are frictionless, the contact force F  exerted by the lower sphere on 

the upper one is along that 45° line, and the forces exerted by walls and floors are 

“normal” (perpendicular to the wall and floor surfaces, respectively). Equilibrium of 

forces on the top sphere leads to the two conditions 

wall cos 45 and sin 45 .F F F mg= ° ° =

And (using Newton’s third law) equilibrium of forces on the bottom sphere leads to the 

two conditions 

wall floor' cos 45 and ' sin 45 .F F F F mg= ° = ° +

(a) Solving the above equations, we find F´floor = 2mg.

(b) We obtain for the left side of the container, F´wall = mg.

(c) We obtain for the right side of the container, Fwall = mg.

(d) We get / sin 45 2F mg mg= ° = .



′
−

−x
m m L

m

L
com =

3 0 + / 2

4
=

8

b g b g

shows that a4 = L/8.

(e) We find 
4

1
25 / 24ii

h a L
=

= = .

59. (a) The center of mass of the top brick cannot be further (to the right) with respect to 

the brick below it (brick 2) than L/2; otherwise, its center of gravity is past any point of 

support and it will fall. So a1 = L/2 in the maximum case. 

(b) With brick 1 (the top brick) in the maximum situation, then the combined center of 

mass of brick 1 and brick 2 is halfway between the middle of brick 2 and its right edge. 

That point (the combined com) must be supported, so in the maximum case, it is just 

above the right edge of brick 3. Thus, a2 = L/4.

(c) Now the total center of mass of bricks 1, 2 and 3 is one–third of the way between the 

middle of brick 3 and its right edge, as shown by this calculation: 

x
m m L

m

L
com =

2 0 + / 2

3
=

6

a f a f−
−

where the origin is at the right edge of brick 3. This point is above the right edge of brick 

4 in the maximum case, so a3 = L/6.

(d) A similar calculation 



60. (a) If L (= 1500 cm) is the unstretched length of the rope and ∆L = 2 8. cm is the 

amount it stretches then the strain is 

∆L L/ . / .= = × −2 8 1500 19 10 3cm cmb g b g .

(b) The stress is given by F/A where F is the stretching force applied to one end of the 

rope and A is the cross–sectional area of the rope. Here F is the force of gravity on the 

rock climber. If m is the mass of the rock climber then F = mg. If r is the radius of the 

rope then A r= π 2 . Thus the stress is 

2
7 2

2 3 2

(95kg) (9.8m/s )
1.3 10 N/m .

(4.8 10 m)

F mg

A rπ π −
= = = ×

×

(c) Young’s modulus is the stress divided by the strain:

E = (1.3 × 10
7
 N/m

2
) / (1.9 × 10

–3
) = 6.9 × 10

9
 N/m

2
.



6

8 2 4 2

3.5 10 N
15.2

(3.6 10 N/m )(6.4 10 m )
n

−

×
≥ =

× ×

Thus 16 bolts are needed. 

61. We denote the mass of the slab as m, its density as ρ , and volume as V LTW= . The 

angle of inclination is 26θ = ° .

(a) The component of the weight of the slab along the incline is 

1

3 2 7

sin sin

kg/m )(43m)(2.5m)(12 m)(9.8m/s )sin 26 1.8 10 N.

F mg Vgθ ρ θ
3

= =

= (3.2×10 ° ≈ ×

(b) The static force of friction is 

3 2 7

cos cos

kg/m )(43m)(2.5m)(12 m)(9.8m/s )cos 26 1.4 10 N.

s s N s sf F mg Vgµ µ θ µ ρ θ
3

= = =

= (0.39)(3.2×10 ° ≈ ×

(c) The minimum force needed from the bolts to stabilize the slab is 

7 7 6

2 1 1.77 10 N 1.42 10 N 3.5 10 N.sF F f= − = × − × = ×

If the minimum number of bolts needed is n, then 8 2

2 / 3.6 10 N/mF nA ≤ × , or 



62. The notation and coordinates are as shown in Fig. 12-6 in the textbook.  Here, the 

ladder's center of mass is halfway up the ladder (unlike in the textbook figure).  Also, we 

label the x and y forces at the ground fs and FN, respectively.  Now, balancing forces, we 

have

Σ Fx = 0 fs  =  Fw

Σ Fy = 0 FN  = mg

Since fs = fs, max, we divide the equations to obtain 

,maxs

N

f

F
= µs = 

Fw

mg
   . 

Now, from Σ τz = 0 (with axis at the ground) we have mg(a/2) − Fwh = 0.  But from the 

Pythagorean theorem, h = L
2
 - a

2
, where L = length of ladder.  Therefore, 

Fw

mg
  = 

/ 2a

h
   =

a

2 L
2
 - a

2   . 

In this way, we find 

2 2 2

2
3.4 m.

2 1 4

s
s

s

La
a

L a

µ
µ

µ
= = =

− +



63. Analyzing forces at the knot (particularly helpful is a graphical view of the vector 

right–triangle with horizontal “side” equal to the static friction force fs and vertical “side” 

equal to the weight mBg of block B), we find fs = mBg tan θ where θ = 30°. For fs to be at 

its maximum value, then it must equal µsmAg where the weight of block A is mAg= (10 

kg)(9.8 m/s
2
). Therefore, 

5.0
tan tan 30 0.29.

10
s A B sm g m gµ θ µ= = ° =



(a) If L = 12 m, then 4

2 11 2

6566 N
(12 m) 8.0 10 m.

(0.0125 m) (2.0 10 N/m )
L

π
−∆ = = ×

×

(b) Similarly, when L = 350 m, we find ∆L = 0 023. m. 

64. To support a load of W = mg = (670 kg)(9.8 m/s
2
) = 6566 N, the steel cable must 

stretch an amount proportional to its “free” length: 

∆L
W

AY
L A r=

F
HG
I
KJ =where π 2

and r = 0.0125 m. 



65. With the pivot at the hinge, Eq. 12-9 leads to 

– mg sinθ1
L

2
 + T L sin(180° – θ1 – θ2)  =  0 . 

where θ1 = 60°  and T = mg/2.   This yields θ2 = 60°.



66. (a) Setting up equilibrium of torques leads to 

2

far end (73kg) (9.8m/s ) (2700 N)
4 2

L L
F L = +

which yields Ffar end = 1.5 × 10
3
 N. 

(b) Then, equilibrium of vertical forces provides 

F Fnear end far end)(9.8 N.= + − = ×( ) .73 2700 19 103



67. (a) and (b)  With +x rightward and +y upward (we assume the adult is pulling with 

force P
→

 to the right), we have 

Σ Fy = 0 W = T cos θ  = 270 N 

Σ Fx = 0 P = T sin θ  = 72 N 

where θ = 15°.

(c) Dividing the above equations leads to 

P

W
  =  tan θ  . 

Thus, with W = 270 N and P = 93 N, we find θ = 19°.



cos 60 cos 20

sin 60 sin 20

T T

T W T

′ ° = °

′ ° = + °

horizontal forces

vertical forces.

(a) We solve the above simultaneous equations and find 

15N.
tan 60 cos 20 sin 20

W
T = =

° ° − °

(b) Also, we obtain T´ = T cos 20º / cos 60º = 29 N. 

68. We denote the tension in the upper left string (bc) as T´ and the tension in the lower 

right string (ab) as T. The supported weight is Mg = 19.6 N. The force equilibrium 

conditions lead to 



69. (a)   Because of Eq. 12-3, we can write 

T
→

  +  (mB g ∠ –90º) + (mA g ∠ –150º)  = 0 . 

Solving the equation, we obtain T
→

 = (106.34  ∠ 63.963º).   Thus, the magnitude of the 

tension in the upper cord is 106 N,

(b) and its angle (measured ccw from the +x axis) is 64.0°.



,max

N

s

F

f
 =

1

µs
  =  tanθ   . 

Therefore, µs = 0.35. 

70. (a) The angle between the beam and the floor is  

sin
−1

(d /L)= sin
−1

(1.5/2.5) = 37°,

so that the angle between the beam and the weight vector W
→

of the beam is 53°.  With L = 

2.5 m being the length of beam, and choosing the axis of rotation to be at the base, 

Σ τz  =  0 PL – W 
L

2
 sin 53°  =  0 

Thus, P = ½ W sin 53° = 200 N. 

(b) Note that 

P
→

 + W
→

 = (200 ∠ 90°) + (500 ∠ –127°) = (360 ∠ –146°)

using magnitude-angle notation (with angles measured relative to the beam, where 

"uphill" along the beam would correspond to 0°) with the unit Newton understood.  The 

"net force of the floor" Ff

→

 is equal and opposite to this (so that the total net force on the 

beam is zero), so that |Ff

→

 | = 360 N and is directed 34° counterclockwise from the beam. 

(c) Converting that angle to one measured from true horizontal, we have θ = 34° + 37° = 

71°.  Thus, fs = Ff cosθ and FN = Ff sin θ.  Since fs = fs, max, we divide the equations to 

obtain



71. The cube has side length l and volume V = l 
3
. We use p B V V= ∆ / for the pressure p.

We note that 

∆ ∆ ∆ ∆ ∆V

V

l

l

l l l

l

l l

l

l

l
= =

+ −
≈ =

3

3

3 3

3

2

3

3
3

( )
.

Thus, the pressure required is 

11 2
9 23 3(1.4 10 N/m )(85.5cm 85.0cm)

2.4 10 N/m .
85.5cm

B l
p

l

∆ × −
= = = ×



72. Adopting the usual convention that torques that would produce counterclockwise 

rotation are positive, we have (with axis at the hinge) 

= −
F
HG
I
KJ =τ z TL Mg

L
0 60

2
0sin

where L = 5.0 m and M = 53 kg. Thus, T = 300 N. Now (with Fp for the force of the hinge) 

= = − = −

= = − =

F F T

F F Mg T

x px

y py

0 150

0 260

cos

sin

θ

θ

N

N

where θ = 60°. Therefore, 2 2ˆ ˆ( 1.5 10  N)i (2.6 10  N)j.pF = − × + ×



73. (a) Choosing an axis through the hinge, perpendicular to the plane of the figure and 

taking torques that would cause counterclockwise rotation as positive, we require the net 

torque to vanish: 

sin 90 sin 65 0FL Th° − ° =

where the length of the beam is L = 3.2 m and the height at which the cable attaches is h

= 2.0 m. Note that the weight of the beam does not enter this equation since its line of 

action is directed towards the hinge. With F = 50 N, the above equation yields T = 88 N. 

(b) To find the components of Fp we balance the forces: 

0 cos 25

0 sin 25
x px

y py

F F T F

F F T W

= = ° −

= = ° +

where W is the weight of the beam (60 N). Thus, we find that the hinge force components 

are Fpx = 30 N rightward and Fpy = 97 N upward. In unit-vector notation, 
ˆ ˆ(30 N)i (97 N)j.pF = +



74. (a) Computing the torques about the hinge, we have sin 40 sin 50
2

L
TL W° = ° where 

the length of the beam is L = 12 m and the tension is T = 400 N. Therefore, the weight is 

671 NW = , which means that the gravitational force on the beam is ˆ( 671 N)jwF = − .

(b) Equilibrium of horizontal and vertical forces yields, respectively, 

hinge 

hinge 

400 N

671 N

x

y

F T

F W

= =

= =

where the hinge force components are rightward (for x) and upward (for y). In unit-vector 

notation, we have hinge
ˆ ˆ(400 N)i (671 N)jF = +



concentrated force located at the edge of the bottom block (which is the point about 

which we compute torques, in the following).

If (as indicated in our sketch, where Ftop  has magnitude mg/2)

we consider equilibrium of torques on the rightmost brick, we 

obtain

mg b L
mg

L b1 1

1

2 2
−
F
HG

I
KJ = −( )

which leads to b1 = 2L/3. Once we conclude from symmetry 

that b2 = L/2 then we also arrive at h = b2 + b1 = 7L/6.

75. We locate the origin of the x axis at the edge of the table and choose rightwards 

positive. The criterion (in part (a)) is that the center of mass of the block above another 

must be no further than the edge of the one below; the criterion in part (b) is more subtle 

and is discussed below. Since the edge of the table corresponds to x = 0 then the total 

center of mass of the blocks must be zero. 

(a) We treat this as three items: one on the upper left (composed of two bricks, one 

directly on top of the other) of mass 2m whose center is above the left edge of the bottom 

brick; a single brick at the upper right of mass m which necessarily has its center over the 

right edge of the bottom brick (so a1 = L/2 trivially); and, the bottom brick of mass m.

The total center of mass is 

( )( ) ( / )2 2

4
02 2 2m a L ma m a L

m

− + + −
=

which leads to a2 = 5L/8. Consequently, h = a2 + a1 = 9L/8.

(b) We have four bricks (each of mass m) where the center of mass of the top and the 

center of mass of the bottom one have the same value xcm = b2 – L/2. The middle layer 

consists of two bricks, and we note that it is possible for each of their centers of mass to 

be beyond the respective edges of the bottom one! This is due to the fact that the top 

brick is exerting downward forces (each equal to half its weight) on the middle blocks — 

and in the extreme case, this may be thought of as a pair of concentrated forces exerted at 

the innermost edges of the middle bricks. Also, in the extreme case, the support force 

(upward) exerted on a middle block (by the bottom one) may be thought of as a 



76. One arm of the balance has length 1  and the other has 

length 2 . The two cases described in the problem are expressed (in terms of torque 

equilibrium) as 

m m m m1 1 2 1 2 2= =and .

We divide equations and solve for the unknown mass: m m m= 1 2 .



77. Since GA exerts a leftward force T at the corner A, then (by equilibrium of horizontal 

forces at that point) the force Fdiag in CA must be pulling with magnitude 

diag 2.
sin 45

T
F T= =

°

This analysis applies equally well to the force in DB. And these diagonal bars are pulling 

on the bottom horizontal bar exactly as they do to the top bar, so the bottom bar CD is the 

“mirror image” of the top one (it is also under tension T). Since the figure is symmetrical 

(except for the presence of the turnbuckle) under 90° rotations, we conclude that the side 

bars (DA and BC) also are under tension T (a conclusion that also follows from 

considering the vertical components of the pull exerted at the corners by the diagonal 

bars).

(a) Bars that are in tension are BC, CD and DA.

(b) The magnitude of the forces causing tension is 535 NT = .

(c) The magnitude of the forces causing compression on CA and DB is 

diag 2 (1.41)535 N 757 NF T= = = .



78. (a) For computing torques, we choose the axis to be at support 2 and consider torques 

which encourage counterclockwise rotation to be positive. Let m = mass of gymnast and 

M = mass of beam. Thus, equilibrium of torques leads to 

1(1.96 m) (0.54 m) (3.92 m)=0.Mg mg F− −

Therefore, the upward force at support 1 is F1 = 1163 N (quoting more figures than are 

significant — but with an eye toward using this result in the remaining calculation). In 

unit-vector notation, we have 3

1
ˆ(1.16 10  N)jF ≈ × .

(b) Balancing forces in the vertical direction, we have F F Mg mg1 2 0+ − − = , so that the 

upward force at support 2 is F2 =1.74 × 10
3
 N. In unit-vector notation, we have 

3

2
ˆ(1.74 10  N)jF ≈ × .



79. (a) Let d = 0.00600 m.  In order to achieve the same final lengths, wires 1 and 3 must 

stretch an amount d more than wire 2 stretches: 

∆L1 = ∆L3 = ∆L2 + d . 

Combining this with Eq. 12-23 we obtain 

F1 = F3 = F2  +
dAE

L
  . 

Now, Eq. 12-8 produces F1 + F3 + F2 – mg = 0.  Combining this with the previous 

relation (and using Table 12-1) leads to 3

1= 1380 N 1.38 10 NF ≈ × .

(b) Similarly, F2 = 180 N. 



80. Our system is the second finger bone. Since the system is in 

static equilibrium, the net force acting on it is zero. In addition, the 

torque about any point must be zero. We set up the torque equation 

about point O where cF  act: 

net0 sin ( ) sin ( ) sin
3

t v h

O

d
F d F d Fτ α θ φ= = − + + .

Solving for tF  and substituting the values given, we obtain

2

3( sin sin ) 3[(162.4 N)sin10 (13.4 N)sin 80 ]
175.6 N

sin sin 45

1.8 10 N.

v h
t

F F
F

θ φ

α

+ ° + °
= = =

°

≈ ×



81. When it is about to move, we are still able to apply the equilibrium conditions, but (to 

obtain the critical condition) we set static friction equal to its maximum value and picture 

the normal force NF  as a concentrated force (upward) at the bottom corner of the cube, 

directly below the point O where P is being applied. Thus, the line of action of NF  passes 

through point O and exerts no torque about O (of course, a similar observation applied to 

the pull P). Since FN = mg in this problem, we have fsmax = µmg applied a distance h

away from O. And the line of action of force of gravity (of magnitude mg), which is best 

pictured as a concentrated force at the center of the cube, is a distance L/2 away from O.

Therefore, equilibrium of torques about O produces 

(8.0 cm)
0.57

2 2 2(7.0 cm)

L L
mgh mg

h
µ µ= = = =

for the critical condition we have been considering. We now interpret this in terms of a 

range of values for µ.

(a) For it to slide but not tip, a value of µ less than that derived above is needed, since 

then — static friction will be exceeded for a smaller value of P, before the pull is strong 

enough to cause it to tip. Thus, µ < L/2h = 0.57 is required. 

(b) And for it to tip but not slide, we need µ greater than that derived above is needed, 

since now — static friction will not be exceeded even for the value of P which makes the 

cube rotate about its front lower corner. That is, we need to have µ > L/2h = 0.57 in this 

case.



82. The assumption stated in the problem (that the density does not change) is not meant 

to be realistic; those who are familiar with Poisson’s ratio (and other topics related to the 

strengths of materials) might wish to think of this problem as treating a fictitious material 

(which happens to have the same value of E as aluminum, given in Table 12-1) whose 

density does not significantly change during stretching.  Since the mass does not change, 

either, then the constant-density assumption implies the volume (which is the circular 

area times its length) stays the same: 

       (πr
2
L)new = (πr

2
L)old ∆L = L[(1000/999.9)

2
 – 1] . 

 Now, Eq. 12-23 gives 

F = πr
2
E ∆L/L  = πr

2
(7.0 x 10

9
N/m

2
)[(1000/999.9)

2
 – 1] . 

Using either the new or old value for r gives the answer F = 44 N. 



a distance L/2 from the man in front, so that computing torques about the front end leads 

to

W
L

Fx
W

x
2

2 2
3

= =
F
HG
I
KJ

which yields x = 3L/4 for the distance from the crosspiece to the front end. It is therefore 

a distance L/4 from the rear end (the “free” end). 

83. Where the crosspiece comes into contact with the beam, there is an upward force of 

2F (where F is the upward force exerted by each man). By equilibrium of vertical forces, 

W = 3F where W is the weight of the beam. If the beam is uniform, its center of gravity is 



84. (a) Setting up equilibrium of torques leads to a simple “level principle” ratio: 

2

catch

(91/ 2 10)cm
(11kg) (9.8m/s ) 42 N.

91cm
F

−
= =

(b) Then, equilibrium of vertical forces provides 

2

hinge catch(11kg) (9.8m/s ) 66 N.F F= − =



ˆ ˆ( 45 N)i+(200 N)j.gF = −

(c) Note that the phrase “start to move towards the wall” implies that the friction force is 

pointed away from the wall (in the −i  direction). Now, if f = –Fgx and FN = Fgy = 200 N 

are related by the (maximum) static friction relation (f = fs,max = µs FN) with µs = 0.38, 

then we find Fgx = –76 N. Returning this to the above equation, we obtain 

2(200 N) (3.0m) (76 N) (8.0 m)
1.9 10 N.

6.4m
F

+
= = ×

85. We choose an axis through the top (where the ladder comes into contact with the 

wall), perpendicular to the plane of the figure and take torques that would cause 

counterclockwise rotation as positive. Note that the line of action of the applied force 

F intersects the wall at a height of (8.0 m) / 5 1.6m= ; in other words, the moment arm

for the applied force (in terms of where we have chosen the axis) is 

(4 / 5)(8.0 m) 6.4mr⊥ = = . The moment arm for the weight is half the horizontal distance 

from the wall to the base of the ladder; this works out to be 2 2(10 m) (8 m) / 2 3.0m− = .

Similarly, the moment arms for the x and y components of the force at the ground Fgd i
are 8.0 m and 6.0 m, respectively. Thus, with lengths in meters, we have 

(6.4 m) (3.0 m) (8.0 m) (6.0 m) 0.z gx gyF W F Fτ = + + − =

In addition, from balancing the vertical forces we find that W = Fgy (keeping in mind that 

the wall has no friction). Therefore, the above equation can be written as 

(6.4 m) (3.0 m) (8.0 m) (6.0 m) 0.z gxF W F Wτ = + + − =

(a) With F = 50 N and W = 200 N, the above equation yields Fgx = 35 N. Thus, in unit 

vector notation we obtain 

ˆ ˆ(35 N)i+(200 N)j.gF =

(b) With F = 150 N and W = 200 N, the above equation yields Fgx = –45 N. Therefore, in 

unit vector notation we obtain 



86. The force F exerted on the beam is F = 7900 N, as computed in the Sample Problem. 

Let F/A = Su/6, where 6 250 10 N/muS = ×  is the ultimate strength (see Table 12-1), then 

4 2

6 2

6 6(7900 N)
9.5 10 m .

50 10 N/mu

F
A

S

−= = = ×
×

Thus the thickness is 4 29.5 10  m 0.031mA −= × = .



Chapter 13 
 



1. The magnitude of the force of one particle on the other is given by F = Gm1m2/r
2
,

where m1 and m2 are the masses, r is their separation, and G is the universal gravitational 

constant. We solve for r:

( )( )( )11 2 2

1 2

12

6.67 10 N m / kg 5.2kg 2.4kg
19m

2.3 10 N

Gm m
r

F

−

−

× ⋅
= = =

×
.
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2. We use subscripts s, e, and m for the Sun, Earth and Moon, respectively. Plugging in 

the numerical values (say, from Appendix C) we find 

2 2
2 30 8

2 24 11

/ 1.99 10 kg 3.82 10  m
2.16.

/ 5.98 10 kg 1.50 10  m

sm s m sm s em

em e m em e sm

F Gm m r m r

F Gm m r m r

× ×
= = = =

× ×



3. The gravitational force between the two parts is 

( )
( )2

2 2
= =

Gm M m G
F mM m

r r

−
−

which we differentiate with respect to m and set equal to zero: 

( )2
= 0 = 2 = 2

dF G
M m M m

dm r
− .

This leads to the result m/M= 1/2. 



(a) The ratio of the moon’s gravitational pulls at the two different positions is 

2 2
2 8 6

1

2 8 6

0

/( ) 3.82 10  m 6.37 10  m
1.06898.

/( ) 3.82 10  m 6.37 10  m

m ME E ME E

m ME E ME E

GM m R RF R R

F GM m R R R R

− + × + ×
= = = =

+ − × − ×

Therefore, the increase is 0.06898, or approximately, 6.9%. 

(b) The change of the gravitational pull may be approximated as 

1 0 2 2 2 2 3

4
1 2 1 2 .

( ) ( )

m m m m m EE E

ME E ME E ME ME ME ME ME

GM m GM m GM m GM m GM mRR R
F F

R R R R R R R R R
− = − ≈ + − − =

− +

On the other hand, your weight, as measured on a scale on Earth is

2

E
g E

E

GM m
F mg

R
= = .

Since the moon pulls you “up,” the percentage decrease of weight is  

3 3
22 6

7 51 0

24 8

7.36 10 kg 6.37 10  m
4 4 2.27 10 (2.3 10 )%.

5.98 10 kg 3.82 10  m

m E

g E ME

F F M R

F M R

− −− × ×
= = = × ≈ ×

× ×

4. The gravitational force between you and the moon at its initial position (directly 

opposite of Earth from you) is 

0 2( )

m

ME E

GM m
F

R R
=

+

where mM  is the mass of the moon, MER  is the distance between the moon and the Earth, 

and ER  is the radius of the Earth. At its final position (directly above you), the 

gravitational force between you and the moon is 

1 2( )

m

ME E

GM m
F

R R
=

−
.



5. We require the magnitude of force (given by Eq. 13-1) exerted by particle C on A be 

equal to that exerted by B on A.  Thus, 

GmA mC

r
2   = 

GmA mB

d
2   . 

We substitute in mB = 3mA   and mB = 3mA, and (after canceling “mA”) solve for r. We 

find r = 5d.  Thus, particle C is placed on the x axis, to left of particle A (so it is at a 

negative value of x), at x = –5.00d.



6. Using F = GmM/r
2
, we find that the topmost mass pulls upward on the one at the 

origin with 1.9 × 10
−8

 N, and the rightmost mass pulls rightward on the one at the origin 

with 1.0 × 10
−8

 N. Thus, the (x, y) components of the net force, which can be converted to 

polar components (here we use magnitude-angle notation), are 

( ) ( )8 8 8

net = 1.04 10 ,1.85 10 2.13 10 60.6 .F − − −× × × ∠ °

(a) The magnitude of the force is 2.13 × 10
−8

 N. 

(b) The direction of the force relative to the +x axis is 60.6° .



7. At the point where the forces balance 2 2

1 2/ /e sGM m r GM m r= , where Me is the mass of 

Earth, Ms is the mass of the Sun, m is the mass of the space probe, r1 is the distance from 

the center of Earth to the probe, and r2 is the distance from the center of the Sun to the 

probe. We substitute r2 = d − r1, where d is the distance from the center of Earth to the 

center of the Sun, to find 

( )
2 2

1 1

= .e sM M

r d r−

Taking the positive square root of both sides, we solve for r1. A little algebra yields 

( )9 24

8

1
30 24

150 10  m 5.98 10  kg
= = = 2.60 10  m.

+ 1.99 10  kg + 5.98 10  kg

e

s e

d M
r

M M

× ×
×

× ×

Values for Me, Ms, and d can be found in Appendix C. 



8. The gravitational forces on m5 from the two 5.00g masses m1 and m4 cancel each other. 

Contributions to the net force on m5 come from the remaining two masses: 

( )( )( )

( )

11 2 2 3 3 3

net 2
1

14

6.67 10  N m /kg 2.50 10  kg 3.00 10  kg 1.00 10  kg

2 10  m

1.67 10  N.

F

− − − −

−

−

× ⋅ × × − ×
=

×

= ×

The force is directed along the diagonal between m2 and m3, towards m2. In unit-vector 

notation, we have 

14 14

net net
ˆ ˆ ˆ ˆ(cos 45 i sin 45 j) (1.18 10 N) i  (1.18 10 N) jF F − −= ° + ° = × + ×



9. The gravitational force from Earth on you (with mass m) is  

2

E
g

E

GM m
F mg

R
= =

where 2 2/ 9.8 m/s .E Eg GM R= =  If r is the distance between you and a tiny black hole of 

mass 111 10 kgbM = ×  that has the same gravitational pull on you as the Earth, then 

2
.b

g

GM m
F mg

r
= =

Combining the two equations, we obtain  

11 3 2 11

2 2 2

(6.67 10  m /kg s )(1 10 kg)
0.8 m.

9.8 m/s

b bE

E

GM m GMGM m
mg r

R r g

−× ⋅ ×
= = = = ≈



10. (a) We are told the value of the force when particle C is removed (that is, as its 

position x goes to infinity), which is a situation in which any force caused by C vanishes 

(because Eq. 13-1 has r
2
 in the denominator).  Thus, this situation only involves the force 

exerted by A on B:
GmA mB

(0.20 m)
2  = 4.17 × 10

−10
 N . 

Since mB = 1.0 kg, then this yields mA = 0.25 kg. 

(b) We note (from the graph) that the net force on B is zero when x = 0.40 m.  Thus, at 

that point, the force exerted by C must have the same magnitude (but opposite direction) 

as the force exerted by A (which is the one discussed in part (a)).  Therefore 

        
GmC mB

(0.40 m)
2  = 4.17 × 10

−10
 N mC = 1.00 kg. 



11. (a) The distance between any of the spheres at the corners and the sphere at the center 

is

/ 2cos30 / 3r = ° =

where  is the length of one side of the equilateral triangle. The net (downward) 

contribution caused by the two bottom-most spheres (each of mass m) to the total force 

on m4 has magnitude 

4 4

2 2
2 = 2 sin 30 = 3 .y

Gm m Gm m
F

r
°

This must equal the magnitude of the pull from M, so 

( )
4 4

22
3

/ 3

Gm m Gm m
=

which readily yields m = M.

(b) Since m4 cancels in that last step, then the amount of mass in the center sphere is not 

relevant to the problem. The net force is still zero. 



30.0º = 150º (measured ccw from the +x axis).  The component along, say, the x axis of 

one of the force-vectors F
→

  is simply Fx/r in this situation (where F is the magnitude of 

F
→

 ).  Since the force itself (see Eq. 13-1) is inversely proportional to r
2
 then the 

aforementioned x component would have the form GmMx/r
3
; similarly for the other 

components. With mA = 0.0060 kg, mB = 0.0120 kg, and mC = 0.0080 kg, we therefore 

have

Fnet x = 
GmAmB xB

rB
3   +  

GmAmC xC

rC
3   = (2.77 × 10

−14
N)cos(−163.8º) 

and

Fnet y = 
GmAmB yB

rB
3   +  

GmAmC yC

rC
3  = (2.77 × 10

−14 
N)sin(−163.8º) 

where rB = dAB = 0.50 m, and (xB, yB) = (rBcos(150º), rBsin(150º)) (with SI units 

understood).  A fairly quick way to solve for rC is to consider the vector difference 

between the net force and the force exerted by A, and then employ the Pythagorean 

theorem.  This yields rC = 0.40 m. 

(a) By solving the above equations, the x coordinate of particle C is xC = −0.20 m. 

(b) Similarly, the y coordinate of particle C is yC = −0.35 m. 

12. All the forces are being evaluated at the origin (since particle A is there), and all 

forces (except the net force) are along the location-vectors  r
→

  which  point to particles B

and C.  We note that the angle for the location-vector pointing to particle B is 180º – 



( ) ( )
1 2 2 22 2

11 3 2

2 2 2 2 2

9

1 1 1
= = = 1

8 /2 8 1 /2

(6.67 10  m /s kg)(2.95 kg)(0.431 kg) 1
1

(9.00 10 m) 8[1 (4 10 m) /(2 9 10 m)]

8.31 10 N.

GMm
F F F GMm

d dd R R d

−

− − −

−

− − −
− −

× ⋅
= −

× − × ⋅ ×

= ×

13. If the lead sphere were not hollowed the magnitude of the force it exerts on m would 

be F1 = GMm/d
2
. Part of this force is due to material that is removed. We calculate the 

force exerted on m by a sphere that just fills the cavity, at the position of the cavity, and 

subtract it from the force of the solid sphere. 

The cavity has a radius r = R/2. The material that fills it has the same density (mass to 

volume ratio) as the solid sphere. That is Mc/r
3
= M/R

3
, where Mc is the mass that fills the 

cavity. The common factor 4π/3 has been canceled. Thus, 

3 3

3 3
= = = .

8 8
c

r R M
M M M

R R

The center of the cavity is d − r = d − R/2 from m, so the force it exerts on m is 

( )

( )
2 2

/8
= .

/2

G M m
F

d R−

The force of the hollowed sphere on m is 



14. Using Eq. 13-1, we find 

FAB

→

 = 
2GmA

2

d
2   j

^
       and FAC

→

=  – 
4GmA

2

3d
2   i

^
  . 

Since the vector sum of all three forces must be zero, we find the third force (using 

magnitude-angle notation) is  

FAD

→

 = 
GmA

2

d
2  (2.404   ∠   –56.3º) . 

This tells us immediately the direction of the vector  r
→

  (pointing from the origin to 

particle D), but to find its magnitude we must solve (with mD = 4mA) the following 

equation:

2.404
GmA

2

d
2   = 

GmAmD

r
2    . 

This yields r = 1.29d.  In magnitude-angle notation, then,  r
→

  = (1.29  ∠   –56.3º) , with 

SI units understood. The “exact” answer without regard to significant figure 

considerations is 

                                r
→

  =  (  2
6

13 13
  ,  –3

6

13 13
   ) . 

(a) In (x, y) notation, the x coordinate is x =0.716d.

(b) Similarly, the y coordinate is y = −1.07d.



GmA mB zB

rB
3  = 

GmA(2mA)(2d)

((2d)
2
 + d

2
 + (2d)

2
)

3  = 
4GmA

2

27 d
2  . 

In this way, each component can be written as some multiple of GmA
2
/d

2
.  For the z

component of the force exerted on particle A by particle C, that multiple is –9 14 /196. 

For the x components of the forces exerted on particle A by particles B and C, those 

multiples are 4/27 and  –3 14 /196, respectively.  And for the y components of the forces 

exerted on particle A by particles B and C, those multiples are 2/27 and 3 14 /98, 

respectively.  To find the distance r to particle D one method is to solve (using the fact 

that the vector add to zero) 

GmAmD

r
2

2

  = [(4/27 –3 14 /196)
2
+ (2/27 +3 14 /98)

2
+ (4/27 –9 14 /196)

2
]

GmA
2

d
2

2

(where mD = 4mA) for r. This gives r = 4.357d.  The individual values of x, y and z

(locating the particle D) can then be found by considering each component of the 

GmAmD/r
2
 force separately.

(a) The x component of r would be

GmA mD x/r
3
 = –(4/27 –3 14 /196)GmA

2
/d

2
,

which yields x = –1.88d.

(b) Similarly, y = −3.90d,

(c) and z = 0.489d.

In this way we are able to deduce that (x, y, z) = (1.88d, 3.90d, 0.49d).

15. All the forces are being evaluated at the origin (since particle A is there), and all 

forces are along the location-vectors  r
→

  which point to particles B, C and D. In three 

dimensions, the Pythagorean theorem becomes r = x
2
 + y

2
 + z

2
 .   The component along, 

say, the x axis of one of the force-vectors F
→

  is simply Fx/r in this situation (where F is 

the magnitude of F
→

 ).  Since the force itself (see Eq. 13-1) is inversely proportional to r
2

then the aforementioned x component would have the form GmMx/r
3
; similarly for the 

other components.  For example, the z component of the force exerted on particle A by 

particle B is 



16. Since the rod is an extended object, we cannot apply Equation 13-1 directly to find 

the force. Instead, we consider a small differential element of the rod, of mass dm  of 

thickness dr  at a distance r from 1m . The gravitational force between dm  and 1m is

1 1

2 2

( / )Gm dm Gm M L dr
dF

r r
= = ,

where we have substituted ( / )dm M L dr=  since 

mass is uniformly distributed. The direction of 

dF  is to the right (see figure). The total force 

can be found by integrating over the entire length of the rod: 

1 1 1

2

1 1

( )

L d

d

Gm M Gm M Gm Mdr
F dF

L r L L d d d L d

+

= = = − − =
+ +

.

Substituting the values given in the problem statement, we obtain 

11 3 2
101 (6.67 10  m /kg s )(0.67 kg)(5.0 kg)

3.0 10 N.
( ) (0.23 m)(3.0 m 0.23 m)

Gm M
F

d L d

−
−× ⋅

= = = ×
+ +



17. The acceleration due to gravity is given by ag = GM/r
2
, where M is the mass of Earth 

and r is the distance from Earth’s center. We substitute r = R + h, where R is the radius 

of Earth and h is the altitude, to obtain ag = GM /(R + h)
2
. We solve for h and obtain 

/ gh GM a R= − . According to Appendix C, R = 6.37 × 10
6
 m and M = 5.98 × 10

24
 kg, 

so

( )( )
( )

11 3 2 24

6 6

2

6.67 10 m / s kg 5.98 10 kg
6.37 10 m 2.6 10 m.

4.9m / s
h

−× ⋅ ×
= − × = ×



18. We follow the method shown in Sample Problem 13-3. Thus, 

2 3
= = 2E E

g g

GM GM
a da dr

r r
−

which implies that the change in weight is 

( )top bottom .gW W m da− ≈

But since Wbottom = GmME/R
2
 (where R is Earth’s mean radius), we have 

( )
3

bottom3 6

1.61 10  m
= 2 = 2 = 2 600 N 0.303 N

6.37 10  m

E
g

GmM dr
mda dr W

R R

×
− − − = −

×

for the weight change (the minus sign indicating that it is a decrease in W). We are not 

including any effects due to the Earth’s rotation (as treated in Eq. 13-13). 



19. (a) The gravitational acceleration at the surface of the Moon is gmoon = 1.67 m/s
2
 (see 

Appendix C). The ratio of weights (for a given mass) is the ratio of g-values, so  

Wmoon = (100 N)(1.67/9.8) = 17 N. 

(b) For the force on that object caused by Earth’s gravity to equal 17 N, then the free-fall 

acceleration at its location must be ag = 1.67 m/s
2
. Thus, 

7

2
1.5 10 mE E

g

g

Gm Gm
a r

r a
= = = ×

so the object would need to be a distance of r/RE = 2.4 “radii” from Earth’s center. 



20. The free-body diagram of the force acting on the plumb line is shown on the right. 

The mass of the sphere is 

3 3 3 3 3

13

4 4
(2.6 10 kg/m )(2.00 10  m)

3 3

8.71 10 kg.

M V R
π π

ρ ρ= = = × ×

= ×

The force between the “spherical” mountain and the plumb 

line is 2/F GMm r= . Suppose at equilibrium the line makes 

an angle θ  with the vertical and the net force acting on the 

line is zero. Therefore, 

net, 2

net,

0 sin sin

0 cos

x

y

GMm
F T F T

r

F T mg

θ θ= = − = −

= = −

The two equations can be combined to give 
2

tan
F GM

mg gr
θ = = . The distance the lower 

end moves toward the sphere is  

11 3 2 13

2 3 2

6

(6.67 10  m /kg s )(8.71 10 kg)
tan (0.50 m)

(9.8)(3 2.00 10  m)

8.2 10  m.

GM
x l l

gr
θ

−

−

× ⋅ ×
= = =

× ×

= ×

.



21. (a) The gravitational acceleration is 2

2
= = 7.6 m/s .g

GM
a

R

(b) Note that the total mass is 5M. Thus, 
( )

( )
2

2

5
= = 4.2 m/s .

3
g

G M
a

R



(d) This part refers specifically to the very large black hole treated in the previous part. 

With that mass for M in Eq. 13–16, and r = 2.002GM/c
2
, we obtain 

( ) ( ) ( )

6

3 3 2
2

2
= 2 =

2.0022.002 /
g

GM c
da dr dr

GMGM c
− −

where dr → 1.70 m as in Sample Problem 13-3. This yields (in absolute value) an 

acceleration difference of 7.30 × 10
−15

 m/s
2
.

(e) The miniscule result of the previous part implies that, in this case, any effects due to 

the differences of gravitational forces on the body are negligible. 

22. (a) Plugging Rh = 2GMh /c
2
 into the indicated expression, we find 

( ) ( ) ( ) ( )

4

2 2 22 2

1
= = =

1.001 2.0021.001 2 /

h h
g

hh h

GM GM c
a

MR GGM c

which yields ag = (3.02 × 10
43

 kg·m/s
2
) /Mh.

(b) Since Mh is in the denominator of the above result, ag decreases as Mh increases. 

(c) With Mh = (1.55 × 10
12

) (1.99 × 10
30

 kg), we obtain ag = 9.82 m/s
2
.



23. From Eq. 13-14, we see the extreme case is when “g” becomes zero, and plugging in 

Eq. 13-15 leads to 
3 2

2

2
0 = = .

GM R
R M

R G

ω
ω−

Thus, with R = 20000 m and ω = 2π rad/s, we find M = 4.7 × 10
24

 kg ≈ 5 × 10
24

 kg. 



24. (a) What contributes to the GmM/r
2
 force on m is the (spherically distributed) mass M

contained within r (where r is measured from the center of M). At point A we see that M1

+ M2 is at a smaller radius than r = a and thus contributes to the force: 

( )1 2

on 2
.m

G M M m
F

a

+
=

(b) In the case r = b, only M1 is contained within that radius, so the force on m becomes 

GM1m/b
2
.

(c) If the particle is at C, then no other mass is at smaller radius and the gravitational 

force on it is zero. 



M = (1.93 × 10
24

 kg + 4.01 × 10
24

 kg ) = 5.94 × 10
24

 kg. 

The first term is the mass of the core and the second is the mass of the mantle. Thus, 

( )( )
( )

11 3 2 24

2

2
6

6.67 10  m /s kg 5.94 10  kg
= = 9.84 m/s .

6.345 10  m
ga

−× ⋅ ×

×

(c) A point 25 km below the surface is at the mantle-crust interface and is on the surface 

of a sphere with a radius of R = 6.345 × 10
6
 m. Since the mass is now assumed to be 

uniformly distributed the mass within this sphere can be found by multiplying the mass 

per unit volume by the volume of the sphere: 3 3( / ) ,e eM R R M=  where Me is the total 

mass of Earth and Re is the radius of Earth. Thus, 

( )
3

6
24 24

6

6.345 10  m
= 5.98 10  kg = 5.91 10  kg.

6.37 10  m
M

×
× ×

×

The acceleration due to gravity is 

( )( )
( )

11 3 2 24

2

22 6

6.67 10  m /s kg 5.91 10  kg
= = = 9.79 m/s .

6.345 10  m
g

GM
a

R

−× ⋅ ×

×

25. (a) The magnitude of the force on a particle with mass m at the surface of Earth is 

given by F = GMm/R
2
, where M is the total mass of Earth and R is Earth’s radius. The 

acceleration due to gravity is 

( )( )
( )

11 3 2 24

2

22 6

6.67 10  m /s kg 5.98 10  kg
= = = = 9.83 m/s .

6.37 10  m
g

F GM
a

m R

−× ⋅ ×

×

(b) Now ag = GM/R
2
, where M is the total mass contained in the core and mantle together 

and R is the outer radius of the mantle (6.345 × 10
6
 m, according to Fig. 13-43). The total 

mass is  



26. (a) Using Eq. 13-1, we set GmM/r
2
  equal to  

1

2
GmM/R

2
, and we find r = R 2 .  Thus, 

the distance from the surface is  ( 2  – 1)R = 0.414R.

(b) Setting the density ρ equal to M/V where V = 
4

3
πR

3
, we use Eq. 13-19: 

3 3 2

4 4 1
/ 2.

3 3 4 / 3 2

Gmr Gmr M GMmr GMm
F r R

R R R

π ρ π

π
= = = = =



( )7total
on 2

3.0 10 N/kg .m

GmM
F m

r

−= = ×

(b) At r = 0.50 m, the portion of the sphere at radius smaller than that is 

3 34
= = 1.3 10  kg.

3
M rρ π ×

Thus, the force on m has magnitude GMm/r
2
 = m (3.3 × 10

−7
 N/kg). 

(c) Pursuing the calculation of part (b) algebraically, we find 

( )34
3 7

on 2

N
6.7 10 .

kg m
m

Gm r
F mr

r

ρ π
−= = ×

⋅

27. Using the fact that the volume of a sphere is 4πR
3
/3, we find the density of the sphere: 

( )

4
3 3total

334 4
3 3

1.0 10 kg
2.4 10 kg/m .

1.0 m

M

R
ρ

π π

×
= = = ×

When the particle of mass m (upon which the sphere, or parts of it, are exerting a 

gravitational force) is at radius r (measured from the center of the sphere), then whatever 

mass M is at a radius less than r must contribute to the magnitude of that force (GMm/r
2
).

(a) At r = 1.5 m, all of Mtotal is at a smaller radius and thus all contributes to the force: 



28. The difference between free-fall acceleration g and the gravitational acceleration 
ga

at the equator of the star is (see Equation 13.14): 

2

ga g Rω− =

where

2 2
153rad/s

0.041sT

π π
ω = = =

is the angular speed of the star. The gravitational acceleration at the equator is 

11 3 2 30
11 2

2 4 2

(6.67 10  m /kg s )(1.98 10 kg)
9.17 10 m/s .

(1.2 10  m)
g

GM
a

R

−× ⋅ ×
= = = ×

×

Therefore, the percentage difference is  

2 2 4
4

11 2

(153rad/s) (1.2 10  m)
3.06 10 0.031%.

9.17 10 m/s

g

g g

a g R

a a

ω −
− ×

= = = × ≈
×



(b) The value of ag at the surface of a planet is given by ag = GM/R
2
, so the value for 

Mars is 

( )
2

2 4
2 2

2 3

0.65 10  km
= = 0.11 9.8 m/s = 3.8 m/s .

3.45 10  km

M E
g g E

E M

M R
a M a

M R

×

×

(c) If v is the escape speed, then, for a particle of mass m

21 2
= .

2

mM GM
mv G v

R R
=

For Mars, the escape speed is 

( )( )11 3 2 24

3

6

2(6.67 10  m /s kg) 0.11 5.98 10  kg
= 5.0 10  m/s.

3.45 10  m
v

−× ⋅ ×
= ×

×

29. (a) The density of a uniform sphere is given by ρ = 3M/4πR
3
, where M is its mass and 

R is its radius. The ratio of the density of Mars to the density of Earth is 

3
3 4

3 3

0.65 10  km
= = 0.11 = 0.74.

3.45 10  km

M M E

E E M

M R

M R

ρ

ρ

×

×



30. (a) The gravitational potential energy is 

( )( )( )11 3 2

11
6.67 10  m /s kg 5.2 kg 2.4 kg

= = =  4.4 10  J.
19 m

GMm
U

r

−

−
× ⋅

− − − ×

(b) Since the change in potential energy is 

( )11 112
= = 4.4 10  J = 2.9 10  J,

3 3

GMm GMm
U

r r

− −∆ − − − − − × ×

the work done by the gravitational force is W = − ∆U = −2.9 × 10
−11

 J. 

(c) The work done by you is W´ = ∆U = 2.9 × 10
−11

 J. 



31. The amount of (kinetic) energy needed to escape is the same as the (absolute value of 

the) gravitational potential energy at its original position. Thus, an object of mass m on a 

planet of mass M and radius R needs K = GmM/R in order to (barely) escape. 

(a) Setting up the ratio, we find 

= = 0.0451m m E

E E m

K M R

K M R

using the values found in Appendix C. 

(b) Similarly, for the Jupiter escape energy (divided by that for Earth) we obtain 

= = 28.5.J J E

E E J

K M R

K M R



32. (a) The potential energy at the surface is (according to the graph) –5.0 × 10
9
 J, so 

(since U is inversely proportional to r – see Eq. 13-21) at an r-value a factor of 5/4 times 

what it was at the surface then U must be a factor of 4/5 what it was.  Thus, at r = 1.25Rs

U = – 4.0 × 10
9
 J.  Since mechanical energy is assumed to be conserved in this problem, 

we have K + U = –2.0 × 10
9
 J at this point.  Since U = – 4.0 × 10

9
 J here, then 

92.0 10 JK = ×  at this point. 

(b) To reach the point where the mechanical energy equals the potential energy (that is, 

where U = – 2.0 × 10
9

J) means that U must reduce (from its value at r = 1.25Rs) by a 

factor of 2 – which means the r value must increase (relative to r = 1.25Rs) by a 

corresponding factor of 2.  Thus, the turning point must be at r = 2.5Rs .



33. The equation immediately preceding Eq. 13-28 shows that  K = –U (with U evaluated 

at the planet’s surface: –5.0 × 10
9
 J) is required to “escape.”  Thus, K = 5.0 × 10

9
 J. 



34. The gravitational potential energy is 

( )
( )2= =

Gm M m G
U Mm m

r r

−
− − −

which we differentiate with respect to m and set equal to zero (in order to minimize). 

Thus, we find M − 2m = 0 which leads to the ratio m/M = 1/2 to obtain the least potential 

energy.

Note that a second derivative of U with respect to m would lead to a positive result 

regardless of the value of m − which means its graph is everywhere concave upward and 

thus its extremum is indeed a minimum. 



11 3 2

1 1 1 1

2 2 2
( )

( ) ( ) ( )

0.12 m 2(0.040 m)
(6.67 10 m / s kg) (0.010 kg)(0.080 kg 0.020 kg)

(0.040 m)(0.12 0.040 m)

5.0 10

f i B A C

B A C B A C

W U U Gm m m
d L d L d d

L d d L L d
Gm m m Gm m m

d L d d L d d L d

−

= − = − + −
− −

− − −
= + = −

− − −

−
= × ⋅ −

−

= + × 13 J.−

(b) The work done by the force of gravity is −(Uf − Ui) = −5.0 × 10
−13

 J. 

35. (a) The work done by you in moving the sphere of mass mB equals the change in the 

potential energy of the three-sphere system. The initial potential energy is 

A C B CA B
i

Gm m Gm mGm m
U

d L L d
= − − −

−

and the final potential energy is 

.A C B CA B
f

Gm m Gm mGm m
U

L d L d
= − − −

−
The work done is 



36. (a) From Eq. 13-28, we see that 0 / 2 Ev GM R=  in this problem.  Using energy 

conservation, we have 
1

2
mvo

2
 – GMm/RE = – GMm/r

which yields r = 4RE/3. So the multiple of RE is 4/3 or 1.33. 

(b) Using the equation in the textbook immediately preceding Eq. 13-28, we see that in 

this problem we have Ki = GMm/2RE, and the above manipulation (using energy 

conservation) in this case leads to r = 2RE. So the multiple of RE is 2.00. 

(c) Again referring to the equation in the textbook immediately preceding Eq. 13-28, we 

see that the mechanical energy = 0 for the “escape condition.”  



37. (a) We use the principle of conservation of energy. Initially the particle is at the 

surface of the asteroid and has potential energy Ui = −GMm/R, where M is the mass of 

the asteroid, R is its radius, and m is the mass of the particle being fired upward. The 

initial kinetic energy is 21
2 mv . The particle just escapes if its kinetic energy is zero when 

it is infinitely far from the asteroid. The final potential and kinetic energies are both zero. 

Conservation of energy yields

−GMm/R + ½mv
2
 = 0. 

We replace GM/R with agR, where ag is the acceleration due to gravity at the surface. 

Then, the energy equation becomes −agR + ½v
2
 = 0. We solve for v:

2 3 32 2(3.0 m/s ) (500 10 m) 1.7 10 m/s.gv a R= = × = ×

(b) Initially the particle is at the surface; the potential energy is Ui = −GMm/R and the 

kinetic energy is Ki = ½mv
2
. Suppose the particle is a distance h above the surface when it 

momentarily comes to rest. The final potential energy is Uf = −GMm/(R + h) and the final 

kinetic energy is Kf = 0. Conservation of energy yields 

21
.

2

GMm GMm
mv

R R h
− + = −

+

We replace GM with agR
2
 and cancel m in the energy equation to obtain 

2

21
.

2 ( )

g

g

a R
a R v

R h
− + = −

+

The solution for h is 

2 2 3 2
3

2 2 3 2

5

2 2(3.0 m/s ) (500 10 m)
(500 10 m)

2 2(3.0 m/s ) (500 10 m) (1000 m/s)

2.5 10 m.

g

g

a R
h R

a R v

×
= − = − ×

− × −

= ×

(c) Initially the particle is a distance h above the surface and is at rest. Its potential energy 

is Ui = −GMm/(R + h) and its initial kinetic energy is Ki = 0. Just before it hits the 

asteroid its potential energy is Uf = −GMm/R. Write 21
2 fmv  for the final kinetic energy. 

Conservation of energy yields 

21
.

2

GMm GMm
mv

R h R
− = − +

+



We substitute agR
2
 for GM and cancel m, obtaining 

2

21
.

2

g

g

a R
a R v

R h
− = − +

+

The solution for v is 

2 2 3 2
2 3

3 3

3

2 2(3.0 m/s )(500 10 m)
2 2(3.0 m/s ) (500 10 m)

(500 10 m) +(1000 10 m)

1.4 10 m/s.

g

g

a R
v a R

R h

×
= − = × −

+ × ×

= ×



7

2 1

2 1

1 1
2.2 10 J.K K GmM

r r
= + − = ×

(b) In this case, we require K2 = 0 and r2 = 8.0 × 10
6
 m, and solve for K1:

7

1 2

1 2

1 1
6.9 10 J.K K GmM

r r
= + − = ×

38. Energy conservation for this situation may be expressed as follows: 

1 1 2 2 1 2

1 2

GmM GmM
K U K U K K

r r
+ = + − = − .

where M = 5.0 × 10
23

 kg, r1 = R = 3.0 × 10
6
 m and m = 10 kg. 

(a) If K1 = 5.0 × 10
7
 J and r2 = 4.0 × 10

6
 m, then the above equation leads to 



39. (a) The momentum of the two-star system is conserved, and since the stars have the 

same mass, their speeds and kinetic energies are the same. We use the principle of 

conservation of energy. The initial potential energy is Ui = −GM
2
/ri, where M is the mass 

of either star and ri is their initial center-to-center separation. The initial kinetic energy is 

zero since the stars are at rest. The final potential energy is Uf = −2GM
2
/ri since the final 

separation is ri/2. We write Mv
2
 for the final kinetic energy of the system. This is the sum 

of two terms, each of which is ½Mv
2
. Conservation of energy yields 

2 2
22
.

i i

GM GM
Mv

r r
− = − +

The solution for v is 

11 3 2 30
4

10

(6.67 10 m / s kg) (10 kg)
8.2 10 m/s.

10 mi

GM
v

r

−× ⋅
= = = ×

(b) Now the final separation of the centers is rf = 2R = 2 × 10
5
 m, where R is the radius of 

either of the stars. The final potential energy is given by Uf = −GM
2
/rf and the energy 

equation becomes −GM
2
/ri = −GM

2
/rf + Mv

2
. The solution for v is 

11 3 2 30

5 10

7

1 1 1 1
(6.67 10 m / s kg) (10 kg)

2 10 m 10 m

1.8 10 m/s.

f i

v GM
r r

−= − = × ⋅ −
×

= ×



11 3 2
8 (6.67 10  m /s kg) (20 kg) (10 kg)

    1.7 10
0.60 m

iU K U K
−

− × ⋅
= + − × = −

which yields K = 5.6 × 10
−9

 J. Note that the value of r is the difference between 0.80 m 

and 0.20 m. 

40. (a) The initial gravitational potential energy is 

11 3 2

8 8

(6.67 10  m /s kg) (20 kg) (10 kg)

0.80 m

1.67 10 J 1.7 10 J.

A B
i

i

GM M
U

r

−

− −

× ⋅
= − = −

= − × ≈ − ×

(b) We use conservation of energy (with Ki = 0): 



41. Let m = 0.020 kg and d = 0.600 m (the original edge-length, in terms of which the 

final edge-length is d/3). The total initial gravitational potential energy (using Eq. 13-21 

and some elementary trigonometry) is 

Ui = – 
4Gm

2

d
 – 

2Gm
2

2 d
  . 

Since U is inversely proportional to r then reducing the size by 1/3 means increasing the 

magnitude of the potential energy by a factor of 3, so 

Uf  = 3Ui ∆U = 2Ui = 2(4 + 2 ) –
Gm

2

d
  = – 4.82 × 10

–13
 J . 



42. (a) Applying Eq. 13-21 and the Pythagorean theorem leads to 

U =  – 
GM

2

2D
 + 

2GmM

y
2
 + D

2

where M is the mass of particle B (also that of particle C) and m is the mass of particle A.

The value given in the problem statement (for infinitely large y, for which the second 

term above vanishes) determines M, since D is given.  Thus M = 0.50 kg. 

(b) We estimate (from the graph) the y = 0 value to be Uo = – 3.5 × 10
−10

J.  Using this, 

our expression above determines m.  We obtain m = 1.5 kg. 



43. The period T and orbit radius r are related by the law of periods: T
2
 = (4π2

/GM)r
3
,

where M is the mass of Mars. The period is 7 h 39 min, which is 2.754 × 10
4
 s. We solve 

for M:

( )

2 3 2 6 3
23

22 11 3 2 4

4 4 (9.4 10 m)
6.5 10 kg.

(6.67 10 m / s kg) 2.754 10 s

r
M

GT

π π
−

×
= = = ×

× ⋅ ×



(a) For a head-on collision, the relative speed of the two objects must be 2v = 5.4 × 10
4

km/h. 

(b) A perpendicular collision is possible if one satellite is, say, orbiting above the equator 

and the other is following a longitudinal line. In this case, the relative speed is given by 

the Pythagorean theorem: 2 2ν ν+  = 3.8 × 10
4
 km/h. 

44. From Eq. 13-37, we obtain v = /GM r  for the speed of an object in circular orbit 

(of radius r) around a planet of mass M. In this case, M = 5.98 × 10
24

 kg and

r = (700 + 6370)m = 7070 km = 7.07 × 10
6
 m. 

The speed is found to be v = 7.51 × 10
3
 m/s. After multiplying by 3600 s/h and dividing 

by 1000 m/km this becomes v = 2.7 × 10
4
 km/h. 



45. Let N be the number of stars in the galaxy, M be the mass of the Sun, and r be the 

radius of the galaxy. The total mass in the galaxy is N M and the magnitude of the 

gravitational force acting on the Sun is F = GNM
2
/r

2
. The force points toward the 

galactic center. The magnitude of the Sun’s acceleration is a = v
2
/R, where v is its speed. 

If T is the period of the Sun’s motion around the galactic center then v = 2πR/T and a = 

4π2
R/T

2
. Newton’s second law yields GNM

2
/R

2
 = 4π2

MR/T
2
. The solution for N is 

2 3

2

4
.

R
N

GT M

π
=

The period is 2.5 × 10
8
 y, which is 7.88 × 10

15
 s, so 

2 20 3
10

11 3 2 15 2 30

4 (2.2 10 m)
5.1 10 .

(6.67 10 m / s kg) (7.88 10 s) (2.0 10 kg)
N

π
−

×
= = ×

× ⋅ × ×



46. Kepler’s law of periods, expressed as a ratio, is 

3 2 2

3(1.52)
1y

M M M

E E

a T T

a T
= =

where we have substituted the mean-distance (from Sun) ratio for the semi-major axis 

ratio. This yields TM = 1.87 y. The value in Appendix C (1.88 y) is quite close, and the 

small apparent discrepancy is not significant, since a more precise value for the semi-

major axis ratio is aM/aE = 1.523 which does lead to TM = 1.88 y using Kepler’s law. A 

question can be raised regarding the use of a ratio of mean distances for the ratio of semi-

major axes, but this requires a more lengthy discussion of what is meant by a ”mean 

distance” than is appropriate here. 



6 6
66.73 10 m + 6.55 10 m

6.64 10 m.
2 2

a pR R
a

+ × ×
= = = ×

(b) The apogee and perigee distances are related to the eccentricity e by Ra = a(1 + e) and 

Rp = a(1 − e). Add to obtain Ra + Rp = 2a and a = (Ra + Rp)/2. Subtract to obtain Ra − Rp

= 2ae. Thus, 

6 6

6 6

6.73 10 m 6.55 10 m
0.0136.

2 6.73 10 m 6.55 10 m

a p a p

a p

R R R R
e

a R R

− − × − ×
= = = =

+ × + ×

47. (a) The greatest distance between the satellite and Earth’s center (the apogee distance) 

and the least distance (perigee distance) are, respectively,  

Ra = (6.37 × 10
6
 m + 360 × 10

3
 m) = 6.73 × 10

6
 m 

 Rp = (6.37 × 10
6
 m + 180 × 10

3
 m) = 6.55 × 10

6
 m. 

Here 6.37 × 10
6
 m is the radius of Earth. From Fig. 13-13, we see that the semi-major 

axis is 



48. Kepler’s law of periods, expressed as a ratio, is 

3 2 23
1

2 1 lunar month

s s s

m m

r T T

r T
= =

which yields Ts = 0.35 lunar month for the period of the satellite. 



49. (a) If r is the radius of the orbit then the magnitude of the gravitational force acting on 

the satellite is given by GMm/r
2
, where M is the mass of Earth and m is the mass of the 

satellite. The magnitude of the acceleration of the satellite is given by v
2
/r, where v is its 

speed. Newton’s second law yields GMm/r
2
 = mv

2
/r. Since the radius of Earth is 6.37 ×

10
6
 m the orbit radius is r = (6.37 × 10

6
 m + 160 × 10

3
 m) = 6.53 × 10

6
 m. The solution 

for v is 

11 3 2 24
3

6

(6.67 10 m / s kg) (5.98 10 kg)
7.82 10 m/s.

6.53 10 m

GM
v

r

−× ⋅ ×
= = = ×

×

(b) Since the circumference of the circular orbit is 2πr, the period is 

6
3

3

2 2 (6.53 10 m)
5.25 10 s.

7.82 10 m/s

r
T

v

π π ×
= = = ×

×

This is equivalent to 87.5 min. 



50. (a) The distance from the center of an ellipse to a focus is ae where a is the semimajor 

axis and e is the eccentricity. Thus, the separation of the foci (in the case of Earth’s orbit) 

is

( ) ( )11 92 2 1.50 10 m 0.0167 5.01 10 m.ae = × = ×

(b) To express this in terms of solar radii (see Appendix C), we set up a ratio: 

9

8

5.01 10 m
7.20.

6.96 10 m

×
=

×



51. (a) The period of the comet is 1420 years (and one month), which we convert to T = 

4.48 × 10
10

 s. Since the mass of the Sun is 1.99 × 10
30

 kg, then Kepler’s law of periods 

gives
2

10 2 3 13

11 3 2 30

4
(4.48 10 s) 1.89 10 m.

(6.67 10  m /kg s )(1.99 10 kg)
a a

π
−

× = = ×
× ⋅ ×

(b) Since the distance from the focus (of an ellipse) to its center is ea and the distance 

from center to the aphelion is a, then the comet is at a distance of 

13 13(0.11 1) (1.89 10  m) 2.1 10 mea a+ = + × = ×

when it is farthest from the Sun. To express this in terms of Pluto’s orbital radius (found 

in Appendix C), we set up a ratio: 

13

12

2.1 10
3.6 .

5.9 10
P PR R

×
=

×



52. To “hover” above Earth (ME = 5.98 × 10
24

 kg) means that it has a period of 24 hours 

(86400 s). By Kepler’s law of periods, 

2
2 3 74

(86400) 4.225 10 m.
E

r r
GM

π
= = ×

Its altitude is therefore r − RE (where RE = 6.37 × 10
6
 m) which yields 3.58 × 10

7
 m. 



where TE = 365.25 days is Earth’s orbital period and rE = 1.50 × 10
11

 m is its mean 

distance from the Sun. In this case, it is perfectly legitimate to take logarithms and obtain 

o2 1
log log log

3 3

E E Mr T

a T M
= +

(written to make each term positive) which is the way we plot the data (log (rE/a) on the 

vertical axis and log (TE/T) on the horizontal axis). 

(b) When we perform a least-squares fit to the data, we obtain  

log (rE/a) = 0.666 log (TE/T) + 1.01, 

which confirms the expectation of slope = 2/3 based on the above equation. 

(c) And the 1.01 intercept corresponds to the term 1/3 log (Mo/M) which implies 

3.03o o

3
10 .

1.07 10

M M
M

M
= =

×

Plugging in Mo = 1.99 × 10
30

 kg (see Appendix C), we obtain M = 1.86 × 10
27

 kg for 

Jupiter’s mass. This is reasonably consistent with the value 1.90 × 10
27

 kg found in 

Appendix C. 

53. (a) If we take the logarithm of Kepler’s law of periods, we obtain 

2 22 1
2 log ( ) = log (4 / ) + 3 log ( )  log ( )  log ( )  log (4 / )

3 3
T GM a a T GMπ π= −

where we are ignoring an important subtlety about units (the arguments of logarithms 

cannot have units, since they are transcendental functions). Although the problem can be 

continued in this way, we prefer to set it up without units, which requires taking a ratio. If 

we divide Kepler’s law (applied to the Jupiter-moon system, where M is mass of Jupiter) 

by the law applied to Earth orbiting the Sun (of mass Mo), we obtain 

3

2 o( / )  =  E

E

M a
T T

M r



54. (a) The period is T = 27(3600) = 97200 s, and we are asked to assume that the orbit is 

circular (of radius r = 100000 m). Kepler’s law of periods provides us with an 

approximation to the asteroid’s mass: 

( )
2

32 164
(97200) 100000 6.3 10 kg.M

GM

π
= = ×

(b) Dividing the mass M by the given volume yields an average density equal to  

ρ = 6.3 × 10
16

/1.41 × 10
13

 = 4.4 × 10
3
 kg/m

3
,

which is about 20% less dense than Earth. 



55. In our system, we have m1 = m2 = M (the mass of our Sun, 1.99 × 10
30

 kg). With r = 

2r1 in this system (so r1 is one-half the Earth-to-Sun distance r), and v = πr/T for the 

speed, we have 

( )
2 2 3

1 2
12

2
.

2

r TGm m r
m T

r r GM

π π
= =

With r = 1.5 × 10
11

 m, we obtain T = 2.2 × 10
7
 s. We can express this in terms of Earth-

years, by setting up a ratio: 

( )
7

7

2.2 10 s
(1y) = 1 y 0.71 y.

1y 3.156 10 s

T
T

×
= =

×



3 3 5 3
302

2 11 3 2

1 2

(2.7 10 m/s) (1.70 days)(86400 s/day)
6.90 10 kg

( ) 2 2 (6.67 10  m /kg s )

3.467 ,s

m v T

m m G

M

π π −

×
= = = ×

+ × ⋅

=

where 301.99 10 kgsM = ×  is the mass of the sun. With 1 6 sm M= , we write 2 sm Mα=

and solve the following cubic equation for α :

3

2
3.467 0

(6 )

α

α
− =

+
.

The equation has one real solution: 9.3α = , which implies 2 / 9sm M ≈ .

56. The two stars are in circular orbits, not about each other, but about the two-star 

system’s center of mass (denoted as O), which lies along the line connecting the centers 

of the two stars. The gravitational force between the stars provides the centripetal force 

necessary to keep their orbits circular. Thus, for the visible, Newton’s second law gives 

2

1 2 1

2

1

Gm m m v
F

r r
= =

where r is the distance between the centers of the stars. To find the relation between r

and 1r , we locate the center of mass relative to 1m . Using Equation 9-1, we obtain 

1 2 2 1 2
1 1

1 2 1 2 2

(0)m m r m r m m
r r r

m m m m m

+ +
= = =

+ +
.

On the other hand, since the orbital speed of 1m  is 12 /v r Tπ= , then 1 / 2r vT π=  and the 

expression for r can be rewritten as   

1 2

2 2

m m vT
r

m π

+
= .

Substituting r  and 1r  into the force equation, we obtain

2 3

1 2 1

2 2 2

1 2

4 2

( )

Gm m m v
F

m m v T T

π π
= =

+

or



57. From Kepler’s law of periods (where T = 2.4(3600) = 8640 s), we find the planet’s 

mass M:
2

2 6 3 244
(8640s) (8.0 10 m) 4.06 10 kg.M

GM

π
= × = ×

But we also know ag = GM/R
2
 = 8.0 m/s

2
 so that we are able to solve for the planet’s 

radius:

65.8 10 m.
g

GM
R

a
= = ×



111 2 1
2 1 1

2 2

1 3.7 10 m .
m m m

r r r
m m

+
= − = = ×

Dividing this by 1.5 × 10
11

 m (Earth’s orbital radius, rE) gives r2 = 2.5rE.

58. (a) We make use of 
3 3

2

2

1 2( ) 2

m v T

m m Gπ
=

+

where m1 = 0.9MSun is the estimated mass of the star. With v = 70 m/s and T = 1500 days 

(or 1500 × 86400 = 1.3 × 10
8
 s), we find 

3
232

2

Sun 2

1.06 10 kg .
(0.9 )

m

M m
= ×

+

Since MSun ≈ 2.0 × 10
30

 kg, we find m2 ≈ 7.0 × 10
27

 kg. Dividing by the mass of Jupiter 

(see Appendix C), we obtain m ≈ 3.7mJ.

(b) Since v = 2πr1/T is the speed of the star, we find 

8
9

1

(70m/s) (1.3 10 s)
1.4 10 m

2 2

vT
r

π π

×
= = = ×

for the star’s orbital radius. If r is the distance between the star and the planet, then r2 = r

− r1 is the orbital radius of the planet, and is given by 



59. Each star is attracted toward each of the other two by a force of magnitude GM
2
/L

2
,

along the line that joins the stars. The net force on each star has magnitude 2(GM
2
/L

2
) cos 

30° and is directed toward the center of the triangle. This is a centripetal force and keeps 

the stars on the same circular orbit if their speeds are appropriate. If R is the radius of the 

orbit, Newton’s second law yields (GM
2
/L

2
) cos 30° = Mv

2
/R.

The stars rotate about their center of mass (marked by a circled dot on the diagram above) 

at the intersection of the perpendicular bisectors of the triangle sides, and the radius of the 

orbit is the distance from a star to the center of mass of the three-star system. We take the 

coordinate system to be as shown in the diagram, with its origin at the left-most star. The 

altitude of an equilateral triangle is ( )3 / 2 L , so the stars are located at x = 0, y = 0; x = 

L, y = 0; and x = L/2, 3 / 2y L= . The x coordinate of the center of mass is xc = (L + 

L/2)/3 = L/2 and the y coordinate is ( )3 / 2 / 3 / 2 3cy L L= = . The distance from a star 

to the center of mass is  

( ) ( )2 2 2 2/ 4 /12 / 3c cR x y L L L= + = + = .

Once the substitution for R is made Newton’s second law becomes 

( )2 2 22 / cos30 3 /GM L Mv L° = . This can be simplified somewhat by recognizing that 

cos 30 3 / 2° = , and we divide the equation by M. Then, GM/L
2
 = v

2
/L and 

/v GM L= .



(a) The ratio of potential energies is 

/ 1
.

/ 2

B B A

A A B

U GmM r r

U GmM r r

−
= = =

−

(b) Using Eq. 13-38, the ratio of kinetic energies is 

/ 2 1
.

/ 2 2

B B A

A A B

K GmM r r

K GmM r r
= = =

(c) From Eq. 13-40, it is clear that the satellite with the largest value of r has the smallest 

value of |E| (since r is in the denominator). And since the values of E are negative, then 

the smallest value of |E| corresponds to the largest energy E. Thus, satellite B has the 

largest energy. 

(d) The difference is

1 1
.

2
B A

B A

GmM
E E E

r r
∆ = − = − −

Being careful to convert the r values to meters, we obtain ∆E = 1.1 × 10
8
 J. The mass M

of Earth is found in Appendix C. 

60. Although altitudes are given, it is the orbital radii which enter the equations. Thus, rA

= (6370 + 6370) km = 12740 km, and rB = (19110 + 6370) km = 25480 km 



61. (a) We use the law of periods: T
2
 = (4π2

/GM)r
3
, where M is the mass of the Sun (1.99 

× 10
30

 kg) and r is the radius of the orbit. The radius of the orbit is twice the radius of 

Earth’s orbit: r = 2re = 2(150 × 10
9
 m) = 300 × 10

9
 m. Thus, 

2 3 2 9 3
7

11 3 2 30

4 4 (300 10 m)
8.96 10 s.

(6.67 10 m / s kg) (1.99 10 kg)

r
T

GM

π π
−

×
= = = ×

× ⋅ ×

Dividing by (365 d/y) (24 h/d) (60 min/h) (60 s/min), we obtain T = 2.8 y. 

(b) The kinetic energy of any asteroid or planet in a circular orbit of radius r is given by 

K = GMm/2r, where m is the mass of the asteroid or planet. We note that it is 

proportional to m and inversely proportional to r. The ratio of the kinetic energy of the 

asteroid to the kinetic energy of Earth is K/Ke = (m/me) (re/r). We substitute m = 2.0 ×

10
−4

me and r = 2re to obtain K/Ke = 1.0 × 10
−4

.



Since the left-hand side of this equation is the force given as 80 N, then we can solve for 

the combination mv
2
 by multiplying both sides by r = 2.0 × 10

7
 m. Thus, mv

2
 = (2.0 × 10

7

m) (80 N) = 1.6 × 10
9
 J. Therefore, 

( )2 9 81 1
1.6 10 J 8.0 10 J .

2 2
K mv= = × = ×

(b) Since the gravitational force is inversely proportional to the square of the radius, then 

2

.
F r

F r

′
=

′

Thus, F´ = (80 N) (2/3)
2
 = 36 N. 

62. (a) Circular motion requires that the force in Newton’s second law provide the 

necessary centripetal acceleration: 

2

2

GmM v
m

r r
= .



63. The energy required to raise a satellite of mass m to an altitude h (at rest) is given by 

1

1 1
,E

E E

E U GM m
R R h

= ∆ = −
+

and the energy required to put it in circular orbit once it is there is 

( )
2

2 orb

1
.

2 2

E

E

GM m
E mv

R h
= =

+

Consequently, the energy difference is 

1 2

1 3
.

2( )
E

E E

E E E GM m
R R h

∆ = − = −
+

(a) Solving the above equation, the height h0 at which 0E∆ =  is given by 

6

0

0

1 3
0    3.19 10  m. 

2( ) 2

E

E E

R
h

R R h
− = = = ×

+

(b) For greater height 0h h> , 0E∆ >  implying 1 2E E> . Thus, the energy of lifting is 

greater.



11 3 2 24

6

9

(6.67 10  m /kg s )(5.98 10 kg)(125 kg)

7.87 10  m

6.33 10 J.

E
A B

GM m
E E E

r

−× ⋅ ×
= + = − = −

×

= − ×

(b) We note that the speed of the wreckage will be zero (immediately after the collision), 

so it has no kinetic energy at that moment. Replacing m with 2m in the potential energy 

expression, we therefore find the total energy of the wreckage at that instant is  

 
11 3 2 24

9

6

(2 ) (6.67 10  m /kg s )(5.98 10 kg)2(125 kg)
6.33 10 J.

2 2(7.87 10  m)

EGM m
E

r

−× ⋅ ×
= − = − = − ×

×
 

(c) An object with zero speed at that distance from Earth will simply fall towards the 

Earth, its trajectory being toward the center of the planet. 

64. (a) From Eq. 13-40, we see that the energy of each satellite is −GMEm/2r. The total 

energy of the two satellites is twice that result: 



65. (a) From Kepler’s law of periods, we see that T is proportional to r
3/2

.

(b) Eq. 13-38 shows that K is inversely proportional to r.

(c) and (d) From the previous part, knowing that K is proportional to v
2
, we find that v is 

proportional to 1/ r . Thus, by Eq. 13-31, the angular momentum (which depends on the 

product rv) is proportional to r/ r  = r .



66. (a) The pellets will have the same speed v but opposite direction of motion, so the 

relative speed between the pellets and satellite is 2v. Replacing v with 2v in Eq. 13-38 is 

equivalent to multiplying it by a factor of 4. Thus, 

( )( )11 3 2 24

5

rel 3

2(6.67 10 m / kg s ) 5.98 10 kg 0.0040 kg
4 4.6 10 J.

2 (6370 500) 10 m

EGM m
K

r

−× ⋅ ×
= = = ×

+ ×

(b) We set up the ratio of kinetic energies: 

( )( )

5
2rel

2
1

bullet 2

4.6 10 J
2.6 10 .

0.0040kg 950m/s

K

K

×
= = ×



( )11 3 2 24

3

6

(6.67 10 m / s kg) 5.98 10 kg
7.54 10 m/s.

7.01 10 m
v

−× ⋅ ×
= = ×

×

(b) The period is

T = 2πr/v = 2π(7.01 × 10
6
 m)/(7.54 × 10

3
 m/s) = 5.84 × 10

3
 s ≈  97 min. 

(c) If E0 is the initial energy then the energy after n orbits is E = E0 − nC, where C = 1.4 ×

10
5
 J/orbit. For a circular orbit the energy and orbit radius are related by E = −GMm/2r,

so the radius after n orbits is given by r = −GMm/2E.

The initial energy is 

( )( )11 3 2 24

9

0 6

(6.67 10 m / s kg) 5.98 10 kg 220 kg
6.26 10 J,

2(7.01 10 m)
E

−× ⋅ ×
= − = − ×

×

the energy after 1500 orbits is 

( )( )9 5 9

0 6.26 10 J 1500 orbit 1.4 10 J orbit 6.47 10 J,E E nC= − = − × − × = − ×

and the orbit radius after 1500 orbits is 

( )( )11 3 2 24

6

9

(6.67 10 m / s kg) 5.98 10 kg 220 kg
6.78 10 m.

2( 6.47 10 J)
r

−× ⋅ ×
= − = ×

− ×

The altitude is h = r − R = (6.78 × 10
6
 m − 6.37 × 10

6
 m) = 4.1 × 10

5
 m. Here R is the 

radius of Earth. This torque is internal to the satellite-Earth system, so the angular 

momentum of that system is conserved. 

(d) The speed is 

( )11 3 2 24

3

6

(6.67 10 m / s kg) 5.98 10 kg
7.67 10 m / s 7.7 km/s.

6.78 10 m

GM
v

r

−× ⋅ ×
= = = × ≈

×

(e) The period is 
6

3

3

2 2 (6.78 10 m)
5.6 10 s

7.67 10 m/s

r
T

v

π π ×
= = = × ≈

×
93 min. 

67. (a) The force acting on the satellite has magnitude GMm/r
2
, where M is the mass of 

Earth, m is the mass of the satellite, and r is the radius of the orbit. The force points 

toward the center of the orbit. Since the acceleration of the satellite is v
2
/r, where v is its 

speed, Newton’s second law yields GMm/r
2
 = mv

2
/r and the speed is given by v = 

/GM r . The radius of the orbit is the sum of Earth’s radius and the altitude of the 

satellite: r = (6.37 × 10
6
 + 640 × 10

3
) m = 7.01 × 10

6
 m. Thus, 



5
3

7

1.4 10 J
3.2 10 N.

4.40 10 m

E
F

s

−∆ ×
= − = = ×

×

(g) The resistive force exerts a torque on the satellite, so its angular momentum is not 

conserved.

(h) The satellite-Earth system is essentially isolated, so its momentum is very nearly 

conserved.

(f) Let F be the magnitude of the average force and s be the distance traveled by the 

satellite. Then, the work done by the force is W = −Fs. This is the change in energy: −Fs

= ∆E. Thus, F = −∆E/s. We evaluate this expression for the first orbit. For a complete 

orbit s = 2πr = 2π(7.01 × 10
6
 m) = 4.40 × 10

7
 m, and ∆E = −1.4 × 10

5
 J. Thus, 



(g) To find the period, we use Eq. 13-34 but replace r with a. The result is 

2 3 2 6 3
3

11 3 2 24

4 4 (6.63 10 m)
5.37 10 s 89.5 min.

(6.67 10 m / s kg) (5.98 10 kg)

a
T

GM

π π
−

×
= = = × ≈

× ⋅ ×

(h) The orbital period T for Picard’s elliptical orbit is shorter than Igor’s by 

0 5540 s 5370 s 170 sT T T∆ = − = − = .

Thus, Picard will arrive back at point P ahead of Igor by 170 s – 90 s = 80 s. 

68. The orbital radius is 66370 km 400 km 6770 km 6.77 10  m.Er R h= + = + = = ×

(a) Using Kepler’s law given in Eq. 13-34, we find the period of the ships to be

2 3 2 6 3
3

0 11 3 2 24

4 4 (6.77 10 m)
5.54 10 s 92.3 min.

(6.67 10 m / s kg) (5.98 10 kg)

r
T

GM

π π
−

×
= = = × ≈

× ⋅ ×

(b) The speed of the ships is 

6
3 2

0 3

0

2 2 (6.77 10  m)
7.68 10 m/s

5.54 10 s

r
v

T

π π ×
= = = ×

×
.

(c) The new kinetic energy is

2 2 2 3 2 10

0

1 1 1
(0.99 ) (2000 kg)(0.99) (7.68 10 m/s) 5.78 10  J.

2 2 2
K mv m v= = = × = ×

(d) Immediately after the burst, the potential energy is the same as it was before the burst. 

Therefore,

11 3 2 24
11

6

(6.67 10 m / s kg) (5.98 10 kg)(2000 kg)
1.18 10  J.

6.77 10 m

GMm
U

r

−× ⋅ ×
= − = − = − ×

×

(e) In the new elliptical orbit, the total energy is  

10 11 105.78 10  J ( 1.18 10  J) 6.02 10  J.E K U= + = × + − × = − ×

(f) For elliptical orbit, the total energy can be written as (see Eq. 13-42) / 2E GMm a= − ,

where a is the semi-major axis. Thus,  

11 3 2 24
6

10

(6.67 10 m / s kg) (5.98 10 kg)(2000 kg)
6.63 10 m.

2 2( 6.02 10  J)

GMm
a

E

−× ⋅ ×
= − = − = ×

− ×



69. We define the “effective gravity” in his environment as geff = 220/60 = 3.67 m/s
2
.

Thus, using equations from Chapter 2 (and selecting downwards as the positive 

direction), we find the “fall-time” to be 

2

0 2

1 2(2.1 m)
1.1 s.

2 3.67 m/s
effy v t g t t∆ = + = =



70. We estimate the planet to have radius r = 10 m. To estimate the mass m of the planet, 

we require its density equal that of Earth (and use the fact that the volume of a sphere is 

4πr
3
/3):

3

3 34 / 3 4 / 3

E
E

E E

m M r
m M

r R R
= =

π π

which yields (with ME ≈ 6 × 10
24

 kg and RE ≈ 6.4 × 10
6
 m) m = 2.3 × 10

7
 kg. 

(a) With the above assumptions, the acceleration due to gravity is 

( )( )11 3 2 7

5 2 5 2

2 2

6.7 10  m /s kg 2.3 10  kg
1.5 10 m s 2 10 m s .

(10 m)
g

Gm
a

r

−

− −
× ⋅ ×

= = = × ≈ ×

(b) Eq. 13-28 gives the escape speed: 

2
0.02 m/s .

Gm
v

r
= ≈



Plugging in two pairs of values (for (K1 ,r1) and (K2 ,r2)) from the graph and using the 

value of G and M (for earth) given in the book, we find 

(a) m ≈ 1.0 × 10
3
 kg. 

(b) Similarly, v = (2K/m)
1/2 ≈ 1.5 × 10

3
 m/s  (at  r = 1.945 × 10

7
 m). 

71. Using energy conservation (and Eq. 13-21) we have 

         K1  – 
GMm

 r1
  = K2 – 

GMm

 r2
  . 



72. (a) The gravitational acceleration ag is defined in Eq. 13-11.  The problem is 

concerned with the difference between ag evaluated at r = 50Rh and ag evaluated at r = 

50Rh + h (where h is the estimate of your height).  Assuming h is much smaller than 50Rh

then we can approximate h as the dr which is present when we consider the differential of 

Eq. 13-11: 

       |dag| = 
2GM

 r
3 dr ≈

2GM

50
3
Rh

3 h  = 
2GM

50
3
(2GM/c

2
)
3 h . 

If we approximate |dag| = 10 m/s
2
 and h ≈ 1.5 m, we can solve this for M.  Giving our 

results in terms of the Sun’s mass means dividing our result for M by 2 × 10
30

 kg.  Thus, 

admitting some tolerance into our estimate of h we find the “critical” black hole mass 

should in the range of 105 to 125 solar masses. 

(b) Interestingly, this turns out to be lower limit (which will surprise many students) since 

the above expression shows |dag| is inversely proportional to M.  It should perhaps be 

emphasized that a distance of 50Rh from a small black hole is much smaller than a 

distance of 50Rh from a large black hole. 



8

ˆ ˆ ˆ ˆ(cos i sin j) (cos i sin j)

ˆ ˆ( cos cos )i ( sin sin )j

ˆ( 4.4 10  N) j

C AC A A BC B B

AC A BC B AC A BC B

F F F

F F F F

θ θ θ θ

θ θ θ θ

−

= + + +

= + + +

= − ×

73. The magnitudes of the individual forces (acting on mC, exerted by mA and mB

respectively) are 

8 8

2 2
2.7 10 N and 3.6 10 NA C B C

AC BC

AC BC

Gm m Gm m
F F

r r

− −= = × = = ×

where rAC = 0.20 m and rBC = 0.15 m. With rAB = 0.25 m, the angle AF makes with the x

axis can be obtained as 

2 2 2
1 1cos cos (0.80) 217 .

2

AC AB BC
A

AC AB

r r r

r r
θ π π− −+ −

= + = + = °

Similarly, the angle BF makes with the x axis can be obtained as 

2 2 2
1 1cos cos (0.60) 53 .

2

AB BC AC
B

AB BC

r r r

r r
θ − −+ −

= − = − = − °

The net force acting on mC then becomes 



74. The key point here is that angular momentum is conserved: 

Ipωp = Iaωa

which leads to 2( / )p a p ar rω ω= , but rp = 2a – ra where a is determined by Eq. 13-34 

(particularly, see the paragraph after that equation in the textbook).  Therefore, 

ωp = 
ra

2 ωa

(2(GMT
2/4π2

)
1/3

 – ra)
2  = 9.24 × 10

−5
 rad/s . 



75. (a) Using Kepler’s law of periods, we obtain 

2
3 44

2.15 10 s .T r
GM

π
= = ×

(b) The speed is constant (before she fires the thrusters), so vo = 2πr/T = 1.23 × 10
4
 m/s. 

(c) A two percent reduction in the previous value gives v = 0.98vo = 1.20 × 10
4
 m/s. 

(d) The kinetic energy is K = ½mv
2
 = 2.17 × 10

11
 J. 

(e) The potential energy is U = −GmM/r = −4.53 × 10
11

 J. 

(f) Adding these two results gives E = K + U = −2.35 × 10
11

 J. 

(g) Using Eq. 13-42, we find the semi-major axis to be 

74.04 10 m .
2

GMm
a

E

−
= = ×

(h) Using Kepler’s law of periods for elliptical orbits (using a instead of r) we find the 

new period is 

3 44
2.03 10 s .T a

GM

π
′ = = ×

2

This is smaller than our result for part (a) by T − T´ = 1.22 × 10
3
 s. 

(i) Elliptical orbit has a smaller period. 



76. (a) With 302.0 10 kgM = ×  and r = 10000 m, we find 

12 2

2
1.3 10 m/s .g

GM
a

r
= = ×

(b) Although a close answer may be gotten by using the constant acceleration equations 

of Chapter 2, we show the more general approach (using energy conservation): 

o oK U K U+ = +

where Ko = 0, K = ½mv
2
 and U given by Eq. 13-21. Thus, with ro = 10001 m, we find 

6

o

1 1
2 1.6 10 m/s .v GM

r r
= − = ×



77. We note that rA (the distance from the origin to sphere A, which is the same as the 

separation between A and B) is 0.5, rC = 0.8, and rD = 0.4 (with SI units understood). The 

force kF  that the k
th

 sphere exerts on mB has magnitude 2/k B kGm m r  and is directed from 

the origin towards mk so that it is conveniently written as 

( )2 3
ˆ ˆ ˆ ˆ= i + j = i + j .k B k k k B

k k k

k k k k

Gm m x y Gm m
F x y

r r r r

Consequently, the vector addition (where k equals A,B and D) to obtain the net force on 

mB becomes 

5

net 3 3
ˆ ˆ ˆ= i j (3.7 10 N)j.k k k k

k B

k k kk k

m x m y
F F Gm

r r

−= + = ×



to include in the computation can only lower the result (that is, make the result more 

negative).

(c) The observation in the previous part implies that the work I do in removing sphere A

(to obtain the case considered in part (a)) must lead to an increase in the system energy; 

thus, I do positive work. 

(d) To put sphere A back in, I do negative work, since I am causing the system energy to 

become more negative. 

78. (a) We note that rC (the distance from the origin to sphere C, which is the same as the 

separation between C and B) is 0.8, rD = 0.4, and the separation between spheres C and D

is rCD = 1.2 (with SI units understood). The total potential energy is therefore 

4

2 2 2
= 1.3 10  JB C C DB D

C D CD

GM M GM MGM M

r r r

−− − − − ×

using the mass-values given in the previous problem. 

(b) Since any gravitational potential energy term (of the sort considered in this chapter) is 

necessarily negative (−GmM/r
2
 where all variables are positive) then having another mass 



79. We use F = Gmsmm/r
2
, where ms is the mass of the satellite, mm is the mass of the 

meteor, and r is the distance between their centers. The distance between centers is r = R

+ d = 15 m + 3 m = 18 m. Here R is the radius of the satellite and d is the distance from 

its surface to the center of the meteor. Thus, 

( )( )( )

( )

11 2 2

11

2

6.67 10 N m / kg 20kg 7.0kg
2.9 10 N.

18m
F

−

−
× ⋅

= = ×



80. (a) Since the volume of a sphere is 4πR
3
/3, the density is 

total total

3 34
3

3
.

4

M M

R R
ρ

π π
= =

When we test for gravitational acceleration (caused by the sphere, or by parts of it) at 

radius r (measured from the center of the sphere), the mass M which is at radius less than 

r is what contributes to the reading (GM/r
2
). Since M = ρ(4πr

3
/3) for r ≤ R then we can 

write this result as 
3

total

3

total

2 3

3 4

4 3

M r
G

R GM r

r R

π

π
=

when we are considering points on or inside the sphere. Thus, the value ag referred to in 

the problem is the case where r = R:

total

2
=g

GM
a ,

R

and we solve for the case where the acceleration equals ag/3:

total total

2 3
.

3 3

GM GM r R
r

R R
= =

(b) Now we treat the case of an external test point. For points with r > R the acceleration 

is GMtotal/r
2
, so the requirement that it equal ag/3 leads to 

total total

2 2
3 .

3

GM GM
r R

R r
= =



81. Energy conservation for this situation may be expressed as follows: 

2 2

1 1 2 2 1 2

1 2

1 1

2 2

GmM GmM
K U K U mv mv

r r
+ = + − = −

where M = 5.98 × 10
24

 kg, r1 = R = 6.37 × 10
6
 m and v1 = 10000 m/s. Setting v2 = 0 to 

find the maximum of its trajectory, we solve the above equation (noting that m cancels in 

the process) and obtain r2 = 3.2 × 10
7
 m. This implies that its altitude is r2 − R = 2.5 × 10

7

m.



82. (a) Because it is moving in a circular orbit, F/m must equal the centripetal 

acceleration:
280 N

.
50 kg

v

r
=

But v = 2πr/T, where T = 21600 s, so we are led to 

2

2

4
1.6m/s r

T

π
=

2

which yields r = 1.9 × 10
7
 m. 

(b) From the above calculation, we infer v
2
 = (1.6 m/s

2
)r which leads to v

2
 = 3.0 × 10

7

m
2
/s

2
. Thus, K = ½mv

2
 = 7.6 × 10

8
 J. 

(c) As discussed in § 13-4, F/m also tells us the gravitational acceleration: 

2

2
1.6 m/s .g

GM
a

r
= =

We therefore find M = 8.6 × 10
24

 kg. 



(b) To barely escape means to have total energy equal to zero (see discussion prior to Eq. 

13-28). If m is the mass of the meteoroid, then 

2 41 4
0 8.9 10 m/s .

2

GmM GmM GM
mv v

r r r
− − = = = ×

83. (a) We write the centripetal acceleration (which is the same for each, since they have 

identical mass) as rω2
 where ω is the unknown angular speed. Thus, 

( )

2
2

2 2

( ) ( )

42

G M M GM
Mr

rr
ω= =

which gives 3 71
2 / 2.2 10 rad/s.MG rω −= = ×



84. See Appendix C. We note that, since v = 2πr/T, the centripetal acceleration may be 

written as a = 4π2
r/T

2
. To express the result in terms of g, we divide by 9.8 m/s

2
.

(a) The acceleration associated with Earth’s spin (T = 24 h = 86400 s) is 

6
3

2 2

4 (6.37 10 m)
3.4 10 .

(86400s) (9.8m/s )
a g g

π −×
= = ×

2

(b) The acceleration associated with Earth’s motion around the Sun (T = 1 y = 3.156 ×
10

7
 s) is 

11
4

7 2 2

4 (1.5 10 m)
6.1 10 .

(3.156 10 s) (9.8m/s )
a g g

π −×
= = ×

×

2

(c) The acceleration associated with the Solar System’s motion around the galactic center 

(T = 2.5 × 10
8
 y = 7.9 × 10

15
 s) is 

20
11

15 2 2

4 (2.2 10 m)
1.4 10 .

(7.9 10 s) (9.8m/s )
a g g

π −×
= = ×

×

2



85. We use m1 for the 20 kg of the sphere at (x1, y1) = (0.5, 1.0) (SI units understood), m2

for the 40 kg of the sphere at (x2, y2) = (−1.0, −1.0), and m3 for the 60 kg of the sphere at 

(x3, y3) = (0, −0.5). The mass of the 20 kg object at the origin is simply denoted m. We 

note that 1 21.25, 2r r= = , and r3 = 0.5 (again, with SI units understood). The force nF

that the n
th

 sphere exerts on m has magnitude 2/n nGm m r  and is directed from the origin 

towards mn, so that it is conveniently written as 

( )2 3
ˆ ˆ ˆ ˆ= i + j = i + j .n n n n

n n n

n n n n

Gm m x y Gm m
F x y

r r r r

Consequently, the vector addition to obtain the net force on m becomes 

3 3 3
9 7

net 3 3
=1 1 1

ˆ ˆ ˆ ˆ= i j 9.3 10 i 3.2 10 jn n n n
n

n n nn n

m x m y
F F Gm

r r

− −

= =

= + = − × − ×

in SI units. Therefore, we find the net force magnitude is 7

net 3.2 10 NF −= × .



86. We apply the work-energy theorem to the object in question. It starts from a point at 

the surface of the Earth with zero initial speed and arrives at the center of the Earth with 

final speed vf. The corresponding increase in its kinetic energy, ½mvf
2
, is equal to the 

work done on it by Earth’s gravity: ( )F dr Kr dr= −  (using the notation of that Sample 

Problem referred to in the problem statement). Thus, 

0 0
2 21 1

( )
2 2

f
R R

mv F dr Kr dr KR= = − =

where R is the radius of Earth. Solving for the final speed, we obtain vf = R /K m . We 

note that the acceleration of gravity ag = g = 9.8 m/s
2
 on the surface of Earth is given by  

ag = GM/R
2
 = G(4πR

3
/3)ρ/R2

,

where ρ is Earth’s average density. This permits us to write K/m = 4πGρ/3 = g/R.

Consequently,

2 6 3(9.8 m/s ) (6.37 10 m) 7.9 10 m/s .f

K g
v R R gR

m R
= = = = × = ×



87. (a) The total energy is conserved, so there is no difference between its values at 

aphelion and perihelion. 

(b) Since the change is small, we use differentials: 

( ) ( ) ( )
( )

( )
11 30 24

9

22 11

6.67 10 1.99 10 5.98 10
5 10

1.5 10

E SGM M
dU dr

r

−× × ×
= ≈ ×

×

which yields ∆U ≈ 1.8 × 10
32

 J. A more direct subtraction of the values of the potential 

energies leads to the same result. 

(c) From the previous two parts, we see that the variation in the kinetic energy ∆K must 

also equal 1.8 × 10
32

 J.

(d) With ∆K ≈ dK = mv dv, where v ≈ 2πR/T, we have 

( )
( )11

32 24

7

2 1.5 10
1.8 10 5.98 10

3.156 10
v

×
× ≈ × ∆

×

which yields a difference of ∆v ≈ 0.99 km/s in Earth’s speed (relative to the Sun) between 

aphelion and perihelion. 



88. Let the distance from Earth to the spaceship be r. Rem = 3.82 × 10
8
 m is the distance 

from Earth to the moon. Thus, 

( )
2 2

= = = ,m e
m E

em

GM m GM m
F F

rR r−

where m is the mass of the spaceship. Solving for r, we obtain 

8
8

22 24

3.82 10 m
3.44 10 m

/ 1 (7.36 10 kg) /(5.98 10 kg) 1

em

m e

R
r

M M

×
= = = ×

+ × × +
.



89. We integrate Eq. 13-1 with respect to r from 3RE to 4RE and obtain the work equal 

to –GMEm(1/(4RE) – 1/(3RE))  = GMEm/12RE .



90. If the angular velocity were any greater, loose objects on the surface would not go 

around with the planet but would travel out into space. 

(a) The magnitude of the gravitational force exerted by the planet on an object of mass m

at its surface is given by F = GmM / R
2
, where M is the mass of the planet and R is its 

radius. According to Newton’s second law this must equal mv
2
 / R, where v is the speed 

of the object. Thus, 
2

2
= .

GM v

R R

Replacing M with (4π/3) ρR
3
 (where ρ is the density of the planet) and v with 2πR/T

(where T is the period of revolution), we find 

2

2

4 4
= .

3

R
G R

T

π π
ρ

We solve for T and obtain 

3
T

G

π

ρ
= .

(b) The density is 3.0 × 10
3
 kg/m

3
. We evaluate the equation for T:

( )( )
3

11 3 2 3 3

3
6.86 10 s 1.9h.

6.67 10 m / s kg 3.0 10 kg/m
T

π
−

= = × =
× ⋅ ×



However, our approach will not assume constant acceleration; we use energy 

conservation:

02 2

0

0 0

2 ( )1 1

2 2

GM r rGMm GMm
mv mv v

r r r r

−
− = − =

which yields v = 1.4 × 10
6
 m/s. 

(b) We estimate the height of the apple to be h = 7 cm = 0.07 m. We may find the answer 

by evaluating Eq. 13-11 at the surface (radius r in part (a)) and at radius r + h, being 

careful not to round off, and then taking the difference of the two values, or we may take 

the differential of that equation — setting dr equal to h. We illustrate the latter procedure: 

6 2

3 3
| | 2 2 3 10 m/s .g

GM GM
da dr h

r r
= − ≈ = ×

91. (a) It is possible to use 2 2

0 2v v a y= + ∆ as we did for free-fall problems in Chapter 2 

because the acceleration can be considered approximately constant over this interval. 



92. (a) The gravitational force exerted on the baby (denoted with subscript b) by the 

obstetrician (denoted with subscript o) is given by 

( )( )( )

( )

11 2 2

8

22

6.67 10 N m / kg 70kg 3kg
1 10 N.

1m

o b
bo

bo

Gm m
F

r

−

−
× ⋅

= = = ×

(b) The maximum (minimum) forces exerted by Jupiter on the baby occur when it is 

separated from the Earth by the shortest (longest) distance rmin (rmax), respectively. Thus 

( )( )( )

( )

11 2 2 27

max 6

22 11
min

6.67 10 N m / kg 2 10 kg 3kg
1 10 N.

6 10 m

J b
bJ

Gm m
F

r

−

−
× ⋅ ×

= = = ×
×

(c) And we obtain 

( )( )( )

( )

11 2 2 27

min 7

22 11
max

6.67 10 N m / kg 2 10 kg 3kg
5 10 N.

9 10 m

J b
bJ

Gm m
F

r

−

−
× ⋅ ×

= = = ×
×

(d) No. The gravitational force exerted by Jupiter on the baby is greater than that by the 

obstetrician by a factor of up to 1 × 10
−6

 N/1 × 10
−8

 N = 100. 



This supplies the centripetal force needed for the motion of the star: 

2

2

2
where  .

4

Gm m v r
M m v

r r T
+ = =

p

Plugging in for speed v, we arrive at an equation for period T:

3 22
.

( / 4)

r
T

G M m

π
=

+

93. The magnitude of the net gravitational force on one of the smaller stars (of mass m) is 

( )
22 2

.
42

GMm Gmm Gm m
M

r rr
+ = +



94. (a) We note that height = R − REarth where REarth = 6.37 × 10
6
 m. With M = 5.98 × 10

24

kg, R0 = 6.57 × 10
6
 m and R = 7.37 × 10

6
 m, we have 

3 2

0

1
(3.70 10 )

2
i i

GmM GmM
K U K U m K

R R
+ = + × − = − ,

which yields K = 3.83 × 10
7
 J. 

(b) Again, we use energy conservation. 

3 2

0

1
(3.70 10 ) 0

2
i i f f

f

GmM GmM
K U K U m

R R
+ = + × − = −

Therefore, we find Rf = 7.40 × 10
6
 m. This corresponds to a distance of 1034.9 km ≈ 1.03 

× 10
3
 km above the Earth’s surface. 



95. Energy conservation for this situation may be expressed as follows: 

2 2

1 1 2 2 1 2

1 2

1 1

2 2

GmM GmM
K U K U mv mv

r r
+ = + − = −

where M = 7.0 × 10
24

 kg, r2 = R = 1.6 × 10
6
 m and r1 = ∞ (which means that U1 = 0). We 

are told to assume the meteor starts at rest, so v1 = 0. Thus, K1 + U1 = 0 and the above 

equation is rewritten as 

2 4

2 2

2

1 2
2.4 10 m s.

2

GmM GM
mv v

r R
− = = ×



0 0 2i i

GmM
K U K U K

r
+ = + + = −

which yields K = 2GmM/r = 5.3 × 10
−8

 J. 

(b) Since the y-component of each force will cancel, the net force points in the –x

direction, with a magnitude 2Fx = 2 (GmM/r
2
) cos θ , where θ  = tan

−1
 (4/3) = 53°. Thus, 

the result is 8

net
ˆ( 6.4 10  N)i.F −= − ×

96. The initial distance from each fixed sphere to the ball is r0 = ∞, which implies the 

initial gravitational potential energy is zero. The distance from each fixed sphere to the 

ball when it is at x = 0.30 m is r = 0.50 m, by the Pythagorean theorem. 

(a) With M = 20 kg and m = 10 kg, energy conservation leads to 



97. The kinetic energy in its circular orbit is 
1

2
mv

2
  where v = 2πr/T.  Using the values 

stated in the problem and using Eq. 13-41, we directly find E =  –1.87 × 10
9
J.



98. (a) From Ch. 2, we have 2 2

0 2v v a x= + ∆ , where a may be interpreted as an average 

acceleration in cases where the acceleration is not uniform. With v0 = 0, v = 11000 m/s 

and ∆x = 220 m, we find a = 2.75 × 10
5
 m/s

2
. Therefore, 

5 2
4

2

2.75 10 m/s
2.8 10

9.8 m/s
a g g

×
= = × .

(b) The acceleration is certainly deadly enough to kill the passengers. 

(c) Again using 2 2

0 2v v a x= + ∆ , we find 

2
2(7000 m/s)

7000 m/s 714 .
2(3500 m)

a g= = =

(d) Energy conservation gives the craft’s speed v (in the absence of friction and other 

dissipative effects) at altitude h = 700 km after being launched from R = 6.37 × 10
6
 m 

(the surface of Earth) with speed v0 = 7000 m/s. That altitude corresponds to a distance 

from Earth’s center of r = R + h = 7.07 × 10
6
 m. 

2 2

0

1 1
.

2 2

GMm GMm
mv mv

R r
− = −

With M = 5.98 × 10
24

 kg (the mass of Earth) we find v = 6.05 × 10
3
 m/s. But to orbit at 

that radius requires (by Eq. 13-37)

v´ = /GM r  = 7.51 × 10
3
 m/s. 

The difference between these is v´ − v = 1.46 × 10
3
 m/s 31.5 10  m/s≈ × , which 

presumably is accounted for by the action of the rocket engine. 



99. (a) All points on the ring are the same distance (r = x
2
 + R

2
 ) from the particle, so 

the gravitational potential energy is simply U =  –GMm/ x
2
 + R

2
 , from Eq. 13-21.  The 

corresponding force (by symmetry) is expected to be along the x axis, so we take a 

(negative) derivative of U (with respect to x) to obtain it (see Eq. 8-20).  The result for the 

magnitude of the force is GMmx(x
2
 + R

2
)

−3/2
.

(b) Using our expression for U, then the magnitude of the loss in potential energy as the 

particle falls to the center is GMm(1/R −1/ x
2
 + R

2
 ).  This must “turn into” kinetic 

energy ( 
1

2
mv

2
), so we solve for the speed and obtain 

v = [2GM(R
−1

 – (R
2
 + x

2
)

−1/2
)]

1/2
 . 



100. Consider that we are examining the forces on the mass in the lower left-hand corner 

of the square.  Note that the mass in the upper right-hand corner is 20 2 = 28 cm = 0.28 

m away.  Now, the nearest masses each pull with a force of GmM / r
2
 = 3.8 × 10

−9
 N, one 

upward and the other rightward.  The net force caused by these two forces is (3.8 × 10
−9

,

3.8 × 10
−9

) →  (5.3 × 10
−9 ∠ 45°), where the rectangular components are shown first -- 

and then the polar components (magnitude-angle notation).  Now, the mass in the upper 

right-hand corner also pulls at 45°, so its force-magnitude (1.9 × 10
−9

) will simply add to 

the magnitude just calculated.  Thus, the final result is 7.2 × 10
−9

 N. 



(f) And 21
2 B Bmv K=  yields vB = 2 / iGm R .

(g) The answer to part (f) is incorrect, due to having ignored the accelerated motion of 

“our” frame (that of body A). Our computations were therefore carried out in a 

noninertial frame of reference, for which the energy equations of Chapter 8 are not 

directly applicable. 

101. (a) Their initial potential energy is −Gm
2
/Ri and they started from rest, so energy 

conservation leads to 
2 2 2

total total .
0.5i i i

Gm Gm Gm
K K

R R R
− = − =

(b) They have equal mass, and this is being viewed in the center-of-mass frame, so their 

speeds are identical and their kinetic energies are the same. Thus, 

2

total

1
.

2 2 i

Gm
K K

R
= =

(c) With K = ½ mv
2
, we solve the above equation and find v = / iGm R .

(d) Their relative speed is 2v = 2 / iGm R . This is the (instantaneous) rate at which the 

gap between them is closing. 

(e) The premise of this part is that we assume we are not moving (that is, that body A

acquires no kinetic energy in the process). Thus, Ktotal = KB and the logic of part (a) leads 

to KB = Gm
2
/Ri.



102. Gravitational acceleration is defined in Eq. 13-11 (which we are treating as a 

positive quantity).  The problem, then, is asking for the magnitude difference of  ag net

when the contributions from the Moon and the Sun are in the same direction (ag net = agSun

+ agMoon) as opposed to when they are in opposite directions (ag net = agSun – agMoon).  The 

difference (in absolute value) is clearly 2agMoon.  In specifically wanting the percentage

change, the problem is requesting us to divide this difference by the average of the two ag

net values being considered (that average is easily seen to be equal to agSun), and finally 

multiply by 100% in order to quote the result in the right format.  Thus, 

2agMoon

agSun
  =  2

MMoon

 MSun

rSun to Eearth

rMoon to Earth

2

 = 2
7.36 x 10

22

1.99 x 10
30

1.50 x 10
11

3.82 x 10
8

2

  = 0.011 = 1.1%. 



103. (a) Kepler’s law of periods is 

2 34
.T r

GM

π
=

2

With M = 6.0 × 10
30

 kg and T = 300(86400) = 2.6 × 10
7
 s, we obtain r = 1.9 × 10

11
 m. 

(b) That its orbit is circular suggests that its speed is constant, so 

42
4.6 10 m/s .

r
v

T

π
= = ×



104. Using Eq. 13-21, the potential energy of the dust particle is 

U = –GmME/R  – GmMm/r  =  –Gm(ME/R + Mm/r) . 



Chapter 14 
 



1. The pressure increase is the applied force divided by the area: ∆p = F/A = F/πr
2
, where 

r is the radius of the piston. Thus

∆p = (42 N)/π(0.011 m)
2
 = 1.1 × 10

5
 Pa. 

This is equivalent to 1.1 atm. 
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2. We note that the container is cylindrical, the important aspect of this being that it has a 

uniform cross-section (as viewed from above); this allows us to relate the pressure at the 

bottom simply to the total weight of the liquids. Using the fact that 1L = 1000 cm
3
, we 

find the weight of the first liquid to be 

3 3 2 6 2

1 1 1 1 (2.6 g / cm )(0.50 L)(1000 cm / L)(980 cm/s ) 1.27 10 g cm/s

12.7 N.

W m g V gρ= = = = × ⋅

=

In the last step, we have converted grams to kilograms and centimeters to meters. 

Similarly, for the second and the third liquids, we have 

3 3 2

2 2 2 2 (1.0 g/cm )(0.25 L)(1000 cm L)(980 cm s ) 2.5 NW m g V gρ= = = =

and
3 3 2

3 3 3 3 (0.80 g/cm )(0.40 L)(1000 cm / L)(980 cm/s ) 3.1 N.W m g V gρ= = = =

The total force on the bottom of the container is therefore F = W1 + W2 + W3 = 18 N. 



3. The air inside pushes outward with a force given by piA, where pi is the pressure inside 

the room and A is the area of the window. Similarly, the air on the outside pushes inward 

with a force given by poA, where po is the pressure outside. The magnitude of the net 

force is F = (pi – po)A. Since 1 atm = 1.013 × 10
5
 Pa, 

5 4(1.0 atm 0.96 atm)(1.013 10  Pa/atm)(3.4 m)(2.1 m) = 2.9 10  N.F = − × ×



4. Knowing the standard air pressure value in several units allows us to set up a variety of 

conversion factors: 

(a) ( )
5

2

2

1.01 10  Pa
28 lb/in. 190 kPa

14.7 lb/in
P

×
= = .

(b)
5 51.01 10 Pa 1.01 10  Pa

 (120 mmHg) 15.9 kPa,     (80 mmHg) 10.6 kPa.
760 mmHg 760 mmHg

× ×
= =



5. Let the volume of the expanded air sacs be Va and that of the fish with its air sacs 

collapsed be V. Then 

3 3fish fish
fish 1.08 g/cm     and     1.00 g/cmw

a

m m

V V V
ρ ρ= = = =

+

where ρw is the density of the water. This implies  

ρfishV = ρw(V + Va) or (V + Va)/V = 1.08/1.00, 

which gives Va/(V + Va) = 0.074 = 7.4%. 



6. The magnitude F of the force required to pull the lid off is F = (po – pi)A, where po is 

the pressure outside the box, pi is the pressure inside, and A is the area of the lid. 

Recalling that 1N/m
2
 = 1 Pa, we obtain 

5 4

4 2

480 N
1.0 10  Pa 3.8 10  Pa.

77 10  m
i o

F
p p

A −
= − = × − = ×

×



7. (a) The pressure difference results in forces applied as shown in the figure. We 

consider a team of horses pulling to the right. To pull the sphere apart, the team must 

exert a force at least as great as the horizontal component of the total force determined by 

“summing” (actually, integrating) these force vectors. 

We consider a force vector at angle θ. Its leftward component is ∆p cos θdA, where dA is 

the area element for where the force is applied. We make use of the symmetry of the 

problem and let dA be that of a ring of constant θ on the surface. The radius of the ring is 

r = R sin θ, where R is the radius of the sphere. If the angular width of the ring is dθ, in 

radians, then its width is R dθ and its area is dA = 2πR
2
 sin θ dθ. Thus the net horizontal 

component of the force of the air is given by 

/ 2

0

2
2 2 2 2

0
2  sin  cos  sin .hF R p d R p R p

π

π θ θ θ π θ π
π

= ∆ = ∆ = ∆

(b) We use 1 atm = 1.01 × 10
5
 Pa to show that ∆p = 0.90 atm = 9.09 × 10

4
 Pa. The sphere 

radius is R = 0.30 m, so  

Fh = π(0.30 m)
2
(9.09 × 10

4
 Pa) = 2.6 × 10

4
 N. 

(c) One team of horses could be used if one half of the sphere is attached to a sturdy wall. 

The force of the wall on the sphere would balance the force of the horses. 



8. We estimate the pressure difference (specifically due to hydrostatic effects) as follows: 

3 3 2 4(1.06 10  kg/m )(9.8 m/s )(1.83 m) = 1.90 10 Pa.p ghρ∆ = = × ×



9. Recalling that 1 atm = 1.01 × 10
5
 Pa, Eq. 14-8 leads to 

3 2 3 3

5

1 atm
(1024 kg/m ) (9.80 m/s ) (10.9 10 m) 1.08 10 atm.

1.01 10 Pa
ghρ = × ≈ ×

×



10. Note that 0.05 atm equals 5065 Pa.  Application of Eq. 14-7 with the notation in this 

problem leads to 

max

liquid liquid liquid

0.05 atm 5065 Pap
d

g g gρ ρ ρ
= = = .

Thus the difference of this quantity between fresh water (998 kg/m
3
) and Dead Sea water 

(1500 kg/m
3
) is 

max 2 3 3

fw sw

5065 Pa 1 1 5065 Pa 1 1
0.17 m.

9.8 m/s 998 kg/m 1500 kg/m
d

g ρ ρ
∆ = − = − =



11. The pressure p at the depth d of the hatch cover is p0 + ρgd, where ρ is the density of 

ocean water and p0 is atmospheric pressure. The downward force of the water on the 

hatch cover is (p0 + ρgd)A, where A is the area of the cover. If the air in the submarine is 

at atmospheric pressure then it exerts an upward force of p0A. The minimum force that 

must be applied by the crew to open the cover has magnitude  

F = (p0 + ρgd)A – p0A = ρgdA = (1024 kg/m
3
)(9.8 m/s

2
)(100 m)(1.2 m)(0.60 m) 

            = 7.2 × 10
5
 N. 



12. With A = 0.000500 m
2
 and F = pA (with p given by Eq. 14-9), then we have ρghA = 

9.80 N.    This gives h ≈ 2.0 m, which means d + h = 2.80 m. 



13. In this case, Bernoulli’s equation reduces to Eq. 14-10. Thus, 

3 2 4( ) (1800 kg/m ) (9.8 m/s ) (1.5 m) 2.6 10 Pa .gp g hρ= − = − = − ×



On the other hand, the gauge pressure at an altitude of 7.6 km is  

3 2 4

2 air (0.87 kg/m )(9.8 m/s )(7600 m) 6.48 10  Pap ghρ= = = × .

Therefore, the change in pressure is  

5 4 5

1 2 2.00 10  Pa 6.48 10  Pa 1.4 10  Pap p p∆ = − = × − × ≈ × .

14. Using Eq. 14-7, we find the gauge pressure to be gaugep ghρ= , where ρ  is the 

density of the fluid medium, and h is the vertical distance to the point where the pressure 

is equal to the atmospheric pressure.  

The gauge pressure at a depth of 20 m in seawater is

3 2 5

1 sw (1024 kg/m )(9.8 m/s )(20 m) 2.00 10  Pap gdρ= = = × .



15. The hydrostatic blood pressure is the gauge pressure in the column of blood between 

feet and brain. We calculate the gauge pressure using Eq. 14-7. 

(a) The gauge pressure at the brain of the giraffe is

3 3 2

brain heart

1 torr
250 torr (1.06 10 kg/m )(9.8 m/s )(2.0 m) 94 torr

133.33 Pa
p p ghρ= − = − × = .

(b) The gauge pressure at the feet of the giraffe is  

3 3 2

feet heart

2

1 torr
250 torr (1.06 10 kg/m )(9.8 m/s )(2.0 m) 406 torr

133.33 Pa

4.1 10 torr.

p p ghρ= + = + × =

≈ ×

(c) The increase in the blood pressure at the brain as the giraffe lower is head to the level 

of its feet is 

2

feet brain 406 torr 94 torr 312 torr 3.1 10 torr.p p p∆ = − = − = ≈ ×



16. Since the pressure (caused by liquid) at the bottom of the barrel is doubled due to the 

presence of the narrow tube, so is the hydrostatic force. The ratio is therefore equal to 2.0. 

The difference between the hydrostatic force and the weight is accounted for by the 

additional upward force exerted by water on the top of the barrel due to the increased 

pressure introduced by the water in the tube. 



3 3 2

feet brain

3

1 torr
80 torr (1.06 10 kg/m )(9.8 m/s )(21 m)

133.33 Pa

80 torr 1642 torr 1722 torr 1.7 10 torr.

p p ghρ ′= + = + ×

= + = ≈ ×

17. The hydrostatic blood pressure is the gauge pressure in the column of blood between 

feet and brain. We calculate the gauge pressure using Eq. 14-7. 

(a) The gauge pressure at the heart of the Argentinosaurus is

3 3 2

heart brain

3

1 torr
80 torr (1.06 10 kg/m )(9.8 m/s )(21 m 9.0 m)

133.33 Pa

1.0 10 torr.

p p ghρ= + = + × −

= ×

.

(b) The gauge pressure at the feet of the Argentinosaurus is  



18. At a depth h without the snorkel tube, the external pressure on the diver is 

0p p ghρ= +

where 0p  is the atmospheric pressure. Thus, with a snorkel tube of length h, the pressure 

difference between the internal air pressure and the water pressure against the body is

0p p p ghρ∆ = = = .

(a) If 0.20 m,h =  then 

3 2

5

1atm
(998 kg/m )(9.8 m/s )(0.20 m) 0.019 atm

1.01 10  Pa
p ghρ∆ = = =

×
.

(b) Similarly, if 4.0 m,h =  then 

3 2

5

1atm
(998 kg/m )(9.8 m/s )(4.0 m) 0.39 atm

1.01 10  Pa
p ghρ∆ = = ≈

×
.



19. When the levels are the same the height of the liquid is h = (h1 + h2)/2, where h1 and 

h2 are the original heights. Suppose h1 is greater than h2. The final situation can then be 

achieved by taking liquid with volume A(h1 – h) and mass ρA(h1 – h), in the first vessel, 

and lowering it a distance h – h2. The work done by the force of gravity is

W = ρA(h1 – h)g(h – h2). 

We substitute h = (h1 + h2)/2 to obtain

( )
2 3 3 2 4 2 2

1 2

1 1
(1.30 10 kg/m )(9.80 m/s )(4.00 10 m )(1.56 m 0.854 m)

4 4

0.635 J

W gA h hρ −= − = × × −

=

.



20. To find the pressure at the brain of the pilot, we note that the inward acceleration can 

be treated from the pilot’s reference frame as though it is an outward gravitational 

acceleration against which the heart must push the blood. Thus, with 4a g= , we have 

3 3 2

brain heart

1 torr
120 torr (1.06 10 kg/m )(4 9.8 m/s )(0.30 m)

133 Pa

120 torr 94 torr 26 torr.

p p arρ= − = − × ×

= − =



ρcg(6.0 km + 32 km + D) + ρm(y – D) = ρcg(32 km) + ρmy

and obtain 

( ) ( ) ( )3

3 3

6.0km 2.9g cm6.0 km
44km.

3.3g cm 2.9g cm

c

m c

D
ρ

ρ ρ
= = =

− −

21. Letting pa = pb, we find



22. (a) The force on face A of area AA due to the water pressure alone is 

( )( )( )
32 3 3 2

6

(2 ) 2 1.0 10 kg m 9.8m s 5.0 m

2.5 10 N.

A A A w A A wF p A gh A g d dρ ρ= = = = ×

= ×

Adding the contribution from the atmospheric pressure,  

F0= (1.0 × 10
5
 Pa)(5.0 m)

2
 = 2.5 × 10

6
 N, 

we have 

6 6 6

0' 2.5 10 N  2.5 10 N 5.0 10 N.A AF F F= + = × + × = ×

(b) The force on face B due to water pressure alone is 

( )( )( )
32 3 3 3 2

avg

6

5 5 5
1.0 10 kg m 9.8m s 5.0 m

2 2 2

3.1 10 N.

B B B w

d
F p A g d gdωρ ρ= = = = ×

= ×

Adding the contribution from the atmospheric pressure,  

F0= (1.0 × 10
5
 Pa)(5.0 m)

2
 = 2.5 × 10

6
 N, 

we obtain 
6 6 6

0' 2.5 10 N  3.1 10 N 5.6 10 N.B BF F F= + = × + × = ×



23. We can integrate the pressure (which varies linearly with depth according to Eq. 14-7) 

over the area of the wall to find out the net force on it, and the result turns out fairly 

intuitive (because of that linear dependence): the force is the “average” water pressure 

multiplied by the area of the wall (or at least the part of the wall that is exposed to the 

water), where “average” pressure is taken to mean 
1

2
(pressure at surface + pressure at 

bottom).  Assuming the pressure at the surface can be taken to be zero (in the gauge 

pressure sense explained in section 14-4), then this means the force on the wall is 
1

2
ρgh

multiplied by the appropriate area.  In this problem the area is hw (where w is the 8.00 m 

width), so the force is 
1

2
ρgh

2
w, and the change in force (as h is changed) is 

1

2
ρgw ( hf

2
 – hi

2
)  =  

1

2
(998 kg/m

3
)(9.80 m/s

2
)(8.00 m)(4.00

2
 – 2.00

2
)m

2
  = 4.69 × 10

5
 N. 



24. (a) At depth y the gauge pressure of the water is p = ρgy, where ρ is the density of the 

water. We consider a horizontal strip of width W at depth y, with (vertical) thickness dy,

across the dam. Its area is dA = W dy and the force it exerts on the dam is dF = p dA = 

ρgyW dy. The total force of the water on the dam is 

( )( )( )( )
22 3 3 2

0

9

1 1
1.00 10 kg m 9.80m s 314m 35.0m

2 2

1.88 10 N.

D

F gyW dy gWDρ ρ= = = ×

= ×

(b) Again we consider the strip of water at depth y. Its moment arm for the torque it 

exerts about O is D – y so the torque it exerts is  

dτ = dF(D – y) = ρgyW (D – y)dy

and the total torque of the water is 

( )

( )( )( )( )

3 3 3

0

33 3 2 10

1 1 1

2 3 6

1
1.00 10 kg m 9.80m s 314 m 35.0m 2.20 10 N m.

6

D

gyW D y dy gW D D gWDτ ρ ρ ρ= − = − =

= × = × ⋅

(c) We write τ = rF, where r is the effective moment arm. Then, 

31
6

21
2

35.0 m
11.7 m.

3 3

gWD D
r

F gWD

ρτ

ρ
= = = = =



25. As shown in Eq. 14-9, the atmospheric pressure 0p  bearing down on the barometer’s 

mercury pool is equal to the pressure ghρ  at the base of the mercury column: 0p ghρ= .

Substituting the values given in the problem statement, we find the atmospheric pressure 

to be

4 3 2

0

1 torr
(1.3608 10 kg/m )(9.7835 m/s )(0.74035 m) 739.26 torr.

133.33 Pa
p ghρ= = × =



26. The gauge pressure you can produce is 

( ) ( ) ( )3 2 2

3

5

1000kg m 9.8m s 4.0 10 m
3.9 10 atm

1.01 10 Pa atm
p ghρ

−

−
×

= − = − = − ×
×

where the minus sign indicates that the pressure inside your lung is less than the outside 

pressure.



27. (a) We use the expression for the variation of pressure with height in an 

incompressible fluid: p2 = p1 – ρg(y2 – y1). We take y1 to be at the surface of Earth, where 

the pressure is p1 = 1.01 × 10
5
 Pa, and y2 to be at the top of the atmosphere, where the 

pressure is p2 = 0. For this calculation, we take the density to be uniformly 1.3 kg/m
3
.

Then,
5

31
2 1 3 2

1.01 10 Pa
7.9 10 m = 7.9 km.

(1.3 kg/m ) (9.8 m/s )

p
y y

gρ

×
− = = = ×

(b) Let h be the height of the atmosphere. Now, since the density varies with altitude, we 

integrate 

2 1
0

.
h

p p g dyρ= −

Assuming ρ = ρ0 (1 - y/h), where ρ0 is the density at Earth’s surface and g = 9.8 m/s
2
 for 

0 ≤ y ≤ h, the integral becomes 

2 1 0 1 0
0

1
1 .

2

h y
p p g dy p gh

h
ρ ρ= − − = −

Since p2 = 0, this implies 

5
31

3 2

0

2 2(1.01 10 Pa)
16 10 m = 16 km.

(1.3 kg/m ) (9.8 m/s )

p
h

gρ

×
= = = ×



28. (a) According to Pascal’s principle F/A = f/a → F = (A/a)f.

(b) We obtain 
2

3

2

(3.80 cm)
(20.0 10 N) = 103 N.

(53.0 cm)

a
f F

A
= = ×

The ratio of the squares of diameters is equivalent to the ratio of the areas. We also note 

that the area units cancel. 



29. Eq. 14-13 combined with Eq. 5-8 and Eq. 7-21 (in absolute value) gives 

mg = kx
A1

 A2
 . 

With A2 = 18A1 (and the other values given in the problem) we find m = 8.50 kg. 



30. (a) The pressure (including the contribution from the atmosphere) at a depth of htop = 

L/2 (corresponding to the top of the block) is 

5 3 2 5

top atm top 1.01 10  Pa (1030 kg/m )(9.8 m/s ) (0.300 m) 1.04 10 Pap p ghρ= + = × + = ×

where the unit Pa (Pascal) is equivalent to N/m
2
. The force on the top surface (of area A

= L
2
 = 0.36 m

2
) is

Ftop = ptop A = 3.75 × 10
4
 N. 

(b) The pressure at a depth of hbot = 3L/2 (that of the bottom of the block) is 

5 3 2 5

bot atm bot 1.01 10  Pa (1030 kg/m )(9.8 m/s ) (0.900 m) 1.10 10 Pap p ghρ= + = × + = ×

where we recall that the unit Pa (Pascal) is equivalent to N/m
2
. The force on the bottom 

surface is

Fbot = pbot A = 3.96 × 10
4
 N. 

(c) Taking the difference Fbot – Ftop cancels the contribution from the atmosphere 

(including any numerical uncertainties associated with that value) and leads to 

3 3

bot top bot top( ) 2.18 10 NF F g h h A gLρ ρ− = − = = ×

which is to be expected on the basis of Archimedes’ principle. Two other forces act on 

the block: an upward tension T and a downward pull of gravity mg. To remain stationary, 

the tension must be 

2 3 3

bot top( ) (450 kg) (9.80 m/s ) 2.18 10  N 2.23 10 N.T mg F F= − − = − × = ×

(d) This has already been noted in the previous part: 32.18 10 NbF = × , and T + Fb = mg.



31. (a) The anchor is completely submerged in water of density ρw. Its effective weight is 

Weff = W – ρw gV, where W is its actual weight (mg). Thus, 

( ) ( )
2 3eff

3 2

200 N
2.04 10 m .

1000 kg/m 9.8 m/sw

W W
V

gρ
−−

= = = ×

(b) The mass of the anchor is m = ρV, where ρ is the density of iron (found in Table

14-1). Its weight in air is 

( ) ( )3 2 3 2 37870 kg/m (2.04 10 m ) 9.80 m/s 1.57 10 N .W mg Vgρ −= = = × = ×



32. (a) Archimedes’ principle makes it clear that a body, in order to float, displaces an 

amount of the liquid which corresponds to the weight of the body. The problem 

(indirectly) tells us that the weight of the boat is W = 35.6 kN. In salt water of density

ρ' = 1100 kg/m
3
, it must displace an amount of liquid having weight equal to 35.6 kN. 

(b) The displaced volume of salt water is equal to 

3
3

3 3 2

3.56 10 N
' 3.30 m .

' (1.10 10  kg/m ) (9.80 m/s )

W
V

gρ

×
= = =

×

In freshwater, it displaces a volume of V = W/ρg = 3.63 m
3
, where ρ = 1000 kg/m

3
. The 

difference is V – V ' = 0.330 m
3
.



33. The problem intends for the children to be completely above water. The total 

downward pull of gravity on the system is 

( ) wood3 356 N N gVρ+

where N is the (minimum) number of logs needed to keep them afloat and V is the 

volume of each log: V = π(0.15 m)
2
 (1.80 m) = 0.13 m

3
. The buoyant force is Fb = 

ρwatergVsubmerged where we require Vsubmerged ≤ NV. The density of water is 1000 kg/m
3
. To 

obtain the minimum value of N we set Vsubmerged = NV and then round our “answer” for N

up to the nearest integer: 

( )
( )

( )wood water

water wood

3 356 N
3 356 N N gV gNV N

gV
ρ ρ

ρ ρ
+ = =

−

which yields N = 4.28 → 5 logs. 



34. Taking “down” as the positive direction, then using Eq. 14-16 in Newton’s second 

law, we have  5g – 3g = 5a  (where “5” = 5.00 kg, and “3” = 3.00 kg and g = 9.8 m/s
2
).  

This gives a = 
2

5
g.  Then (see Eq. 2-15)  

1

2
at

2
 = 0.0784 m (in the downward direction). 



35. (a) Let V be the volume of the block. Then, the submerged volume is Vs = 2V/3. Since 

the block is floating, the weight of the displaced water is equal to the weight of the block, 

so ρw Vs = ρb V, where ρw is the density of water, and ρb is the density of the block. We 

substitute Vs = 2V/3 to obtain  

ρb = 2ρw/3 = 2(1000 kg/m
3
)/3 ≈ 6.7 ×10

2
 kg/m

3
.

(b) If ρo is the density of the oil, then Archimedes’ principle yields ρo Vs = ρbV. We 

substitute Vs = 0.90V to obtain ρo = ρb/0.90 = 7.4 ×10
2
kg/m

3
.



36. Work is the integral of the force (over distance – see Eq. 7-32), and referring to the 

equation immediately preceding Eq. 14-7, we see the work can be written as 

W = waterρ gA(–y) dy

where we are using y = 0 to refer to the water surface (and the +y direction is upward).  

Let h = 0.500 m.  Then, the integral has a lower limit of –h and an upper limit of yf , with  

yf /h = − ρcylinder /ρwater = – 0.400.  The integral leads to 

W = 
1

2
ρwatergAh

2
(1 – 0.4

2
)  =  4.11 kJ . 



37. (a) The downward force of gravity mg is balanced by the upward buoyant force of the 

liquid: mg = ρg Vs. Here m is the mass of the sphere, ρ is the density of the liquid, and Vs

is the submerged volume. Thus m = ρVs. The submerged volume is half the total volume 

of the sphere, so ( ) 31
2

4 3s oV r= π , where ro is the outer radius. Therefore, 

( )3 3 32 2
800 kg/m (0.090 m) 1.22 kg.

3 3
om r

π π
ρ= = =

(b) The density ρm of the material, assumed to be uniform, is given by ρm = m/V, where m

is the mass of the sphere and V is its volume. If ri is the inner radius, the volume is 

( ) ( )( )3 33 3 4 34 4
( ) 0.090 m 0.080 m 9.09 10 m .

3 3
o iV r r

π π −= − = − = ×

The density is 

3 3

4 3

1.22 kg
1.3 10 kg/m .

9.09 10 m
mρ

−
= = ×

×



38. If the alligator floats, by Archimedes’ principle the buoyancy force is equal to the 

alligator’s weight (see Eq. 14-17). Therefore,  

2 2H O H O( )b gF F m g Ah gρ= = = .

If the mass is to increase by a small amount m m m m′→ = + ∆ , then 

2H O ( )b bF F A h h gρ′→ = + ∆ .

With 0.010b b bF F F mg′∆ = − = , the alligator sinks by  

2 2

3

3 2

H O H O

0.01 0.010(130 kg)
6.5 10  m 6.5 mm

(998 kg/m )(0.20 m )

bF mg
h

Ag Agρ ρ
−∆

∆ = = = = × = .



39. Let iV  be the total volume of the iceberg. The non-visible portion is below water, and 

thus the volume of this portion is equal to the volume fV  of the fluid displaced by the 

iceberg. The fraction of the iceberg that is visible is  

frac 1
i f f

i i

V V V

V V

−
= = − .

Since iceberg is floating, Eq. 14-18 applies:

.g i f i fF m g m g m m= = =

Since m Vρ= , the above equation implies  

f i
i i f f

i f

V
V V

V

ρ
ρ ρ

ρ
= = .

Thus, the visible fraction is

frac 1 1
f i

i f

V

V

ρ

ρ
= − = −

(a) If the iceberg ( 3917 kg/miρ = ) floats in saltwater with 31024 kg/mfρ = , then the 

fraction would be
3

3

917 kg/m
frac 1 1 0.10 10%

1024 kg/m

i

f

ρ

ρ
= − = − = = .

(b) On the other hand, if the iceberg floats in fresh water ( 31000 kg/mfρ = ), then the 

fraction would be
3

3

917 kg/m
frac 1 1 0.083 8.3%

1000 kg/m

i

f

ρ

ρ
= − = − = = .



40. (a) An object of the same density as the surrounding liquid (in which case the 

“object” could just be a packet of the liquid itself) is not going to accelerate up or down 

(and thus won’t gain any kinetic energy).  Thus, the point corresponding to zero K in the 

graph must correspond to the case where the density of the object equals ρliquid.

Therefore, ρball = 1.5 g/cm
3
 (or 1500 kg/m

3
).

(b) Consider the ρliquid = 0 point (where Kgained = 1.6 J).  In this case, the ball is falling 

through perfect vacuum, so that v
2
 = 2gh (see Eq. 2-16) which means that K = 

1

2
mv

2
 = 1.6 

J can be used to solve for the mass.  We obtain mball = 4.082 kg.  The volume of the ball 

is then given by mball/ρball = 2.72 × 10
−3

 m
3
.



41. For our estimate of Vsubmerged we interpret “almost completely submerged” to mean 

3

submerged

4
where 60 cm .

3
o oV r rπ≈ =

Thus, equilibrium of forces (on the iron sphere) leads to 

3 3

iron water submerged iron

4 4

3 3
b o iF m g gV g r rρ ρ π π= = −

where ri is the inner radius (half the inner diameter). Plugging in our estimate for 

Vsubmerged as well as the densities of water (1.0 g/cm
3
) and iron (7.87 g/cm

3
), we obtain the 

inner diameter: 
1/3

3

o 3

1.0 g/cm
2 2 1 57.3 cm.

7.87 g/cm
ir r= − =



42. From the “kink” in the graph it is clear that d = 1.5 cm. Also, the h = 0 point makes it 

clear that the (true) weight is 0.25 N.  We now use Eq. 14-19 at h = d = 1.5 cm to obtain  

Fb = (0.25 N – 0.10 N ) = 0.15 N. 

Thus, ρliquid g V = 0.15, where V = (1.5 cm)(5.67 cm
2
) = 8.5 × 10

−6
 m

3
.  Thus, ρliquid =

1800 kg/m
3
 = 1.8 g/cm

3
.



43. The volume Vcav of the cavities is the difference between the volume Vcast of the 

casting as a whole and the volume Viron contained: Vcav = Vcast – Viron. The volume of the 

iron is given by Viron = W/gρiron, where W is the weight of the casting and ρiron is the 

density of iron. The effective weight in water (of density ρw) is Weff = W – gρw Vcast. Thus, 

Vcast = (W – Weff)/gρw and 

eff
cav 2 3 2 3 3

iron

3

6000 N 4000 N 6000 N

(9.8 m/s ) (1000kg/m ) (9.8 m/s ) (7.87 10 kg/m )

0.126 m .

w

W W W
V

g gρ ρ

− −
= − = −

×

=



v = 2a∆y  , 

were a = (7/3)g and ∆y = 0.600 m. This causes the ball to reach a maximum height hmax

(measured above the water surface) given by hmax = v
2
/2g (see Eq. 2-16 again).  Thus, 

hmax = (7/3)∆y = 1.40 m. 

44. Due to the buoyant force, the ball accelerates upward (while in the water) at rate a

given by Newton’s second law: 

ρwaterVg – ρballVg = ρballVa ρball = ρwater (1 + “a”)

where – for simplicity – we are using in that last expression an acceleration “a” measured 

in “gees” (so that “a” = 2, for example, means that a = 2(9.80 m/s
2
) = 19.6 m/s

2
).  In this 

problem, with ρball = 0.300 ρwater, we find therefore that “a” = 7/3.  Using Eq. 2-16, then 

the speed of the ball as it emerges from the water is 



45. (a) If the volume of the car below water is V1 then Fb = ρwV1g = Wcar, which leads to 

( ) ( )
( ) ( )

2

3car
1 3 2

1800 kg 9.8m s
1.80 m .

1000 kg m 9.8m sw

W
V

gρ
= = =

(b) We denote the total volume of the car as V and that of the water in it as V2. Then 

car 2b w wF Vg W V gρ ρ= = +

which gives 

( )3 3 3 3car
2 3

1800kg
0.750m 5.00m 0.800m 4.75 m .

1000kg mw

W
V V

gρ
= − = + + − =



46. (a) Since the lead is not displacing any water (of density ρw), the lead’s volume is not 

contributing to the buoyant force Fb. If the immersed volume of wood is Vi, then 

wood
wood

wood

0.900 0.900 ,b w i w w

m
F V g V g gρ ρ ρ

ρ
= = =

which, when floating, equals the weights of the wood and lead: 

wood
wood lead

wood

0.900 ( ) .b w

m
F g m m gρ

ρ
= = +

Thus,

3

wood
lead wood 3

wood

(0.900) (1000kg/m ) (3.67 kg)
0.900 3.67 kg 1.84 kg .

600 kg/m
w

m
m mρ

ρ
= − = − =

(b) In this case, the volume Vlead = mlead/ρlead also contributes to Fb. Consequently, 

wood
lead wood lead

wood lead

0.900 ( ) ,w
b w

m
F g m g m m g

ρ
ρ

ρ ρ
= + = +

which leads to 

wood wood wood

lead 3 3 4 3

lead

0.900( / ) 1.84 kg

1 / 1 (1.00 10 kg/m /1.13 10 kg/m )

2.01 kg.

w

w

m m
m

ρ ρ

ρ ρ

−
= =

− − × ×

=



47. (a) When the model is suspended (in air) the reading is Fg (its true weight, neglecting 

any buoyant effects caused by the air). When the model is submerged in water, the 

reading is lessened because of the buoyant force: Fg – Fb. We denote the difference in 

readings as ∆m. Thus, 

( )g g bF F F mg− − = ∆

which leads to Fb = ∆mg. Since Fb = ρwgVm (the weight of water displaced by the model) 

we obtain 

4 30.63776kg
6.378 10 m .

1000 kg/m
m

w

m
V

ρ
−∆

= = ≈ ×

(b) The 1
20

 scaling factor is discussed in the problem (and for purposes of significant 

figures is treated as exact). The actual volume of the dinosaur is 

3 3

dino 20 5.102 m .mV V= =

(c) Using ρ ≈ ρw = 1000 kg/m
3
, we find 

3 3dino
dino

dino

(1000kg/m ) (5.102 m )
m

m
V

ρ = =

which yields 5.102 × 10
3
 kg for the T. rex mass. 



48. Let ρ be the density of the cylinder (0.30 g/cm
3
 or 300 kg/m

3
) and ρFe be the density 

of the iron (7.9 g/cm
3
 or 7900 kg/m

3
).  The volume of the cylinder is  

Vc = (6×12) cm
3
 = 72 cm

3
 = 0.000072 m

3
,

and that of the ball is denoted Vb . The part of the cylinder that is submerged has volume 

Vs = (4 × 12) cm
3
 = 48 cm

3
 = 0.000048 m

3
.

Using the ideas of section 14-7, we write the equilibrium of forces as 

ρgVc  + ρFe gVb  = ρw gVs   + ρw gVb Vb = 3.8 cm
3

where we have used ρw = 998 kg/m
3
  (for water, see Table 14-1). Using Vb = 

4

3
πr

3
 we 

find r = 9.7 mm. 



49. We use the equation of continuity. Let v1 be the speed of the water in the hose and v2

be its speed as it leaves one of the holes. A1 = πR
2
 is the cross-sectional area of the hose. 

If there are N holes and A2 is the area of a single hole, then the equation of continuity 

becomes 

( )
2

1
1 1 2 2 2 1 12

2

A R
v A v NA v v v

NA Nr
= = =

where R is the radius of the hose and r is the radius of a hole. Noting that R/r = D/d (the 

ratio of diameters) we find 

( )

( )
( )

22

2 1 22

1.9cm
0.91m s 8.1m s.

24 0.13cm

D
v v

Nd
= = =



50. We use the equation of continuity and denote the depth of the river as h. Then, 

( )( )( ) ( )( )( ) ( )( )8.2m 3.4m 2.3m s 6.8m 3.2m 2.6m s 10.5m 2.9m sh+ =

which leads to h = 4.0 m. 



51. This problem involves use of continuity equation (Eq. 14-23): 1 1 2 2A v A v= .

(a) Initially the flow speed is 1.5 m/siv =  and the cross-sectional area is iA HD= . At 

point a, as can be seen from Fig. 14-47, the cross-sectional area is 

 ( ) ( )aA H h D b h d= − − − .

Thus, by continuity equation, the speed at point a is

(14 m)(55 m)(1.5 m/s)
2.96 m/s

( ) ( ) (14 m 0.80 m)(55 m) (12 m 0.80 m)(30 m)

3.0 m/s.

i i i
a

a

Av HDv
v

A H h D b h d
= = = =

− − − − − −

≈

(b) Similarly, at point b, the cross-sectional area is bA HD bd= − , and therefore, by 

continuity equation, the speed at point b is

(14 m)(55 m)(1.5 m/s)
2.8 m/s.

(14 m)(55 m) (12 m)(30 m)

i i i
b

b

Av HDv
v

A HD bd
= = = =

− −



52. The left and right sections have a total length of 60.0 m, so (with a speed of 2.50 m/s) 

it takes 60.0/2.50  = 24.0 seconds to travel through those sections.  Thus it takes (88.8 – 

24.0) s = 64.8 s to travel through the middle section.  This implies that the speed in the 

middle section is vmid = (110 m)/(64.8 s) = 0.772 m/s.  Now Eq. 14-23 (plus that fact that 

A = πr
2
) implies rmid = rA (2.5 m/s)/(0.772 m/s)  where rA = 2.00 cm.  Therefore, rmid = 

3.60 cm. 



53. Suppose that a mass ∆m of water is pumped in time ∆t. The pump increases the 

potential energy of the water by ∆mgh, where h is the vertical distance through which it is 

lifted, and increases its kinetic energy by 21
2

mv∆ , where v is its final speed. The work it 

does is 21
2

W mgh mv∆ = ∆ + ∆  and its power is 

21
.

2

W m
P gh v

t t

∆ ∆
= = +

∆ ∆

Now the rate of mass flow is ∆m/ ∆t = ρwAv, where ρw is the density of water and A is the 

area of the hose. The area of the hose is A = πr
2
 = π(0.010 m)

2
 = 3.14 × 10

–4
 m

2
 and

ρwAv = (1000 kg/m
3
) (3.14 × 10

–4
 m

2
) (5.00 m/s) = 1.57 kg/s. 

Thus,

( ) ( )( )
( )

2

2 2
5.0 m s1

1.57 kg s 9.8m s 3.0 m 66 W.
2 2

P Av gh vρ= + = + =



54. (a) The equation of continuity provides (26 + 19 + 11) L/min = 56 L/min for the flow 

rate in the main (1.9 cm diameter) pipe. 

(b) Using v = R/A and A = πd
2
/4, we set up ratios: 

2

56

2

26

56 / (1.9) / 4
1.0.

26 / (1.3) / 4

v

v

π

π
= ≈



( ) ( )2 2

2 1 1 2 1 2

5 3 2 2 3 2

5

1

2

1
1.5 10 Pa (1000kg m ) (5.0 m s) (2.5m s) (1000kg m )(9.8m/s )(10 m)

2

2.6 10 Pa.

p p v v g h hρ ρ= + − + −

= × + − +

= ×

55. (a) We use the equation of continuity: A1v1 = A2v2. Here A1 is the area of the pipe at 

the top and v1 is the speed of the water there; A2 is the area of the pipe at the bottom and 

v2 is the speed of the water there. Thus  

v2 = (A1/A2)v1 = [(4.0 cm
2
)/(8.0 cm

2
)] (5.0 m/s) = 2.5m/s. 

(b) We use the Bernoulli equation:  

2 21 1
1 1 1 2 2 22 2

p v gh p v ghρ ρ ρ ρ+ + = + + ,

where ρ is the density of water, h1 is its initial altitude, and h2 is its final altitude. Thus 



56. We use Bernoulli’s equation: 

( )2 2

2 1 2

1

2
ip p gD v vρ ρ− = + −

where ρ = 1000 kg/m
3
, D = 180 m, v1 = 0.40 m/s and v2 = 9.5 m/s. Therefore, we find ∆p

= 1.7 × 10
6
 Pa, or 1.7 MPa. The SI unit for pressure is the Pascal (Pa) and is equivalent to 

N/m
2
.



57. (a) The equation of continuity leads to 

2

1
2 2 1 1 2 1 2

2

r
v A v A v v

r
= =

which gives v2 = 3.9 m/s. 

(b) With h = 7.6 m and p1 = 1.7 × 10
5
 Pa, Bernoulli’s equation reduces to 

( )2 2 4

2 1 1 2

1
8.8 10 Pa.

2
p p gh v vρ ρ= − + − = ×



58. (a) We use Av = const. The speed of water is 

( ) ( )

( )
( )

2 2

2

25.0cm 5.00cm
2.50m s 2.40m s.

25.0cm
v

−
= =

(b) Since 21
2

const.,p vρ+ =  the pressure difference is 

( ) ( ) ( )
2 22 31 1

1000kg m 2.50m s 2.40m s 245Pa.
2 2

p vρ∆ = ∆ = − =



where h1 is the height of the water in the tank, p1 is the pressure there, and v1 is the speed 

of the water there; h2 is the altitude of the hole, p2 is the pressure there, and v2 is the speed 

of the water there. ρ is the density of water. The pressure at the top of the tank and at the 

hole is atmospheric, so p1 = p2. Since the tank is large we may neglect the water speed at 

the top; it is much smaller than the speed at the hole. The Bernoulli equation then 

becomes 21
1 2 22

gh v ghρ ρ ρ= +  and 

( ) ( ) ( )2

2 1 22 2 9.8m s 0.30m 2.42m s.v g h h= − = =

The flow rate is A2v2 = (6.5 × 10
–4

 m
2
)(2.42 m/s) = 1.6 × 10

–3
 m

3
/s.

(b) We use the equation of continuity: A2v2 = A3v3, where 1
3 22

A A=  and v3 is the water 

speed where the area of the stream is half its area at the hole. Thus  

v3 = (A2/A3)v2 = 2v2 = 4.84 m/s. 

The water is in free fall and we wish to know how far it has fallen when its speed is 

doubled to 4.84 m/s. Since the pressure is the same throughout the fall, 
2 21 1
2 2 3 32 2

v gh v ghρ ρ ρ ρ+ = + . Thus 

( ) ( )

( )

2 22 2

3 2
2 3 2

4.84 m s 2.42 m s
0.90 m.

2 2 9.8m s

v v
h h

g

−−
− = = =

59. (a) We use the Bernoulli equation:  

2 21 1
1 1 1 2 2 22 2

p v gh p v ghρ ρ ρ ρ+ + = + + ,



60. (a) The speed v of the fluid flowing out of the hole satisfies 21
2

 or 2v gh v ghρ ρ= = .

Thus, ρ1v1A1 = ρ2v2A2, which leads to 

1 2
1 1 2 2

2 1

2 2 2.
A

ghA ghA
A

ρ
ρ ρ

ρ
= = =

(b) The ratio of volume flow is 

1 1 1 1

2 2 2 2

1

2

R v A A

R v A A
= = =

(c) Letting R1/R2 = 1, we obtain 1 2 2 1 1 22v v A A h h= = =  Thus 

2 1 4 (12.0 cm)/4 3.00 cmh h= = = .



( )
F

W Fd Ad pV
A

= = =

where V is the volume of the water being forced through, and p is to be interpreted as the 

pressure difference between the two ends of the pipe. Thus, 

5 3 5(1.0 10 Pa) (1.4 m ) 1.4 10 J.W = × = ×

61. We rewrite the formula for work W (when the force is constant in a direction parallel 

to the displacement d) in terms of pressure: 



62. (a) The volume of water (during 10 minutes) is 

( ) ( ) ( ) ( ) ( )
2 3

1 1 15m s 10min 60s min 0.03m 6.4m .
4

V v t A
π

= = =

(b) The speed in the left section of pipe is 

( )
2 2

1 1
2 1 1

2 2

3.0cm
15m s 5.4m s.

5.0cm

A d
v v v

A d
= = = =

(c) Since 2 21 1
1 1 1 2 2 2 1 2 1 02 2

 and ,p v gh p v gh h h p pρ ρ ρ ρ+ + = + + = = , which is the 

atmospheric pressure, 

( ) ( ) ( ) ( )
2 22 2 5 3 3

2 0 1 2

5

1 1
1.01 10 Pa 1.0 10 kg m 15m s 5.4 m s

2 2

1.99 10 Pa 1.97 atm.

p p v vρ= + − = × + × −

= × =

Thus, the gauge pressure is (1.97 atm – 1.00 atm) = 0.97 atm = 9.8 × 10
4
 Pa. 



63. (a) The friction force is

3 3 2 2(1.0 10  kg/m ) (9.8 m/s ) (6.0m) (0.040 m) 74 N.
4

f A p gdAωρ
π

= ∆ = = × =

(b) The speed of water flowing out of the hole is v = 2 .gd  Thus, the volume of water 

flowing out of the pipe in t = 3.0 h is 

2
2 2 2 3(0.040 m) 2(9.8 m/s ) (6.0 m)  (3.0 h) (3600 s/h) 1.5 10 m .

4
V Avt

π
= = = ×



(b) Using Bernoulli’s equation (in the form Eq. 14-30) we find the pressure difference 

may be written in the form a straight line: mx + b where x is inverse-area-squared (the 

horizontal axis in the graph), m is the slope, and b is the intercept (seen to be –300 

kN/m
2
).  Specifically, Eq. 14-30 predicts that b should be  – 

1

2
ρ v2

2
.  Thus, with ρ = 1000 

kg/m
3
 we obtain v2 = 600  m/s.  Then the volume flow rate (see Eq. 14-24) is

R = A2 v2 = (0.25 m
2
)( 600  m/s) =  6.12 m

3
/s.

If the more accurate value (see Table 14-1) ρ = 998 kg/m
3
is used, then the answer is 6.13 

m
3
/s.

64. (a) We note (from the graph) that the pressures are equal when the value of inverse-

area-squared is 16 (in SI units).  This is the point at which the areas of the two pipe 

sections are equal.  Thus, if A1 = 1/ 16  when the pressure difference is zero, then A2 is 

0.25 m
2
.



Thus, one root is related to the other (generically labeled h' and h) by h' = H – h. Its 

numerical value is ' 40cm  10 cm 30 cm.h = − =

(c) We wish to maximize the function f = x
2
 = 4h(H – h). We differentiate with respect to 

h and set equal to zero to obtain

4 8 0
2

df H
H h h

dh
= − = =

or h = (40 cm)/2 = 20 cm, as the depth from which an emerging stream of water will 

travel the maximum horizontal distance. 

65. (a) Since Sample Problem 14-8 deals with a similar situation, we use the final 

equation (labeled “Answer”) from it: 

02    for the projectile motion.v gh v v= =

The stream of water emerges horizontally (θ0 = 0° in the notation of Chapter 4), and 

setting y – y0 = –(H – h) in Eq. 4-22, we obtain the “time-of-flight”  

2( ) 2
( ).

H h
t H h

g g

− −
= = −

−

Using this in Eq. 4-21, where x0 = 0 by choice of coordinate origin, we find  

0

2( )
2 2 ( ) 2 (10 cm)(40 cm 10 cm) 35 cm.

H h
x v t gh h H h

g

−
= = = − = − =

(b) The result of part (a) (which, when squared, reads x
2
 = 4h(H – h)) is a quadratic 

equation for h once x and H are specified. Two solutions for h are therefore 

mathematically possible, but are they both physically possible? For instance, are both 

solutions positive and less than H? We employ the quadratic formula: 

2 2 2
2 0

4 2

x H H x
h Hh h

± −
− + = =

which permits us to see that both roots are physically possible, so long as x < H. Labeling 

the larger root h1 (where the plus sign is chosen) and the smaller root as h2 (where the 

minus sign is chosen), then we note that their sum is simply  

2 2 2 2

1 2 .
2 2

H H x H H x
h h H

+ − − −
+ = + =



66. By Eq. 14-23, we note that the speeds in the left and right sections are  
1

4
vmid and  

1

9

vmid, respectively, where vmid = 0.500 m/s.  We also note that 0.400 m
3
 of water has a 

mass of 399 kg (see Table 14-1). Then Eq. 14-31 (and the equation below it) gives 

W = 
1

2
m vmid

2 1

92 −
1

42  =  –2.50 J . 



67. (a) The continuity equation yields Av = aV, and Bernoulli’s equation yields 
2 21 1

2 2
p v Vρ ρ∆ + = , where ∆p = p1 – p2. The first equation gives V = (A/a)v. We use this 

to substitute for V in the second equation, and obtain ( )
22 21 1

2 2
p v A a vρ ρ∆ + = . We 

solve for v. The result is

( ) ( )

2

2 2 2

2 2
.

( / ) 1

p a p
v

A a A aρ ρ

∆ ∆
= =

− −

(b) We substitute values to obtain  

( )

4 2 2 3 3

3 4 2 2 4 2 2

2(32 10 m ) (55 10 Pa 41 10 Pa)
3.06m/s.

(1000kg / m ) (64 10 m ) (32 10 m )
v

−

− −

× × − ×
= =

× − ×

Consequently, the flow rate is

4 2 2 3(64 10 m )(3.06 m/s) 2.0 10 m / s.Av − −= × = ×



(b) And the equation of continuity yields V = (A/a)v = (5a/a)v = 5v = 21 m/s. 

(c) The flow rate is given by

4 2 3 3(5.0 10 m ) (4.1 m/s) 8.0 10 m / s.
4

Av − −π
= × = ×

68. We use the result of part (a) in the previous problem. 

(a) In this case, we have ∆p = p1 = 2.0 atm. Consequently,  

5

2 3 2

2 4(1.01 10 Pa)
4.1m/s.

(( / ) 1) (1000 kg/m ) [(5 / ) 1]

p
v

A a a aρ

∆ ×
= = =

− −



69. (a) This is similar to the situation treated in Sample Problem 14-7, and we refer to 

some of its steps (and notation). Combining Eq. 14-35 and Eq. 14-36 in a manner very 

similar to that shown in the textbook, we find 

( )1 2 2 2

1 2

2 p
R A A

A Aρ

∆
=

−

for the flow rate expressed in terms of the pressure difference and the cross-sectional 

areas. Note that this reduces to Eq. 14-38 for the case A2 = A1/2 treated in the Sample 

Problem. Note that ∆p = p1 – p2 = –7.2 × 10
3
 Pa and 2 2 3 4

1 2 8.66 10 mA A −− = − × , so that 

the square root is well defined. Therefore, we obtain R = 0.0776 m
3
/s.

(b) The mass rate of flow is ρR = 69.8 kg/s. 



70. (a) Bernoulli’s equation gives 21
air2

But A B A Bp p v p p p ghρ ρ= + ⋅ ∆ = − = in order to 

balance the pressure in the two arms of the U-tube. Thus 21
air2

gh vρ ρ= , or

air

2
.

gh
v

ρ

ρ
=

(b) The plane’s speed relative to the air is  

( )3 2

3

air

2 810 kg/m (9.8m/s ) (0.260 m)2
63.3m/s.

1.03kg/m

gh
v

ρ

ρ
= = =



71. We use the formula for v obtained in the previous problem: 

2

3

air

2 2(180Pa)
1.1 10 m/s.

0.031kg/m

p
v

ρ

∆
= = = ×



When the water level rises to height h2, just on the verge of flooding, 2v , the speed of 

water in pipe M , is given by 

2

1 2 2 2 1 2

1
( )    2 ( ) 13.86 m/s.

2
g h h v v g h hρ ρ− = = − =

By continuity equation, the corresponding rainfall rate is  

2
52

1 2

1

(0.030 m)
(13.86 m/s) 2.177 10  m/s 7.8 cm/h.

(30 m)(60 m)

A
v v

A

π −= = = × ≈

72. We use Bernoulli’s equation 2 21 1
1 1 1 2 2 22 2

p v gh p v ghρ ρ ρ ρ+ + = + + .



73. The normal force NF  exerted (upward) on the glass ball of mass m has magnitude 

0.0948 N.  The buoyant force exerted by the milk (upward) on the ball has magnitude  

Fb = ρmilk g V 

where V = 
4

3
π r

3
  is the volume of the ball.  Its radius is r = 0.0200 m. The milk density is 

ρmilk = 1030 kg/m
3
.  The (actual) weight of the ball is, of course, downward, and has 

magnitude  Fg = mglass g.  Application of Newton's second law (in the case of zero 

acceleration) yields 

FN + ρmilk g V − mglass g = 0

which leads to mglass = 0.0442 kg.  We note the above equation is equivalent to Eq.14-19 

in the textbook. 



74. The volume rate of flow is R = vA where A = πr
2
 and r = d/2. Solving for speed, we 

obtain

2 2

4
.

( / 2)

R R R
v

A d dπ π
= = =

(a) With R = 7.0 × 10
–3

 m
3
/s and d = 14 × 10

–3
 m, our formula yields v = 45 m/s, which is 

about 13% of the speed of sound (which we establish by setting up a ratio: v/vs where vs = 

343 m/s).  

(b) With the contracted trachea (d = 5.2 × 10
–3

 m) we obtain v = 330 m/s, or 96% of the 

speed of sound.



where h = 8.00 cm = 0.0800 m, and Eq. 14-9 has been used.  Thus, the height of the 

water column (as measured from that level) is hw = (800/998)(8.00 cm) = 6.41 cm.  The 

volume of water in that column is therefore  

V = πr
2
hw = π(1.50 cm)

2
(6.41 cm) = 45.3 cm

3
.

75. If we examine both sides of the U-tube at the level where the low-density liquid (with 

ρ = 0.800 g/cm
3
 = 800 kg/m

3
) meets the water (with ρw = 0.998 g/cm

3
 = 998 kg/m

3
), then 

the pressures there on either side of the tube must agree: 

ρgh = ρwghw



76. Since (using Eq. 5-8)  Fg  = mg = ρskier g V and (Eq. 14-16) the buoyant force is Fb = 

ρsnow g V, then their ratio is 

Fb

Fg
 =

ρsnow g V

ρskier g V
  =

ρsnow

ρskier
  = 

96

1020
 = 0.094  (or 9.4%). 



77. (a) We consider a point D on the surface of the liquid in the container, in the same 

tube of flow with points A, B and C. Applying Bernoulli’s equation to points D and C, we 

obtain

2 21 1

2 2
D D D C C Cp v gh p v ghρ ρ ρ ρ+ + = + +

which leads to 

2

2

2( )
2 ( ) 2 ( )D C

C D C D

p p
v g h h v g d h

ρ

−
= + − + ≈ +

where in the last step we set pD = pC =  pair and vD/vC ≈ 0. Plugging in the values, we 

obtain

22(9.8 m/s )(0.40 m  0.12 m) 3.2 m/s.cv = + =

(b) We now consider points B and C:

2 21 1
.

2 2
B B B C C Cp v gh p v ghρ ρ ρ ρ+ + = + +

Since vB = vC by equation of continuity, and pC = pair, Bernoulli’s equation becomes 

air 1 2

5 3 3 2

4

( ) ( )

1.0 10  Pa (1.0 10 kg/m )(9.8 m/s )(0.25 m  0.40 m  0.12 m)

9.2 10  Pa.

B C C Bp p g h h p g h h dρ ρ= + − = − + +

= × − × + +

= ×

(c) Since pB ≥ 0, we must let pair – ρg(h1 + d + h2) ≥ 0, which yields 

air air
1 1,max 2 10.3 m.

p p
h h d h

ρ ρ
≤ = − − ≤ =



78. To be as general as possible, we denote the ratio of body density to water density as f

(so that f = ρ/ρw = 0.95 in this problem). Floating involves equilibrium of vertical forces 

acting on the body (Earth’s gravity pulls down and the buoyant force pushes up). Thus, 

b g w wF F gV gVρ ρ= =

where V is the total volume of the body and Vw is the portion of it which is submerged.  

(a) We rearrange the above equation to yield  

w

w

V
f

V

ρ

ρ
= =

which means that 95% of the body is submerged and therefore 5.0% is above the water 

surface.

(b) We replace ρw with 1.6ρw in the above equilibrium of forces relationship, and find

1.6 1.6

w

w

V f

V

ρ

ρ
= =

which means that 59% of the body is submerged and thus 41% is above the quicksand 

surface.

(c) The answer to part (b) suggests that a person in that situation is able to breathe. 



79. We note that in “gees” (where acceleration is expressed as a multiple of g) the given 

acceleration is 0.225/9.8 = 0.02296. Using m = ρV, Newton’s second law becomes 

ρwatVg – ρbubVg = ρbubVa ρbub = ρwat (1 + “a”)

where in the final expression “a” is to be understood to be in “gees.”  Using ρwat = 998 

kg/m
3
  (see Table 14-1) we find ρbub = 975.6 kg/m

3
.  Using volume V = 

4

3
πr

3
 for the 

bubble, we then find its mass: mbub = 5.11 × 10
−7

 kg. 



80. The downward force on the balloon is mg and the upward force is Fb = ρoutVg.

Newton’s second law (with m = ρinV) leads to 

out
out in in

in

1 .Vg Vg Va g a
ρ

ρ ρ ρ
ρ

− = − =

The problem specifies ρout / ρin = 1.39 (the outside air is cooler and thus more dense than 

the hot air inside the balloon). Thus, the upward acceleration is (1.39 – 1.00)(9.80 m/s
2
) = 

3.82 m/s
2
.



81. We consider the can with nearly its total volume submerged, and just the rim above 

water. For calculation purposes, we take its submerged volume to be V = 1200 cm
3
. To 

float, the total downward force of gravity (acting on the tin mass mt and the lead mass 

m ) must be equal to the buoyant force upward: 

3 3( ) (1g/cm ) (1200 cm ) 130 gt wm m g Vg mρ+ = = −

which yields 1.07×10
3
 g for the (maximum) mass of the lead (for which the can still 

floats). The given density of lead is not used in the solution. 



82. If the mercury level in one arm of the tube is lowered by an amount x, it will rise by x

in the other arm. Thus, the net difference in mercury level between the two arms is 2x,

causing a pressure difference of ∆p = 2ρHggx, which should be compensated for by the 

water pressure pw = ρwgh, where h = 11.2 cm. In these units, ρw = 1.00 g/cm
3
 and ρHg =  

13.6 g/cm
3
 (see Table 14-1). We obtain 

3

3

Hg

(1.00 g/cm ) (11.2 cm)
0.412 cm.

2 2(13.6 g/cm )

w gh
x

g

ρ

ρ
= = =



83. Neglecting the buoyant force caused by air, then the 30 N value is interpreted as the 

true weight W of the object. The buoyant force of the water on the object is therefore  

(30 – 20) N = 10 N, which means 

3 3

3 2

10 N
1.02 10 m

(1000 kg/m ) (9.8m/s )
b wF Vg Vρ −= = = ×

is the volume of the object. When the object is in the second liquid, the buoyant force is 

(30 – 24) N = 6.0 N, which implies 

2 3

2 2 3 3

6.0 N
6.0 10 kg/m .

(9.8 m/s ) (1.02 10 m )
ρ

−
= = ×

×



for the fraction of volume submerged of a floating object. When the liquid is water, as 

described in this problem, this relation leads to 

1
w

ρ

ρ
=

since the object “floats fully submerged” in water (thus, the object has the same density 

as water). We assume the block maintains an “upright” orientation in each case (which is 

not necessarily realistic). 

(a) For liquid A,

1

2A

ρ

ρ
=

so that, in view of the fact that ρ = ρw, we obtain ρA/ρw = 2. 

(b) For liquid B, noting that two-thirds above means one-third below,

1

3B

ρ

ρ
=

so that ρB/ρw = 3. 

(c) For liquid C, noting that one-fourth above means three-fourths below,

3

4C

ρ

ρ
=

so that ρC/ρw = 4/3. 

84. An object of mass m = ρV floating in a liquid of density ρliquid is able to float if the 

downward pull of gravity mg is equal to the upward buoyant force Fb = ρliquidgVsub where 

Vsub is the portion of the object which is submerged. This readily leads to the relation: 

sub

iquidl

V

V

ρ

ρ
=



85. Equilibrium of forces (on the floating body) is expressed as 

body liqui d submerged body totalbF m g gV gVρ ρ= =

which leads to 

submerged body

total liquid

.
V

V

ρ

ρ
=

We are told (indirectly) that two-thirds of the body is below the surface, so the fraction 

above is 2/3. Thus, with ρbody = 0.98 g/cm
3
, we find ρliquid ≈ 1.5 g/cm

3
 — certainly much 

more dense than normal seawater (the Dead Sea is about seven times saltier than the 

ocean due to the high evaporation rate and low rainfall in that region). 



Chapter 15 
 



1. The textbook notes (in the discussion immediately after Eq. 15-7) that the acceleration 

amplitude is am = ω2
xm, where ω is the angular frequency (ω = 2πf since there are 2π

radians in one cycle). Therefore, in this circumstance, we obtain 

( )( ) ( )
22 2 2(2 ) 2 6.60 Hz 0.0220 m 37.8 m/s .m m ma x f xω π π= = = =
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2. (a) The angular frequency ω is given by ω = 2πf = 2π/T, where f is the frequency and T

is the period. The relationship f = 1/T was used to obtain the last form. Thus  

ω = 2π/(1.00 × 10–
5
 s) = 6.28 × 10

5
 rad/s. 

(b) The maximum speed vm and maximum displacement xm are related by vm = ωxm, so 

 = =
1.00 10

6.28 10
= 1.59 10 . 

3

5

3x
v

m
m

ω

×

×
× − m / s

 rad / s
 m  



3. (a) The amplitude is half the range of the displacement, or xm = 1.0 mm. 

(b) The maximum speed vm is related to the amplitude xm by vm = ωxm, where ω is the 

angular frequency. Since ω = 2πf, where f is the frequency, 

( )( )3= 2 = 2 120 Hz 1.0 10  m = 0.75 m/s.m mv fxπ π −×

(c) The maximum acceleration is 

( ) ( )( ) ( )
222 3 2 2= = 2 = 2 120 Hz 1.0 10  m = 5.7 10  m/s .m m ma x f xω π π −× ×



(b) Using Eq. 15-12, we obtain 

( )( )
22 2    0.12kg 10  rad/s 1.2 10 N/m.

k
k m

m
ω ω π= = = = ×

4. (a) The acceleration amplitude is related to the maximum force by Newton’s second 

law: Fmax = mam. The textbook notes (in the discussion immediately after Eq. 15-7) that 

the acceleration amplitude is am = ω2
xm, where ω is the angular frequency (ω = 2πf since 

there are 2π radians in one cycle). The frequency is the reciprocal of the period: f = 1/T = 

1/0.20 = 5.0 Hz, so the angular frequency is ω = 10π (understood to be valid to two 

significant figures). Therefore, 

 = = 0.12 10 0.085 = 10 . 2 2
F m xmmax  kg  rad / s  m  Nω b gb g b gπ



5. (a) During simple harmonic motion, the speed is (momentarily) zero when the object is 

at a “turning point” (that is, when x = +xm or x = –xm). Consider that it starts at x = +xm

and we are told that t = 0.25 second elapses until the object reaches x = –xm. To execute a 

full cycle of the motion (which takes a period T to complete), the object which started at x

= +xm must return to x = +xm (which, by symmetry, will occur 0.25 second after it was at 

x = –xm). Thus, T = 2t = 0.50 s. 

(b) Frequency is simply the reciprocal of the period: f = 1/T = 2.0 Hz. 

(c) The 36 cm distance between x = +xm and x = –xm is 2xm. Thus, xm = 36/2 = 18 cm. 



6. (a) Since the problem gives the frequency f = 3.00 Hz, we have ω = 2πf = 6π rad/s 

(understood to be valid to three significant figures). Each spring is considered to support 

one fourth of the mass mcar so that Eq. 15-12 leads to 

( )( )
2 5

car

1
      1450kg 6  rad/s 1.29 10 N/m.

/ 4 4

k
k

m
ω π= = = ×

(b) If the new mass being supported by the four springs is mtotal = [1450 + 5(73)] kg = 

1815 kg, then Eq. 15-12 leads to 

5

new new

total

1 1.29 10  N/m
     2.68Hz.

/ 4 2 (1815 / 4) kg

k
f

m
ω

π

×
= = =



7. (a) The motion repeats every 0.500 s so the period must be T = 0.500 s. 

(b) The frequency is the reciprocal of the period: f = 1/T = 1/(0.500 s) = 2.00 Hz. 

(c) The angular frequency ω is ω = 2πf = 2π(2.00 Hz) = 12.6 rad/s. 

(d) The angular frequency is related to the spring constant k and the mass m by 

ω = k m . We solve for k and obtain

k = mω2
 = (0.500 kg)(12.6 rad/s)

2
 = 79.0 N/m. 

(e) Let xm be the amplitude. The maximum speed is  

vm = ωxm = (12.6 rad/s)(0.350 m) = 4.40 m/s. 

(f) The maximum force is exerted when the displacement is a maximum and its 

magnitude is given by Fm = kxm = (79.0 N/m)(0.350 m) = 27.6 N. 



8. (a) The problem describes the time taken to execute one cycle of the motion. The 

period is T = 0.75 s. 

(b) Frequency is simply the reciprocal of the period: f = 1/T ≈ 1.3 Hz, where the SI unit 

abbreviation Hz stands for Hertz, which means a cycle-per-second. 

(c) Since 2π radians are equivalent to a cycle, the angular frequency ω (in radians-per-

second) is related to frequency f by ω = 2πf so that ω ≈ 8.4 rad/s. 



9. The magnitude of the maximum acceleration is given by am = ω2
xm, where ω is the 

angular frequency and xm is the amplitude.  

(a) The angular frequency for which the maximum acceleration is g is given by 

ω = g xm/ , and the corresponding frequency is given by 

2

6

1 1 9.8 m/s
498  Hz.

2 2 2 1.0 10 mm

g
f

x

ω

π π π −
= = = =

×

(b) For frequencies greater than 498 Hz, the acceleration exceeds g for some part of the 

motion.



10. We note (from the graph) that xm = 6.00 cm.  Also the value at t = 0 is xo = − 2.00 cm.   

Then Eq. 15-3 leads to  

 

φ = cos
−1

(−2.00/6.00) = +1.91 rad or – 4.37 rad. 

The other “root” (+4.37 rad) can be rejected on the grounds that it would lead to a 

positive slope at t = 0. 



 = = 3 6.0 3 2.0 +
3

= 2.7 10 . 
2 2 2a

dv

dt
−

F
HG

I
KJ − ×π π

πb g b g b gcos  m / s  

(d) In the second paragraph after Eq. 15-3, the textbook defines the phase of the motion. 

In this case (with t = 2.0 s) the phase is 3π(2.0) + π/3 ≈ 20 rad. 

(e) Comparing with Eq. 15-3, we see that ω = 3π rad/s. Therefore, f = ω/2π = 1.5 Hz. 

(f) The period is the reciprocal of the frequency: T = 1/f ≈ 0.67 s. 

11. (a) Making sure our calculator is in radians mode, we find 

 = 6.0 3 2.0 +
3

= 3.0 . x cos  mπ
πb gF

HG
I
KJ

(b) Differentiating with respect to time and evaluating at t = 2.0 s, we find 

 = = 3 6.0 3 2.0 +
3

= 49 . v
dx

dt
−

F
HG

I
KJ −π

πb g b gsin  m / sπ

(c) Differentiating again, we obtain 



12. We note (from the graph) that vm = ωxm = 5.00 cm/s.  Also the value at t = 0 is vo = 

4.00 cm/s.   Then Eq. 15-6 leads to  

φ = sin
−1

(− 4.00/5.00) = – 0.927 rad or +5.36 rad. 

The other “root” (+4.07 rad) can be rejected on the grounds that it would lead to a 

positive slope at t = 0. 



13. When displaced from equilibrium, the net force exerted by the springs is –2kx acting 

in a direction so as to return the block to its equilibrium position (x = 0). Since the 

acceleration 2 2/a d x dt= , Newton’s second law yields 

 = 2 . 
2

2
m

d x

dt
kx−

Substituting x = xm cos(ωt + φ) and simplifying, we find 

 =
22ω

k

m

where ω is in radians per unit time. Since there are 2π radians in a cycle, and frequency f

measures cycles per second, we obtain 

1 2 1 2(7580 N/m)
= = 39.6 Hz.

2 2 2 0.245 kg

k
f

m

ω

π π π
= =



( )1

0.200 kg 0.600 kg
| | 8.00 m/s 4.00 m/s

0.200 kg 0.600 kg
fv

−
= =

+
.

This becomes the initial speed v0 of the projectile motion of block 1.  A variety of choices 

for the positive axis directions are possible, and we choose left as the +x direction and 

down as the +y direction, in this instance.  With the “launch” angle being zero, Eq. 4-21 

and Eq. 4-22 (with  –g replaced with  +g) lead to 

0 0 0 2

2 2(4.90 m)
(4.00 m/s)

9.8 m/s

h
x x v t v

g
− = = = .

Since x – x0 = d, we arrive at d = 4.00 m. 

14. The statement that “the spring does not affect the collision” justifies the use of elastic 

collision formulas in section 10-5.  We are told the period of SHM so that we can find the 

mass of block 2: 
2

2
2 2

2      0.600 kg.
4

m kT
T m

k
π

π
= = =

At this point, the rebound speed of block 1 can be found from Eq. 10-30:



15. (a) Eq. 15-8 leads to 
2

2 123 m/s
35.07 rad/s .

0.100 m

a
a x

x
ω ω

−
= − = = =

Therefore, f = ω/2π = 5.58 Hz. 

(b) Eq. 15-12 provides a relation between ω (found in the previous part) and the mass: 

2

400 N/m
=     0.325kg.

(35.07 rad/s)

k
m

m
ω = =

(c) By energy conservation, 1
2

2kxm  (the energy of the system at a turning point) is equal to 

the sum of kinetic and potential energies at the time t described in the problem. 

1

2
=

1

2
+

1

2
= + . 2 2 2 2 2kx mv kx x

m

k
v xm m

Consequently, 2 2(0.325 kg / 400 N/m)(13.6 m/s) (0.100 m) 0.400m.mx = + =



( )
1 1 1

cos 0.503 0 cos(0.503 )
4 2 2

d d t t= + =

which has t = 2.08 h as the smallest positive root. The calculator is in radians mode 

during this calculation. 

16. From highest level to lowest level is twice the amplitude xm of the motion. The period 

is related to the angular frequency by Eq. 15-5. Thus,  x dm = 1
2  and ω = 0.503 rad/h. The 

phase constant φ in Eq. 15-3 is zero since we start our clock when xo = xm (at the highest 

point). We solve for t when x is one-fourth of the total distance from highest to lowest 

level, or (which is the same) half the distance from highest level to middle level (where 

we locate the origin of coordinates). Thus, we seek t when the ocean surface is at 

x x dm= =1
2

1
4 . With cos( )mx x tω φ= + , we obtain 



17. The maximum force that can be exerted by the surface must be less than µsFN or else 

the block will not follow the surface in its motion. Here, μs is the coefficient of static 

friction and FN is the normal force exerted by the surface on the block. Since the block 

does not accelerate vertically, we know that FN = mg, where m is the mass of the block. If 

the block follows the table and moves in simple harmonic motion, the magnitude of the 

maximum force exerted on it is given by  

F = mam = mω2
xm = m(2πf)

2
xm,

where am is the magnitude of the maximum acceleration, ω is the angular frequency, and 

f is the frequency. The relationship ω = 2πf was used to obtain the last form. We 

substitute F = m(2πf)
2
xm and FN = mg into F < μsFN to obtain m(2πf)

2
xm < μsmg. The 

largest amplitude for which the block does not slip is 

 =
2

=
0.50 9.8

2 2.0
0 031

2

2

2
x

g

f
m

sµ

π πb g
b gc h
b g

 m / s

 Hz×
= . .m

A larger amplitude requires a larger force at the end points of the motion. The surface 

cannot supply the larger force and the block slips. 



18. They pass each other at time t, at x x xm1 2
1
2= =  where 

x x t x x tm m1 1 2 2= + = +cos( ) cos( ).ω φ ω φand

From this, we conclude that cos( ) cos( )ω φ ω φt t+ = + =1 2
1
2 , and therefore that the phases 

(the arguments of the cosines) are either both equal to π/3 or one is π/3 while the other 

is –π/3. Also at this instant, we have v1 = –v2 0  where

v x t v x tm m1 1 2 2= − + = − +ω ω φ ω ω φsin( ) sin( ).and

This leads to sin(ωt + φ1) = – sin(ωt + φ 2). This leads us to conclude that the phases have 

opposite sign. Thus, one phase is π/3 and the other phase is –π /3; the wt term cancels if 

we take the phase difference, which is seen to be π /3 – (–π /3) = 2π /3. 



be the coordinate as a function of time for particle 1 and 

 =
2

2
+

6
2x

A t

T
cos

π πF
HG

I
KJ

be the coordinate as a function of time for particle 2. Here T is the period. Note that since 

the range of the motion is A, the amplitudes are both A/2. The arguments of the cosine 

functions are in radians. Particle 1 is at one end of its path (x1 = A/2) when t = 0. Particle 

2 is at A/2 when 2πt/T + π/6 = 0 or t = –T/12. That is, particle 1 lags particle 2 by one-

twelfth a period. We want the coordinates of the particles 0.50 s later; that is, at t = 0.50 s, 

1

2 0.50 s
= cos = 0.25

2 1.5 s

A
x A

π ×
−

and

2

2 0.50 s
= cos + = 0.43 .

2 1.5 s 6

A
x A

π π×
−

Their separation at that time is x1 – x2 = –0.25A + 0.43A = 0.18A.

(b) The velocities of the particles are given by 

 = =
2

1
1v

dx

dt

A

T

t

T

π π
sin
F
H
I
K

and

 = =
2

+
6

.2
2v

dx

dt

A

T

t

T

π π π
sin
F
H

I
K

We evaluate these expressions for t = 0.50 s and find they are both negative-valued, 

indicating that the particles are moving in the same direction. 

19. (a) Let 

 =
2

2
1x

A t

T
cos

πF
HG
I
KJ



20. We note that the ratio of Eq. 15-6 and Eq. 15-3 is v/x = –ωtan(ωt + φ) where ω = 1.20 

rad/s in this problem.  Evaluating this at t = 0 and using the values from the graphs shown 

in the problem, we find

φ = tan
−1

(–vo/xoω) = tan
−1(+4.00/(2 × 1.20)) =1.03 rad (or –5.25 rad). 

One can check that the other “root” (4.17 rad) is unacceptable since it would give the 

wrong signs for the individual values of vo and xo.



(a) Using Eq. 15-5 and T = 1.0 s, we have 

2
= =

4
= 0.25 . 

2 2

2

π

πT
x g x

gT
m m

F
HG
I
KJ  m  

(b) Since ω = 2πf, and xm = 0.050 m is given, we find 

( )
2 1

2 =        = 2.2 Hz.
2

m

m

g
f x g f

x
π

π
=

21. Both parts of this problem deal with the critical case when the maximum acceleration 

becomes equal to that of free fall. The textbook notes (in the discussion immediately after 

Eq. 15-7) that the acceleration amplitude is am = ω2
xm, where ω is the angular frequency; 

this is the expression we set equal to g = 9.8 m/s
2
.



22. Eq. 15-12 gives the angular velocity: 

100 N/m
7.07rad/s.

2.00 kg

k

m
ω = = =

Energy methods (discussed in §15-4) provide one method of solution. Here, we use 

trigonometric techniques based on Eq. 15-3 and Eq. 15-6. 

(a) Dividing Eq. 15-6 by Eq. 15-3, we obtain 

 = +
v

x
t−ω ω φtanb g

so that the phase (ωt + φ) is found from 

( )( )
1 1 3.415 m/s

tan tan .
7.07 rad/s 0.129 m

v
t

x
ω φ

ω
− −− −

+ = =

With the calculator in radians mode, this gives the phase equal to –1.31 rad. Plugging this 

back into Eq. 15-3 leads to 0.129m cos( 1.31)    0.500m.m mx x= − =

(b) Since ωt + φ = –1.31 rad at t = 1.00 s, we can use the above value of ω to solve for the 

phase constant φ. We obtain φ = –8.38 rad (though this, as well as the previous result, can 

have 2π or 4π (and so on) added to it without changing the physics of the situation). With 

this value of φ, we find xo = xm cos φ = – 0.251 m. 

(c) And we obtain vo = –xmω sinφ = 3.06 m/s. 



to return the block to its equilibrium position (x = 0). Since the acceleration a = d
2
x/d

2
,

Newton’s second law yields

 = . 
2

2 1 2m
d x

dt
k x k x− −

Substituting x = xm cos(ωt + φ) and simplifying, we find 

 =
+2 1 2ω

k k

m

where ω is in radians per unit time. Since there are 2π radians in a cycle, and frequency f

measures cycles per second, we obtain 

 =
2

=
1

2

1 2f
k k

m

ω

π π

+
.

The single springs each acting alone would produce simple harmonic motions of 

frequency

1 2
1 2

1 1
= 30 Hz,        = 45 Hz,

2 2

k k
f f

m mπ π
= =

respectively. Comparing these expressions, it is clear that 

2 2 2 2

1 2 (30 Hz) +(45 Hz) 54 Hz.f f f= + = =

23. Let the spring constants be k1 and k2. When displaced from equilibrium, the 

magnitude of the net force exerted by the springs is |k1x + k2 x| acting in a direction so as 



24. To be on the verge of slipping means that the force exerted on the smaller block (at 

the point of maximum acceleration) is fmax = μs mg. The textbook notes (in the discussion 

immediately after Eq. 15-7) that the acceleration amplitude is am =ω2
xm, where 

ω = +k m M/ ( )  is the angular frequency (from Eq. 15-12). Therefore, using Newton’s 

second law, we have 

 =
+

=ma mg
k

m M
x gm s m sµ µ

which leads to

2( ) (0.40)(9.8 m/s )(1.8 kg 10 kg)
0.23 m 23 cm.

200 N/m

s
m

g m M
x

k

µ + +
= = = =



sin (14.0 N)sin 40.0
sin     0.0750 m

120 N/m

mg
kx mg x

k

θ
θ

°
= = = =

at equilibrium. The calculator is in degrees mode in the above calculation. The distance 

from the top of the incline is therefore (0.450 + 0.75) m = 0.525 m. 

(b) Just as with a vertical spring, the effect of gravity (or one of its components) is simply 

to shift the equilibrium position; it does not change the characteristics (such as the period) 

of simple harmonic motion. Thus, Eq. 15-13 applies, and we obtain 

214.0 N 9.80 m/s
2 0.686 s.

120 N/m
T π= =

25. (a) We interpret the problem as asking for the equilibrium position; that is, the block 

is gently lowered until forces balance (as opposed to being suddenly released and allowed 

to oscillate). If the amount the spring is stretched is x, then we examine force-components 

along the incline surface and find 



26. We wish to find the effective spring constant for the combination of springs shown in 

the figure. We do this by finding the magnitude F of the force exerted on the mass when 

the total elongation of the springs is ∆x. Then keff = F/∆x. Suppose the left-hand spring is 

elongated by ∆x  and the right-hand spring is elongated by ∆xr. The left-hand spring 

exerts a force of magnitude k x∆  on the right-hand spring and the right-hand spring exerts 

a force of magnitude  k∆xr on the left-hand spring. By Newton’s third law these must be 

equal, so ∆ ∆x xr= . The two elongations must be the same and the total elongation is 

twice the elongation of either spring: ∆ ∆x x= 2 . The left-hand spring exerts a force on 

the block and its magnitude is F k x= ∆ . Thus k k x x kreff = =∆ ∆/ /2 2 . The block 

behaves as if it were subject to the force of a single spring, with spring constant k/2. To 

find the frequency of its motion replace keff in f k m= 1 2/ /πa f eff  with k/2 to obtain 

 =
1

2 2
f

k

mπ
.

With m = 0.245 kg and k = 6430 N/m, the frequency is f = 18.2 Hz. 



27. When the block is at the end of its path and is momentarily stopped, its displacement 

is equal to the amplitude and all the energy is potential in nature. If the spring potential 

energy is taken to be zero when the block is at its equilibrium position, then 

 =
1

2
=

1

2
1.3 10 0.024 = 3.7 10 . 2 2 2 2E kxm × × − N / m  m  Jc ha f



(b) The energy as the block passes through the equilibrium position (with speed vm = 1.20 

m/s) is purely kinetic:

 =
1

2
=

2
= 1.39 . 2

2
E mv m

E

v
m

m

 kg

(c) Eq. 15-12 (divided by 2π) yields 

 =
1

2
1 91f

k

mπ
= . .Hz

28. (a) The energy at the turning point is all potential energy: E kxm= 1
2

2
 where E = 1.00 J 

and xm = 0.100 m. Thus,

 =
2

= 200 . 
2

k
E

xm

 N / m



29. The total energy is given by E kxm= 1
2

2
, where k is the spring constant and xm is the 

amplitude. We use the answer from part (b) to do part (a), so it is best to look at the 

solution for part (b) first. 

(a) The fraction of the energy that is kinetic is 

1 3
= =1 =1 = 0.75

4 4

K E U U

E E E

−
− − =

where the result from part (b) has been used. 

(b) When x xm= 1
2  the potential energy is U kx kxm= =1

2

2 1
8

2
. The ratio is 

2

2

/ 8 1
0.25.

/ 2 4

m

m

kxU

E kx
= = =

(c) Since E kxm= 1
2

2
 and U kx= 1

2

2 , U/E = x xm

2 2
. We solve x xm

2 2
 = 1/2 for x. We should 

get x xm= / 2 .



30. The total mechanical energy is equal to the (maximum) kinetic energy as it passes 

through the equilibrium position (x = 0):  

1

2
mv

2
 = 

1

2
(2.0 kg)(0.85 m/s)

2
 = 0.72 J. 

Looking at the graph in the problem, we see that U(x=10)=0.5 J. Since the potential 

function has the form 2( )U x bx= , the constant is 3 25.0 10 J/cmb −= × . Thus, U(x) = 0.72 J 

when x = 12 cm. 

(a) Thus, the mass does turn back before reaching x = 15 cm. 

(b) It turns back at x = 12 cm. 



 =
1

2

1

2

1000

5 00
2 25f

k

mπ π
= =

N / m

kg
Hz

.
. .

(b) With xo = 0.500 m, we have U kx0
1
2 0

2 125= = J .

(c) With vo = 10.0 m/s, the initial kinetic energy is K mv0
1
2 0

2 250= = J .

(d) Since the total energy E = Ko + Uo = 375 J is conserved, then consideration of the 

energy at the turning point leads to 

 =
1

2

2
= 0.866 . 2E kx x

E

k
m m =  m

31. (a) Eq. 15-12 (divided by 2π) yields 



32. We infer from the graph (since mechanical energy is conserved) that the total energy 

in the system is 6.0 J; we also note that the amplitude is apparently xm = 12 cm = 0.12 m.  

Therefore we can set the maximum potential energy equal to 6.0 J and solve for the 

spring constant k:

     
1

2
k xm

2
 = 6.0 J k = 8.3 ×10

2
 N/m . 



4 3(4.0 10 N/m)(2.0 10 m)=80 N.F kx −= = × ×

(e) At half of the maximum displacement, 1.0 mmx = , and the force is

4 3(4.0 10 N/m)(1.0 10 m)=40 N.F kx −= = × ×

33. The textbook notes (in the discussion immediately after Eq. 15-7) that the 

acceleration amplitude is am = ω2
xm, where ω is the angular frequency and xm = 0.0020 m 

is the amplitude. Thus, am = 8000 m/s
2
 leads to ω = 2000 rad/s. Using Newton’s second 

law with m = 0.010 kg, we have 

 = = + = 80 2000
3

F ma m a t tm− − −F
H

I
Kcos  N cosω φa fc h a f π

where t is understood to be in seconds. 

(a) Eq. 15-5 gives T = 2π/ω = 3.1 × 10–
3
 s. 

(b) The relation vm = ωxm can be used to solve for vm, or we can pursue the alternate 

(though related) approach of energy conservation. Here we choose the latter. By Eq. 15-

12, the spring constant is k = ω2
m = 40000 N/m. Then, energy conservation leads to 

2 21 1
=        = 4.0 m/s.

2 2
m m m m

k
kx mv v x

m
=

(c) The total energy is 1
2

2 1
2

2 0 080kx mvm m= = . J .

(d) At the maximum displacement, the force acting on the particle is  



34. We note that the ratio of Eq. 15-6 and Eq. 15-3 is v/x = −ωtan(ωt + φ) where ω is

given by Eq. 15-12.  Since the kinetic energy is 
1

2
mv

2
 and the potential energy is 

1

2
kx

2

(which may be conveniently written as  
1

2
mω2

x
2
) then the ratio of kinetic to potential 

energy is simply  

(v/x)
2
/ω2

= tan
2
(ωt + φ),

which at t = 0 is tan
2φ.  Since φ = π/6 in this problem, then the ratio of kinetic to potential 

energy at t = 0 is tan
2
(π/6) = 1/3. 



35. The problem consists of two distinct parts: the completely inelastic collision (which is 

assumed to occur instantaneously, the bullet embedding itself in the block before the 

block moves through significant distance) followed by simple harmonic motion (of mass 

m + M attached to a spring of spring constant k).

(a) Momentum conservation readily yields v´ = mv/(m + M). With m = 9.5 g, M = 5.4 kg 

and v = 630 m/s, we obtain ' 1.1 m/s.v =

(b) Since v´ occurs at the equilibrium position, then v´ = vm for the simple harmonic 

motion. The relation vm = ωxm can be used to solve for xm, or we can pursue the alternate 

(though related) approach of energy conservation. Here we choose the latter: 

( )( ) ( )
( )

2 2
2 2 2

2

1 1 1 1
'

2 2 2 2
m m

m v
m M v kx m M kx

m M
+ = + =

+

which simplifies to 

( )

3
2

3

(9.5 10 kg)(630 m/s)
3.3 10  m.

(6000 N/m)(9.5 10 kg  5.4kg)
m

mv
x

k m M

−
−

−

×
= = = ×

+ × +



block 2 is x = xmcos(ωt + φ) where φ = π/2 which gives x = xmcos(π/2 + π/2) =  –xm.  This 

means block 2 is at a turning point in its motion (and thus has zero speed right before the 

impact occurs); this means, too, that the spring is stretched an amount of 1 cm = 0.01 m 

at this moment.  To calculate its after-collision speed (which will be the same as that of 

block 1 right after the impact, since they stick together in the process) we use momentum 

conservation and obtain v = (4.0 kg)(6.0 m/s)/(6.0 kg) = 4.0 m/s. Thus, at the end of the 

impact itself (while block 1 is still at the same position as before the impact) the system 

(consisting now of a total mass M = 6.0 kg) has kinetic energy

K = 
1

2
(6.0 kg)(4.0 m/s)

2
 = 48 J 

and potential energy

U =
1

2
kx

2
 =

1

2
(1.97 × 10

5
 N/m)(0.010 m)

2 ≈ 10 J, 

meaning the total mechanical energy in the system at this stage is approximately E = K + 

U = 58 J.  When the system reaches its new turning point (at the new amplitude X ) then 

this amount must equal its (maximum) potential energy there: E =  
1

2
(1.97 ×10

5
 N/m) X

 2
.

Therefore, we find   

5

2 2(58 J)
0.024 m

1.97 10 N/m

E
X

k
= = =

×
.

36. We note that the spring constant is  

k = 4π2
m1/T

2
 = 1.97 × 10

5
 N/m. 

It is important to determine where in its simple harmonic motion (which “phase” of its 

motion) block 2 is when the impact occurs.  Since ω = 2π/T  and the given value of t

(when the collision takes place) is one-fourth of T, then  ωt = π/2 and the location then of 



( )( ) ( )
2

22 2 2 9.8m/s
2 2 2 9.8m/s 0.080 m 0.080 m

0.050 m

0.56 m/s

k g
v gy y gy y

m
= − = − = −

=

(c) Let m be the original mass and ∆m be the additional mass. The new angular frequency 

is ′ = +ω k m m/ ( )∆ . This should be half the original angular frequency, or 1
2 k m . We 

solve k m m k m/ ( ) /+ =∆ 1
2  for m. Square both sides of the equation, then take the 

reciprocal to obtain m + ∆m = 4m. This gives

m = ∆m/3 = (300 g)/3 = 100 g = 0.100 kg. 

(d) The equilibrium position is determined by the balancing of the gravitational and 

spring forces: ky = (m + ∆m)g. Thus y = (m + ∆m)g/k. We will need to find the value of 

the spring constant k. Use k = mω2
 = m(2π f )

2
. Then 

( )

( )

( )( )
( )( )

2

2 2

0.100 kg 0.300 kg 9.80 m/s+
= 0.200 m.

2 0.100 kg 2 2.24 Hz

m m g
y

m fπ π

+∆
=

×

This is measured from the initial position. 

37. (a) The object oscillates about its equilibrium point, where the downward force of 

gravity is balanced by the upward force of the spring. If  is the elongation of the spring 

at equilibrium, then k mg= , where k is the spring constant and m is the mass of the 

object. Thus k m g=  and

f k m g= = =ω 2 1 2 1 2π π πa f a f .

Now the equilibrium point is halfway between the points where the object is momentarily 

at rest. One of these points is where the spring is unstretched and the other is the lowest 

point, 10 cm below. Thus = =5 0 0 050. .cm m and 

21 9.8  m/s
2.2 Hz.

2 0.050 m
f

π
= =

(b) Use conservation of energy. We take the zero of gravitational potential energy to be at 

the initial position of the object, where the spring is unstretched. Then both the initial 

potential and kinetic energies are zero. We take the y axis to be positive in the downward 

direction and let y = 0.080 m. The potential energy when the object is at this point is 

U ky mgy= −1
2

2 . The energy equation becomes 0 1
2

2 1
2

2= − +ky mgy mv . We solve for the 

speed:



38. From Eq. 15-23 (in absolute value) we find the torsion constant: 

0.20 N m
0.235 N m/rad .

0.85 rad

τ
κ

θ

⋅
= = = ⋅

With I = 2mR
2
/5 (the rotational inertia for a solid sphere — from Chapter 11), Eq. 15–23 

leads to

( )( )
22 22

55
95 kg 0.15 m

2 2 12 s.
0.235 N m/rad

mR
T π π

κ
= = =

⋅



( ) ( ) ( )
22sin 2 1 cos 2 1 1 2 3 2t T t Tπ π= − = − =

where the trigonometric identity cos
2θ + sin

2θ = 1 is used. Thus, 

 =
2 2

=
2

0.500

3

2
= 34.2 . Ω − F

H
I
K −FH

I
K

F
HG
I
KJ −

π π π
π

T

t

T
mθ sin

 s
 rad  rad / sa f

During another portion of the cycle its angular speed is +34.2 rad/s when its angular 

displacement is π/2 rad. 

(c) The angular acceleration is 

( )
2 22

2

2 2
cos 2 / .m

d
t T

dt T T

θ π π
α θ π θ= = − = −

When θ = π/4, 
2

22
= 124 rad/s ,

0.500 s 4

π π
α = − −

or 2| | 124 rad/s .α =

39. (a) We take the angular displacement of the wheel to be θ = θm cos(2πt/T), where θm

is the amplitude and T is the period. We differentiate with respect to time to find the 

angular velocity: Ω  = –(2π/T)θmsin(2πt/T). The symbol Ω  is used for the angular 

velocity of the wheel so it is not confused with the angular frequency. The maximum 

angular velocity is

( )( )2  rad2
39.5 rad/s.

0.500 s

m
m

T

π ππθ
Ω = = =

(b) When θ = π/2, then θ/θm = 1/2, cos(2πt/T) = 1/2, and 



40. (a) Comparing the given expression to Eq. 15-3 (after changing notation x → θ ), we 

see that ω = 4.43 rad/s.  Since ω = g/L  then we can solve for the length: L = 0.499 m. 

(b) Since vm = ωxm = ωLθm = (4.43 rad/s)(0.499 m)(0.0800 rad) and m = 0.0600 kg, then 

we can find the maximum kinetic energy: 
1

2
mvm

2
 = 9.40 × 10

− 4
J.



41. (a) Referring to Sample Problem 15-5, we see that the distance between P and C is 

h L L L= − =2
3

1
2

1
6 . The parallel axis theorem (see Eq. 15–30) leads to 

 =
1

12
+ =

1

12
+

1

36
=

1

9
.2 2 2 2I mL mh mL mL

F
H

I
K

Eq. 15-29 then gives

T
I

mgh

L

gL

L

g
= = =2 2

9

6
2

2

3

2

π π π
/

/

which yields T = 1.64 s for L = 1.00 m. 

(b) We note that this T is identical to that computed in Sample Problem 15-5. As far as 

the characteristics of the periodic motion are concerned, the center of oscillation provides 

a pivot which is equivalent to that chosen in the Sample Problem (pivot at the edge of the 

stick). 



42. We require 

T
L

g

I

mgh

o= =2 2π π

similar to the approach taken in part (b) of Sample Problem 15-5, but treating in our case 

a more general possibility for I. Canceling 2π, squaring both sides, and canceling g leads 

directly to the result; Lo = I/mh.



43. (a) A uniform disk pivoted at its center has a rotational inertia of 21
2

Mr , where M is 

its mass and r is its radius. The disk of this problem rotates about a point that is displaced 

from its center by r+ L, where L is the length of the rod, so, according to the parallel-axis 

theorem, its rotational inertia is 2 21 1
2 2

( )Mr M L r+ + . The rod is pivoted at one end and 

has a rotational inertia of mL
2
/3, where m is its mass. The total rotational inertia of the 

disk and rod is 

2 2 2

2 2 2

2

1 1
( )

2 3

1 1
(0.500kg)(0.100m) (0.500kg)(0.500m 0.100m) (0.270kg)(0.500m)

2 3

0.205kg m .

I Mr M L r mL= + + +

= + + +

= ⋅

(b) We put the origin at the pivot. The center of mass of the disk is 

= + = 0.500 m +0.100 m = 0.600 md L r

away and the center of mass of the rod is r L= = =/ ( . ) / .2 0 500 2 0 250m m  away, on 

the same line. The distance from the pivot point to the center of mass of the disk-rod 

system is 

 =
+

+
=

0.500 0.600 + 0.270 0.250

0.500 + 0.270
= 0.477 . d

M m

M m

d r
 kg  m  kg  m

 kg  kg
 m

a fa f a fa f

(c) The period of oscillation is 

( )

2

2

0.205 kg m
2 2 1.50 s .

(0.500 kg 0.270 kg)(9.80 m/s )(0.447 m)

I
T

M m gd
π π

⋅
= = =

+ +



T
mL md

mgd

L

gd

d

g
=

+
= +2

12
2

12

2 2 2

π π
/

.

Squaring both sides and solving for d leads to the quadratic formula: 

 =
/ 2 / 2 / 3

2
.

2 2 4 2

d
g T d T Lπ πa f a f± −

Choosing the plus sign leads to an impossible value for d (d = 1.5 > L). If we choose the 

minus sign, we obtain a physically meaningful result: d = 0.056 m. 

44. We use Eq. 15-29 and the parallel-axis theorem I = Icm + mh
2
 where h = d, the 

unknown. For a meter stick of mass m, the rotational inertia about its center of mass is Icm

= mL
2
/12 where L = 1.0 m. Thus, for T = 2.5 s, we obtain 



45. We use Eq. 15-29 and the parallel-axis theorem I = Icm + mh
2
 where h = d. For a solid 

disk of mass m, the rotational inertia about its center of mass is Icm = mR
2
/2. Therefore, 

2 2 2 2 2 2

2

/ 2 2 (2.35 cm) +2(1.75 cm)
2 2 2 0.366 s.

2 2(980 cm/s )(1.75 cm)

mR md R d
T

mgd gd
π π π

+ +
= = = =



46. To use Eq. 15-29 we need to locate the center of mass and we need to compute the 

rotational inertia about A. The center of mass of the stick shown horizontal in the figure is 

at A, and the center of mass of the other stick is 0.50 m below A. The two sticks are of 

equal mass so the center of mass of the system is 1
2
(0.50 m) 0.25mh = =  below A, as 

shown in the figure. Now, the rotational inertia of the system is the sum of the rotational 

inertia I1 of the stick shown horizontal in the figure and the rotational inertia I2 of the 

stick shown vertical. Thus, we have 

 = + =
1

12
+

1

3
=

5

12
1 2

2 2 2I I I ML ML ML

where L = 1.00 m and M is the mass of a meter stick (which cancels in the next step). 

Now, with m = 2M (the total mass), Eq. 15–29 yields 

T
ML

Mgh

L

g
= =2

2
2

5

6

5
12

2

π π

where h = L/4 was used. Thus, T = 1.83 s. 



T
L

g

L

g

d

g

T d

g
'

'
= = − = −2 2 2

4

2

2
π π π

π

which yields T´ = 8.77 s. 

47. From Eq. 15-28, we find the length of the pendulum when the period is T = 8.85 s: 

 =
4

.
2

2
L

gT

π

The new length is L´ = L – d where d = 0.350 m. The new period is 



48. (a) The rotational inertia of a uniform rod with pivot point at its end is I = mL
2
/12 + 

mL
2
 = 1/3ML

2
. Therefore, Eq. 15-29 leads to 

( )

2 21
3

2

3
2     

2 8

ML gT
T

Mg L
π

π
=

so that L = 0.84 m. 

(b) By energy conservation 

bottom of swing end of swing m mE E K U= =

where U Mg= −( cos )1 θ  with  being the distance from the axis of rotation to the center 

of mass. If we use the small angle approximation ( cosθ θ≈ −1 1
2

2  with θ in radians 

(Appendix E)), we obtain

( )( )2 21
0.5 kg 9.8 m/s

2 2
m m

L
U θ=

where θm = 0.17 rad. Thus, Km = Um = 0.031 J. If we calculate (1 – cosθ)

straightforwardly (without using the small angle approximation) then we obtain within 

0.3% of the same answer. 



awkward. We pursue the calculus method but choose to work with 12gT
2
/2π instead of T

(it should be clear that 12gT
2
/2π is a minimum whenever T is a minimum). The result is 

d

dx

d x

dx

L

x

gT L
x

12

2
2

2

2
2

0
12

12
πe j d i

= =
+

= − +

which yields / 12 (1.85 m)/ 12 0.53 mx L= = =  as the value of x which should produce 

the smallest possible value of T.

(b) With L = 1.85 m and x = 0.53 m, we obtain T = 2.1 s from the expression derived in 

part (a). 

49. This is similar to the situation treated in Sample Problem 15-5, except that O is no 

longer at the end of the stick. Referring to the center of mass as C (assumed to be the 

geometric center of the stick), we see that the distance between O and C is h = x. The 

parallel axis theorem (see Eq. 15-30) leads to 

2
2 2 21

.
12 12

L
I mL mh m x= + = +

Eq. 15-29 gives 

T
I

mgh

x

gx

L x

gx

L

= =
+

=
+

2 2 2
12

12

2

12

2 2 2

π π π
c h c h

.

(a) Minimizing T by graphing (or special calculator functions) is straightforward, but the 

standard calculus method (setting the derivative equal to zero and solving) is somewhat 



2

2 2(0.00296 J)
1.81 rad/s

0.0018 kg m
m

K

I
ω = = =

⋅
.

Therefore the angular frequency of the oscillation is ω = ωm/θo = 34.6 rad/s.  Using Eq. 

15-5, then, the period is T = 0.18 s. 

50. Consider that the length of the spring as shown in the figure (with one of the block’s 

corners lying directly above the block’s center) is some value L (its rest length).  If the 

(constant) distance between the block’s center and the point on the wall where the spring 

attaches is a distance r, then rcosθ = d/ 2  and rcosθ = L defines the angle θ measured 

from a line on the block drawn from the center to the top corner to the line of r (a straight 

line from the center of the block to the point of attachment of the spring on the wall).  In 

terms of this angle, then, the problem asks us to consider the dynamics that results from 

increasing θ  from its original value θo to θo + 3º and then releasing the system and letting 

it oscillate.  If the new (stretched) length of spring is L′ (when θ  = θo + 3º), then it is a 

straightforward trigonometric exercise to show that  

(L′)2
 = r

2
 + (d/ 2 )

2
 – 2r(d/ 2 )cos(θo + 3º) = L

2
 + d

2
 – d

2
cos(3º)+ 2 Ldsin(3º) . 

since θo = 45º.  The difference between L′ (as determined by this expression) and the 

original spring length L is the amount the spring has been stretched (denoted here as xm).

If one plots xm versus L over a range that seems reasonable considering the figure shown 

in the problem (say, from L = 0.03 m to L = 0.10 m) one quickly sees that xm ≈ 0.00222 m 

is an excellent approximation (and is very close to what one would get by approximating 

xm as the arc length of the path made by that upper block corner as the block is turned 

through 3º, even though this latter procedure should in principle overestimate xm).  Using 

this value of xm with the given spring constant leads to a potential energy of U = 
1

2
k xm

2
 =  

0.00296 J.  Setting this equal to the kinetic energy the block has as it passes back through 

the initial position, we have 

K = 0.00296 J =
1

2
 I ωm

2

where ωm is the maximum angular speed of the block (and is not to be confused with the 

angular frequency ω of the oscillation, though they are related by ωm = θoω  if  θo is 

expressed in radians).  The rotational inertia of the block is I = 
1

6
Md

2
 = 0.0018 kg·m

2
.

Thus, we can solve the above relation for the maximum angular speed of the block:  



51. If the torque exerted by the spring on the rod is proportional to the angle of rotation of 

the rod and if the torque tends to pull the rod toward its equilibrium orientation, then the 

rod will oscillate in simple harmonic motion. If τ = –Cθ, where τ is the torque, θ is the 

angle of rotation, and C is a constant of proportionality, then the angular frequency of 

oscillation is ω = C I/  and the period is

T I C= =2 2π π/ /ω ,

where I is the rotational inertia of the rod. The plan is to find the torque as a function of θ
and identify the constant C in terms of given quantities. This immediately gives the 

period in terms of given quantities. Let 0  be the distance from the pivot point to the wall. 

This is also the equilibrium length of the spring. Suppose the rod turns through the angle 

θ, with the left end moving away from the wall. This end is now (L/2) sin θ further from 

the wall and has moved a distance (L/2)(1 – cos θ) to the right. The length of the spring is 

now
2 2 2

0( / 2) (1 cos ) [ ( / 2)sin ]L Lθ θ= − + + .

If the angle θ is small we may approximate cos θ with 1 and sin θ with θ in radians. Then 

the length of the spring is given by 0 / 2Lθ≈ +  and its elongation is ∆x = Lθ/2. The 

force it exerts on the rod has magnitude F = k∆x = kLθ/2. Since θ is small we may 

approximate the torque exerted by the spring on the rod by τ = –FL/2, where the pivot 

point was taken as the origin. Thus τ = –(kL
2
/4)θ. The constant of proportionality C that 

relates the torque and angle of rotation is C = kL
2
/4. The rotational inertia for a rod 

pivoted at its center is I = mL
2
/12, where m is its mass. See Table 10-2. Thus the period 

of oscillation is 

T
I

C

mL

kL

m

k
= = =2 2

12

4
2

3

2

2
π π π

/

/
.

With m = 0.600 kg and k = 1850 N/m, we obtain T = 0.0653 s. 



2 22

12

a b
T r

rg

π +
= +

In the figure below, we plot T as a function of r, for a = 0.35 m and b = 0.45 m. 

(b) The minimum of T can be located by setting its derivative to zero, / 0dT dr = . This 

yields

2 2 2 2(0.35 m) (0.45 m)
0.16 m.

12 12

a b
r

+ +
= = =

(c) The direction from the center does not matter, so the locus of points is a circle around 

the center, of radius [(a
2
 + b

2
)/12]

1/2
.

52. (a) For the “physical pendulum” we have 

T = 2 π
I

mgh
 = 2 π

Icom+ mh2

mgh
  . 

If we substitute r for h and use item (i) in Table 10-2, we have 



53. Replacing x and v in Eq. 15-3 and Eq. 15-6 with θ and dθ/dt, respectively, we identify 

4.44 rad/s as the angular frequency ω.   Then we evaluate the expressions at t = 0 and 

divide the second by the first: 

        
dθ/dt

θ at t = 0
 = − ω tanφ .

(a) The value of θ at t = 0 is 0.0400 rad, and the value of dθ/dt then is –0.200 rad/s, so we 

are able to solve for the phase constant:  

 
φ = tan

−1
[0.200/(0.0400 x 4.44)] = 0.845 rad. 

(b) Once φ is determined we can plug back in to θo = θmcosφ to solve for the angular 

amplitude.  We find θm = 0.0602 rad. 



equal to the kinetic energy of the plate ( 
1

2
Iωm

2
 where this ωm  is the maximum angular 

speed of the plate, not the angular frequency ω).  Noting that the maximum angular speed 

of the plate is ωm = ωθo where ω = 2π/T with T = 20 ms = 0.02 s as determined from the 

graph, then we can find the rotational inertial from 
1

2
I ωm

2
 = 0.0093 J. Thus, 

5 21.3 10  kg mI −= × ⋅ .

54. We note that the initial angle is θo = 7º = 0.122 rad (though it turns out this value will 

cancel in later calculations).  If we approximate the initial stretch of the spring as the arc-

length that the corresponding point on the plate has moved through (x = rθo  where r = 

0.025 m) then the initial potential energy is approximately  
1

2
kx

2
 =  0.0093 J.  This should 



55. (a) The period of the pendulum is given by T I mgd= 2π / , where I is its rotational 

inertia, m = 22.1 g is its mass, and d is the distance from the center of mass to the pivot 

point. The rotational inertia of a rod pivoted at its center is mL
2
/12 with L = 2.20 m. 

According to the parallel-axis theorem, its rotational inertia when it is pivoted a distance 

d from the center is I = mL
2
/12 + md

2
. Thus, 

T
m L d

mgd

L d

gd
=

+
=

+
2

12
2

12

12

2 2 2 2

π π
( / )

.

Minimizing T with respect to d, dT/d(d)=0, we obtain d L= / 12 . Therefore, the 

minimum period T is 

2 2

min 2

12( / 12) 2 2(2.20 m)
2 2 2 2.26 s.

12 ( / 12) 12 12(9.80 m/s )

L L L
T

g L g
π π π

+
= = = =

(b) If d is chosen to minimize the period, then as L is increased the period will increase as 

well.

(c) The period does not depend on the mass of the pendulum, so T does not change when 

m increases. 



κ)θ = IP α, where the small angle approximation (sinθ ≈ θ in radians) and Newton’s 

second law (for rotational dynamics) have been used.  Making the appropriate adjustment 

to the period formula, we have  

T′ = 2π 
IP

Mgh + κ
  . 

The problem statement requires T = T′ + 0.50 s. Thus, T′  = (2.00 – 0.50)s = 1.50 s.  

Consequently,

κ  =
4π2

T′ 2 IP – Mgh = 18.5  N·m/rad  . 

56. The table of moments of inertia in Chapter 11, plus the parallel axis theorem found in 

that chapter, leads to 

IP =
1

2
MR

2
 + Mh

2
  =

1

2
(2.5 kg)(0.21 m)

2
  +  (2.5 kg)(0.97 m)

2
  =  2.41 kg·m² 

where P is the hinge pin shown in the figure (the point of support for the physical 

pendulum), which is a distance h = 0.21 m + 0.76 m away from the center of the disk.  

(a) Without the torsion spring connected, the period is 

T = 2π 
IP

Mgh
 = 2.00 s  . 

(b) Now we have two “restoring torques” acting in tandem to pull the pendulum back to 

the vertical position when it is displaced.  The magnitude of the torque-sum is (Mgh + 



57. (a) We want to solve e
–bt/2m

 = 1/3 for t. We take the natural logarithm of both sides to 

obtain –bt/2m = ln(1/3). Therefore, t = –(2m/b) ln(1/3) = (2m/b) ln 3. Thus, 

 =
2 1.50

0.230
3 = 14.3 . t

 kg

 kg / s
ln  s

a f

(b) The angular frequency is 

′ = − = − =ω
k

m

b

m

2

2

2

2
4

8 00

1 50

0 230

4 1 50
2 31

.

.

.

.
. .

N / m

kg

kg / s

kg
rad / s

a f
a f

The period is T = 2π/ω´ = (2π)/(2.31 rad/s) = 2.72 s and the number of oscillations is  

t/T = (14.3 s)/(2.72 s) = 5.27. 



58. Referring to the numbers in Sample Problem 15-7, we have m = 0.25 kg, b = 0.070 

kg/s and T = 0.34 s. Thus, when t = 20T, the damping factor becomes 

e ebt m− −
= =2 0 070 20 0 34 2 0 25

0 39
. . / .

. .b gb gb g b g



59. Since the energy is proportional to the amplitude squared (see Eq. 15-21), we find the 

fractional change (assumed small) is 

 = =
2

= 2 . 
2

2 2

′ −
≈

E E

E

dE

E

dx

x

x dx

x

dx

x

m

m

m m

m

m

m

Thus, if we approximate the fractional change in xm as dxm/xm, then the above calculation 

shows that multiplying this by 2 should give the fractional energy change. Therefore, if 

xm decreases by 3%, then E must decrease by 6.0 %. 



( )( )2

2
500 kg 9.8 m/s

= 4.9 10 N/cm.
10cm

k = ×

(b) The amplitude decreasing by 50% during one period of the motion implies 

e TbT m− = =
′

2 1

2

2
where

π

ω
.

Since the problem asks us to estimate, we let ′ ≈ =ω ω k m/ . That is, we let 

ω ′≈ ≈
49000

500
,

N / m

kg
9.9 rad / s

so that T ≈ 0.63 s. Taking the (natural) log of both sides of the above equation, and 

rearranging, we find 

( )
( ) 3

2 500 kg2
ln2 0.69 1.1 10  kg/s.

0.63 s

m
b

T
= ≈ = ×

Note: if one worries about the ω´ ≈ ω approximation, it is quite possible (though messy) 

to use Eq. 15-43 in its full form and solve for b. The result would be (quoting more 

figures than are significant) 

 =
2 2

( 2) + 4
= 1086

2 2
b

mkln

ln
 kg / s

π

which is in good agreement with the value gotten “the easy way” above. 

60. (a) From Hooke’s law, we have 



61. (a) We set ω = ωd and find that the given expression reduces to xm = Fm/bω at 

resonance.

(b) In the discussion immediately after Eq. 15-6, the book introduces the velocity 

amplitude vm = ωxm. Thus, at resonance, we have vm = ωFm/bω = Fm/b.



62. With ω = 2π/T then Eq. 15-28 can be used to calculate the angular frequencies for the 

given pendulums.  For the given range of 2.00 < ω < 4.00 (in rad/s), we find only two of 

the given pendulums have appropriate values of ω: pendulum (d) with length of 0.80 m 

(for which ω = 3.5 rad/s) and pendulum (e) with length of 1.2 m (for which ω = 2.86 

rad/s).  



2

4

k

T M m

π
ω = =

+
.

If d = 4.0 m is the distance traveled (at constant car speed v) between impulses, then we 

may write T = v/d, in which case the above equation may be solved for the spring 

constant:

( )
2

2 2
=     4 .

4

v k v
k M m

d M m d

π π
= +

+

Before the people got out, the equilibrium compression is xi = (M + 4m)g/k, and 

afterward it is xf = Mg/k. Therefore, with v = 16000/3600 = 4.44 m/s, we find the rise of 

the car body on its suspension is 

 =
4

=
4

+ 4 2
= 0.050 . 

2

x x
mg

k

mg

M m

d

v
i f− F

H
I
Kπ

 m

63. With M = 1000 kg and m = 82 kg, we adapt Eq. 15-12 to this situation by writing 



64. Its total mechanical energy is equal to its maximum potential energy  
1

2
kxm

2
, and its 

potential energy at t = 0 is  
1

2
kxo

2
  where xo = xmcos(π/5) in this problem.  The ratio is 

therefore cos
2
(π/5) = 0.655 = 65.5%.



65. (a) From the graph, we find xm = 7.0 cm = 0.070 m, and T = 40 ms = 0.040 s.  Thus, 

the angular frequency is ω = 2π/T = 157 rad/s.  Using m = 0.020 kg, the maximum kinetic 

energy is then 
1

2
mv

2
 =

1

2
m ω2

xm
2
  = 1.2 J.

(b) Using Eq. 15-5, we have f = ω/2π = 50 oscillations per second.  Of course, Eq. 15-2 

can also be used for this.



66. (a) From the graph we see that xm = 7.0 cm = 0.070 m and T = 40 ms = 0.040 s.  The 

maximum speed is xmω = xm2π/T = 11 m/s. 

(b) The maximum acceleration is xmω2
 = xm(2π/T)

2
 = 1.7 × 10

3
 m/s

2
.



67. Setting 15 mJ (0.015 J) equal to the maximum kinetic energy leads to vmax = 0.387 

m/s.  Then one can use either an “exact” approach using vmax = 2gL(1 − cos(θmax))  or the 

“SHM” approach where

vmax = Lωmax = Lωθmax  = L g/L θmax

to find L.  Both approaches lead to L = 1.53 m. 



 = =
1.91

9.8
= 0.19 . a

a

g
g g gm

m
F
HG
I
KJ
F
H
I
K

68. Since ω = 2πf where f = 2.2 Hz, we find that the angular frequency is ω = 13.8 rad/s. 

Thus, with x = 0.010 m, the acceleration amplitude is am = xm ω 2  
= 1.91 m/s

2
. We set up 

a ratio: 



Since the block does not move significantly during the collision, the elastic and 

gravitational potential energies do not change. Thus, E is the energy that is transferred. 

The ratio is  

E/E0 = (6.94 J)/(563 J) = 0.0123 or 1.23%. 

69. (a) Assume the bullet becomes embedded and moves with the block before the block 

moves a significant distance. Then the momentum of the bullet-block system is 

conserved during the collision. Let m be the mass of the bullet, M be the mass of the 

block, v0 be the initial speed of the bullet, and v be the final speed of the block and bullet. 

Conservation of momentum yields mv0 =   (m + M)v, so 

 =
+

=
0.050 150

0.050 + 4.0
= 1.85 . 0v

mv

m M

 kg  m / s

 kg  kg
 m / s

a fa f

When the block is in its initial position the spring and gravitational forces balance, so the 

spring is elongated by Mg/k. After the collision, however, the block oscillates with simple 

harmonic motion about the point where the spring and gravitational forces balance with 

the bullet embedded. At this point the spring is elongated a distance = +M m g ka f / , 

somewhat different from the initial elongation. Mechanical energy is conserved during 

the oscillation. At the initial position, just after the bullet is embedded, the kinetic energy 

is 1
2

2( )M m v+  and the elastic potential energy is 1
2

2k Mg k( / ) . We take the gravitational 

potential energy to be zero at this point. When the block and bullet reach the highest 

point in their motion the kinetic energy is zero. The block is then a distance ym above the 

position where the spring and gravitational forces balance. Note that ym is the amplitude 

of the motion. The spring is compressed by ym − , so the elastic potential energy is 
1
2

2k ym( )− . The gravitational potential energy is (M + m)gym. Conservation of 

mechanical energy yields 

1

2
+ +

1

2
=

1

2
+ + . 2

2
2

M m v k
Mg

k
k y M m gym ma f b g a fF

H
I
K −

We substitute = +M m g ka f / . Algebraic manipulation leads to 

y
m M v

k

mg

k
M mm =

+
− +

=
+

− +

=

a f a f

a fa f a fc h a f

2 2

2

2 2

2

2

0 050 4 0 185

500

0 050 9 8

500
2 4 0 0 050

0 166

. . . . .

( )
. .

. .

kg kg m / s

N / m

kg m / s

N / m
kg kg

m

2

(b) The original energy of the bullet is E mv0
1
2 0

2 1
2

20 050 150 563= = =( . )( )kg m / s J . The 

kinetic energy of the bullet-block system just after the collision is 

 =
1

2
+ =

1

2
0.050 + 4.0 1.85 = 6.94 . 2 2

E m M va f a fa f kg  kg  m / s  J



70. (a)  We note that  

ω = k/m  = 1500/0.055  = 165.1 rad/s. 

We consider the most direct path in each part of this problem.  That is, we consider in 

part (a) the motion directly from   x1 = +0.800xm  at time t1    to   x2 = +0.600xm  at time t2

(as opposed to, say, the block moving from x1 = +0.800xm through x = +0.600xm, through 

x = 0, reaching x = –xm and after returning back through x = 0 then getting to x2 = 

+0.600xm).   Eq. 15-3 leads to

ωt1 + φ = cos
−1

(0.800) = 0.6435 rad 

ωt2 + φ = cos
−1

(0.600) = 0.9272 rad . 

Subtracting the first of these equations from the second leads to  

     

ω(t2 – t1) =  0.9272 – 0.6435 = 0.2838 rad . 

Using the value for ω computed earlier, we find t2 – t1 = 1.72 × 10
−3

s.

(b)  Let t3 be when the block reaches x = –0.800xm in the direct sense discussed above.  

Then the reasoning used in part (a) leads here to 

ω(t3 – t1) =  ( 2.4981 – 0.6435) rad = 1.8546 rad 

and thus to t3 – t1 = 11.2 × 10
−3

s.



71. (a) The problem gives the frequency f = 440 Hz, where the SI unit abbreviation Hz 

stands for Hertz, which means a cycle-per-second. The angular frequency ω is similar to 

frequency except that ω is in radians-per-second. Recalling that 2π radians are equivalent 

to a cycle, we have ω = 2πf ≈ 2.8×10
3
 rad/s. 

(b) In the discussion immediately after Eq. 15-6, the book introduces the velocity 

amplitude vm = ωxm. With xm = 0.00075 m and the above value for ω, this expression 

yields vm = 2.1 m/s. 

(c) In the discussion immediately after Eq. 15-7, the book introduces the acceleration 

amplitude am = ω2
xm, which (if the more precise value ω = 2765 rad/s is used) yields am = 

5.7 km/s. 



72. (a) The textbook notes (in the discussion immediately after Eq. 15-7) that the 

acceleration amplitude is am = ω2
xm, where ω is the angular frequency (ω = 2π f since 

there are 2π radians in one cycle). Therefore, in this circumstance, we obtain 

 = 2 1000 0.00040 = 1.6 10 . 
2 4 2am π  Hz  m  m / sa fb g a f ×

(b) Similarly, in the discussion after Eq. 15-6, we find vm = ωxm so that 

 = 2 1000 0.00040 = 2.5 . vm π  Hz  m  m / sb gc hb g

(c) From Eq. 15-8, we have (in absolute value) 

a  = 2 1000 0.00020 = 7.9 10 . 
2 3 2π  Hz  m  m / sb gc h b g ×

(d) This can be approached with the energy methods of §15-4, but here we will use 

trigonometric relations along with Eq. 15-3 and Eq. 15-6. Thus, allowing for both roots 

stemming from the square root, 

( ) ( )
2

2

2
sin 1 cos 1 .

m m

v x
t t

x x
ω φ ω φ

ω
+ = ± − + − = ± −

Taking absolute values and simplifying, we obtain 

( )2 2 2 2| | 2 2 1000 0.00040 0.00020 2.2 m/s.mv f x xπ π= − = − =



73. (a) The rotational inertia is I MR= = = ⋅1
2

2 1
2

2 23 00 0 700 0 735( . )( . ) .kg m kg m . 

(b) Using Eq. 15-22 (in absolute value), we find 

0.0600 N m
= = = 0.0240 N m/rad.

2.5 rad

τ
κ

θ

⋅
⋅

(c) Using Eq. 15-5, Eq. 15-23 leads to 

2

0.024N m/rad
0.181 rad/s.

0.735kg mI

κ
ω

⋅
= = =

⋅



2 2/ 2 3
2 2 0.873s.

2

mR mR R
T

mgR g
π π

+
= = =

(b) We seek a value of r ≠ R such that 

2
2

2
2

3

2

2 2

π π
R r

gr

R

g

+
=

and are led to the quadratic formula: 

r
R R R

R
R

=
± −

=
3 3 8

4 2

2 2a f
or .

Thus, our result is r = 0.126/2 = 0.0630 m. 

74. (a) We use Eq. 15-29 and the parallel-axis theorem I = Icm + mh
2
 where h = R = 0.126 

m. For a solid disk of mass m, the rotational inertia about its center of mass is Icm = mR
2
/2. 

Therefore,



75. (a) The frequency for small amplitude oscillations is f g L= 1 2/ /πa f , where L is 

the length of the pendulum. This gives

f = =1 2 9 80 2 0 0 352/ ( . / ) / ( . ) . .πa f m s m Hz  

(b) The forces acting on the pendulum are the tension force T  of the rod and the force of 

gravity mg . Newton’s second law yields T mg ma+ = , where m is the mass and a  is the 

acceleration of the pendulum. Let a a ae= + ′ , where ae  is the acceleration of the elevator 

and ′a  is the acceleration of the pendulum relative to the elevator. Newton’s second law 

can then be written ( )em g a T− + = ma′ . Relative to the elevator the motion is exactly 

the same as it would be in an inertial frame where the acceleration due to gravity is g ae− .

Since g  and ae  are along the same line and in opposite directions we can find the 

frequency for small amplitude oscillations by replacing g with g + ae in the expression 

f g L= ( / ) /1 2π . Thus 

f
g a

L

e=
+

=
+

=
1

2

1

2

9 8 2 0

2 0
0 39

π π

. .

.
. .

m / s m / s

m
Hz

2 2

(c) Now the acceleration due to gravity and the acceleration of the elevator are in the 

same direction and have the same magnitude. That is, g ae− = 0. To find the frequency 

for small amplitude oscillations, replace g with zero in f g L= ( / ) /1 2π . The result is 

zero. The pendulum does not oscillate. 



constant φ in Eq. 15-2 is zero. Also, f = 0.25 Hz is given, so we have ω = 2πf = π/2 rad/s. 

The variable t is understood to take values in seconds. 

(a) The period is T = 1/f = 4.0 s. 

(b) As noted above, ω = π/2 rad/s. 

(c) The amplitude, as observed above, is 0.37 cm. 

(d) Eq. 15-3 becomes x = (0.37 cm) cos(πt/2).

(e) The derivative of x is v = –(0.37 cm/s)(π/2) sin(πt/2) ≈ (–0.58 cm/s) sin(πt/2).

(f) From the previous part, we conclude vm = 0.58 cm/s. 

(g) The acceleration-amplitude is am = ω2
xm = 0.91 cm/s

2
.

(h) Making sure our calculator is in radians mode, we find x = (0.37) cos(π(3.0)/2) = 0. It 

is important to avoid rounding off the value of π in order to get precisely zero, here. 

(i) With our calculator still in radians mode, we obtain v = –(0.58 cm/s)sin(π(3.0)/2) = 

0.58 cm/s. 

76. Since the particle has zero speed (momentarily) at x ≠ 0, then it must be at its turning 

point; thus, xo = xm = 0.37 cm. It is straightforward to infer from this that the phase 



77. Since T = 0.500 s, we note that ω = 2π/T = 4π rad/s. We work with SI units, so m = 

0.0500 kg and vm = 0.150 m/s. 

(a) Since ω = k m/ , the spring constant is 

( ) ( )
22 4  rad/s 0.0500 kg 7.90 N/m.k mω π= = =

(b) We use the relation vm = xmω and obtain 

 = =
0.150

4
= 0.0119 . x

v
m

m

ω π
 m  

(c) The frequency is f = ω/2π = 2.00 Hz (which is equivalent to f = 1/T).



78. (a) Hooke’s law readily yields (0.300 kg)(9.8 m/s
2
)/(0.0200 m) = 147 N/m. 

(b) With m = 2.00 kg, the period is 

 = 2 0 733T
m

k
π = . s .



T
m

k
T

m m

k
1 22 2= =

+
π πand

∆
.

Dividing one relation by the other, we obtain 

 =2

1

T

T

m m

m

+ ∆

which (after squaring both sides) simplifies to 
2

2 1

1.6kg.
( / ) 1

m
m

T T

∆
= =

−

79. Using ∆m = 2.0 kg, T1 = 2.0 s and T2 = 3.0 s, we write 



80. (a) Comparing with Eq. 15-3, we see ω = 10 rad/s in this problem. Thus, f = ω/2π = 

1.6 Hz. 

(b) Since vm = ωxm and xm = 10 cm (see Eq. 15-3), then vm = (10 rad/s)(10 cm) = 100 cm/s 

or 1.0 m/s. 

(c) The maximum occurs at t = 0. 

(d) Since am = ω2
xm then vm = (10 rad/s)

2
(10 cm) = 1000 cm/s

2
 or 10 m/s

2
.

(e) The acceleration extremes occur at the displacement extremes: x = ±xm or x = ±10 cm. 

(f) Using Eq. 15-12, we find 

 = 0 10 10 10
2

ω
k

m
k = =. .kg rad / s N / ma fa f

Thus, Hooke’s law gives F = –kx = –10x in SI units. 



Since we are asked for the interval teq – t where teq specifies the instant the particle passes 

through the equilibrium position, then we set x = 0 and find 

 =
4

+
3

0 = 2.29 . 1teq cos  s
π

π

− b g

Consequently, the time interval is teq – t = 0.75 s. 

81. (a) We require U E= 1
2  at some value of x. Using Eq. 15-21, this becomes 

1

2
=

1

2

1

2
=

2
.2 2kx kx x

x
m

mF
HG
I
KJ

We compare the given expression x as a function of t with Eq. 15-3 and find xm = 5.0 m. 

Thus, the value of x we seek is x = ≈5 0 2 3 5. / . m. 

(b) We solve the given expression (with x = 5 0 2. / ), making sure our calculator is in 

radians mode:

 =
4

+
3 1

2
= 1.54 . 1t

π

π
cos  s− F
HG
I
KJ



82. The distance from the relaxed position of the bottom end of the spring to its 

equilibrium position when the body is attached is given by Hooke’s law:  

∆x = F/k = (0.20 kg)(9.8 m/s
2
)/(19 N/m) = 0.103 m. 

(a) The body, once released, will not only fall through the ∆x distance but continue 

through the equilibrium position to a “turning point” equally far on the other side. Thus, 

the total descent of the body is 2∆x = 0.21 m. 

(b) Since f = ω/2π, Eq. 15-12 leads to 

 =
1

2
1 6f

k

mπ
Η= . .z

(c) The maximum distance from the equilibrium position is the amplitude: xm = ∆x = 0.10 

m.



83. We use vm = ωxm = 2πfxm, where the frequency is 180/(60 s) = 3.0 Hz and the 

amplitude is half the stroke, or xm = 0.38 m. Thus,  

vm = 2π(3.0 Hz)(0.38 m) = 7.2 m/s. 



ω = =
k

mR r

r

R

k

m2 2/
.

(b) If r = R the result of part (a) reduces to ω = k m/ . 

(c) And if r = 0 then ω = 0 (the spring exerts no restoring torque on the wheel so that it is 

not brought back towards its equilibrium position). 

84. (a) The rotational inertia of a hoop is I = mR
2
, and the energy of the system becomes 

E I kx= +
1

2

1

2

2 2ω

and θ is in radians. We note that rω = v (where v = dx/dt). Thus, the energy becomes 

E
mR

r
v kx=

F
HG
I
KJ +

1

2

1

2

2

2

2 2

which looks like the energy of the simple harmonic oscillator discussed in §15-4 if we 

identify the mass m in that section with the term mR
2
/r

2
 appearing in this problem. 

Making this identification, Eq. 15-12 yields 



85. (a) Hooke’s law readily yields

k = (15 kg)(9.8 m/s
2
)/(0.12 m) = 1225 N/m. 

Rounding to three significant figures, the spring constant is therefore 1.23 kN/m. 

(b) We are told f = 2.00 Hz = 2.00 cycles/sec. Since a cycle is equivalent to 2π radians, 

we have ω = 2π(2.00) = 4π rad/s (understood to be valid to three significant figures). 

Using Eq. 15-12, we find 

( )
2

1225  N/m
   7.76kg.

4  rad/s

k
m

m
ω

π
= = =

Consequently, the weight of the package is mg = 76.0 N. 



(b) Now suppose the object is placed at the other end of the composite spring, so spring 2 

exerts a force on it. Now k ∆x = k2 ∆x2. We use ∆x2 = CL2 and ∆x = CL2(n + 1), then 

solve for k2. The result is k2 = k(n + 1). 

4

2 ( 1) (0.70 1.0)(8600 N/m) 14620 N/m 1.5 10 N/mk n k= + = + = ≈ ×

(c) To find the frequency when spring 1 is attached to mass m, we replace k in 

1 2/ /πa f k m  with k(n + 1)/n. With f k m= 1 2/ /πa f , we obtain, for 200 Hzf = and n = 

0.70

2

1

1 ( 1) 1 0.70 1.0
= (200 Hz) 3.1 10  Hz.

2 0.70

n k n
f f

nm nπ

+ + +
= = = ×

(d) To find the frequency when spring 2 is attached to the mass, we replace k with k(n + 1) 

to obtain

2

2

1 ( 1)
= 1 0.70 1.0(200 Hz) 2.6 10 Hz.

2

n k
f n f

mπ

+
= + = + = ×

86. (a) First consider a single spring with spring constant k and unstretched length L. One 

end is attached to a wall and the other is attached to an object. If it is elongated by ∆x the 

magnitude of the force it exerts on the object is F = k ∆x. Now consider it to be two 

springs, with spring constants k1 and k2, arranged so spring 1 is attached to the object. If 

spring 1 is elongated by ∆x1 then the magnitude of the force exerted on the object is F = 

k1 ∆x1. This must be the same as the force of the single spring, so k ∆x = k1 ∆x1. We must 

determine the relationship between ∆x and ∆x1. The springs are uniform so equal 

unstretched lengths are elongated by the same amount and the elongation of any portion 

of the spring is proportional to its unstretched length. This means spring 1 is elongated by 

∆x1 = CL1 and spring 2 is elongated by ∆x2 = CL2, where C is a constant of 

proportionality. The total elongation is

∆x = ∆x1 + ∆x2 = C(L1 + L2) = CL2(n + 1), 

where L1 = nL2 was used to obtain the last form. Since L2 = L1/n, this can also be written 

∆x = CL1(n + 1)/n. We substitute ∆x1 = CL1 and ∆x = CL1(n + 1)/n into k ∆x = k1 ∆x1 and 

solve for k1. With k = 8600 N/m and n = L1/L2 = 0.70, we obtain

4

1

1 0.70 1.0
(8600 N/m) 20886 N/m 2.1 10 N/m

0.70

n
k k

n

+ +
= = = ≈ ×



87. The magnitude of the downhill component of the gravitational force acting on each 

ore car is

 = 10000 9.8  2wx  kg  m / s sinb gc h θ

where θ = 30° (and it is important to have the calculator in degrees mode during this 

problem). We are told that a downhill pull of 3ωx causes the cable to stretch x = 0.15 m. 

Since the cable is expected to obey Hooke’s law, its spring constant is 

 =
3

= 9.8 10 . 5k
w

x

x ×  N / m  

(a) Noting that the oscillating mass is that of two of the cars, we apply Eq. 15-12 (divided 

by 2π).
51 1 9.8 10 N / m

1.1 Hz.
2 2 2 20000 kg

k
f

m

ω

π π π

×
= = = =

(b) The difference between the equilibrium positions of the end of the cable when 

supporting two as opposed to three cars is 

 =
3 2

= 0.050 . ∆
−

x
w w

k

x x  m  



2 2 2( / ) .
eff

g g v R= +

Then, since frequency is the reciprocal of the period, Eq. 15-28 leads to 

f
g

L

g v R

L

eff
= =

+1

2

1

2

2 4 2

π π
.

With v = 70 m/s, R = 50m, and L = 0.20 m, we have 13.5 s 3.5 Hz.f −≈ =

88. Since the centripetal acceleration is horizontal and Earth’s gravitational g  is 

downward, we can define the magnitude of an “effective” gravitational acceleration using 

the Pythagorean theorem: 



89. (a) The spring stretches until the magnitude of its upward force on the block equals 

the magnitude of the downward force of gravity: ky = mg, where y = 0.096 m is the 

elongation of the spring at equilibrium, k is the spring constant, and m = 1.3 kg is the 

mass of the block. Thus  

k = mg/y = (1.3 kg)(9.8 m/s
2
)/(0.096 m) = 1.33 ×10

2
 N/m. 

(b) The period is given by

1 2 1.3 kg
2 2 0.62 s.

133 N / m

m
T

f k

π
π π

ω
= = = = =

(c) The frequency is f = 1/T = 1/0.62 s = 1.6 Hz. 

(d) The block oscillates in simple harmonic motion about the equilibrium point 

determined by the forces of the spring and gravity. It is started from rest 5.0 cm below the 

equilibrium point so the amplitude is 5.0 cm. 

(e) The block has maximum speed as it passes the equilibrium point. At the initial 

position, the block is not moving but it has potential energy 

( )( )( ) ( )( )
22 21 1

1.3 kg 9.8 m/s 0.146 m 133 N / m 0.146 m 0.44 J.
2 2

i i iU mgy ky= − + = − + = −

When the block is at the equilibrium point, the elongation of the spring is y = 9.6 cm and 

the potential energy is 

( )( )( ) ( )( )
22 21 1

1.3 kg 9.8 m/s 0.096 m 133 N / m 0.096 m 0.61 J.
2 2

fU mgy ky= − + = − + = −

We write the equation for conservation of energy as U U mvi f= + 1
2

2  and solve for v:

( ) ( )2 2 0.44J 0.61J
0.51 m/s.

1.3kg

i fU U
v

m

− − +
= = =



90. (a) The Hooke’s law force (of magnitude (100)(0.30) = 30 N) is directed upward and 

the weight (20 N) is downward. Thus, the net force is 10 N upward. 

(b) The equilibrium position is where the upward Hooke’s law force balances the weight, 

which corresponds to the spring being stretched (from unstretched length) by 20 N/100 

N/m = 0.20 m. Thus, relative to the equilibrium position, the block (at the instant 

described in part (a)) is at what one might call the bottom turning point (since v = 0) at x

= –xm where the amplitude is xm = 0.30 – 0.20 = 0.10 m. 

(c) Using Eq. 15-13 with m = W/g ≈ 2.0 kg, we have 

 = 2 0 90T
m

k
π = . .s

(d) The maximum kinetic energy is equal to the maximum potential energy 1
2

2kxm . Thus, 

 = =
1

2
100 0.10 = 0.50 . 

2
K Um m  N / m  m  Ja fa f



91. We note that for a horizontal spring, the relaxed position is the equilibrium position 

(in a regular simple harmonic motion setting); thus, we infer that the given v = 5.2 m/s at 

x = 0 is the maximum value vm (which equals ωxm where ω = =k m/ 20 rad / s ). 

(a) Since ω = 2π f, we find f = 3.2 Hz. 

(b) We have vm = 5.2 m/s = (20 rad/s)xm, which leads to xm = 0.26 m. 

(c) With meters, seconds and radians understood, 

(0.26 m)cos(20 )

(5.2 m/s)sin(20 ).

x t

v t

φ

φ

= +

= − +

The requirement that x = 0 at t = 0 implies (from the first equation above) that either φ = 

+π/2 or φ = –π/2. Only one of these choices meets the further requirement that v > 0 when 

t = 0; that choice is φ = –π/2. Therefore, 

( )(0.26 m)cos 20 (0.26 m)sin 20 .
2

x t t
π

= − =



1 2 2(4.0 J)2 0.20 m.
2 200 N / m

m m

E
E kx x

k
= = = =

(b) Since 2 / 2 0.80 kg / 200 N / m 0.4 s ,T m kπ π= = ≈  then the block completes 

10/0.4 = 25 cycles during the specified interval. 

(c) The maximum kinetic energy is the total energy, 4.0 J. 

(d) This can be approached more than one way; we choose to use energy conservation: 

 = + 4.0 =
1

2
+

1

2
.2 2E K U mv kx

Therefore, when x = 0.15 m, we find v = 2.1 m/s. 

92. (a) Eq. 15-21 leads to 



93. The time for one cycle is T = (50 s)/20 = 2.5 s. Thus, from Eq. 15-23, we find 

 =
2

= 0.50
2.5

2
= 0.079 . 

2 2

2I
T

κ
π π

F
H
I
K

F
H
I
K ⋅a f  kg m



94. The period formula, Eq. 15-29, requires knowing the distance h from the axis of 

rotation and the center of mass of the system. We also need the rotational inertia I about 

the axis of rotation. From the figure, we see h = L + R where R = 0.15 m. Using the 

parallel-axis theorem, we find 

( )
221
,

2
I MR M L R= + +

where 1.0 kgM = . Thus, Eq. 15-29, with T = 2.0 s, leads to 

2 0 2
1
2

2 2

. =
+ +

+
π

MR M L R

Mg L R

b g
b g

which leads to L = 0.8315 m. 



T
m m

k

p b
=

+
=2 0π .44 .s

(b) The speed before the collision (since it is at its maximum, passing through 

equilibrium) is v0 = xmω0 where ω0 = 2π/T0; thus, v0 = 3.14 m/s. Using momentum 

conservation (along the horizontal direction) we find the speed after the collision. 

 =
+

= 2.61 .0V v
m

m m

b

p b

 m / s

The equilibrium position has not changed, so (for the new system of greater mass) this 

represents the maximum speed value for the subsequent harmonic motion: V = x´mω
where ω = 2π/T = 14.3 rad/s. Therefore, x´m = 0.18 m. 

95. (a) By Eq. 15-13, the mass of the block is 

 =
4

= 2.43 . 0

2

2
m

kT
b

π
 kg  

Therefore, with mp = 0.50 kg, the new period is 



96. (a) Hooke’s law provides the spring constant: k = (20 N)/(0.20 m) = 1.0×10
2
 N/m. 

(b) The attached mass is m = (5.0 N)/(9.8 m/s
2
) = 0.51 kg. Consequently, Eq. 15-13 leads 

to

0.51 kg
2 2 0.45 s.

100 N / m

m
T

k
π π= = =



97. (a) Hooke’s law provides the spring constant:

k = (4.00 kg)(9.8 m/s
2
)/(0.160 m) = 245 N/m. 

(b) The attached mass is m = 0.500 kg. Consequently, Eq. 15-13 leads to 

T
m

k
= = =2 2

0 500

245
0 284π π

.
. .s



231
2 4

( ) 0.176 Jm oE k x= = .

Therefore, Eo – E = 0.137 J. 

98. (a) We are told that when 4t T= , with T m k= ′ ≈2 2π π/ /ω  (neglecting the second 

term in Eq. 15-43),  

2 3

4

bt me− = .

Thus,

T ≈ =2 2 00 10 0 2 81π ( . ) / ( . ) .kg N / m s

and we find 

( ) ( )( )
( )

4 2 2.00 kg 0.2884
ln 0.288 0.102 kg/s.

2 3 4 2.81s

b T
b

m
= = = =

(b) Initially, the energy is 2 21 1
2 2

(10.0)(0.250) 0.313 Jo m oE kx= = = . At t = 4T,



99. Since dm is the amplitude of oscillation, then the maximum acceleration being set to 

0.2g provides the condition: ω2
dm = 0.2g.  Since ds is the amount the spring stretched in 

order to achieve vertical equilibrium of forces, then we have the condition kds = mg.

Since we can write this latter condition as mω2
ds = mg, then ω2

 = g/ds.  Plugging this into 

our first condition, we obtain  

ds = dm/0.2 = (10 cm)/0.2 = 50 cm. 



100. We note (from the graph) that am = ω2
xm = 4.00 cm/s

2
.  Also the value at t = 0 is ao = 

1.00 cm/s
2
.   Then Eq. 15-7 leads to

φ = cos
−1

(–1.00/4.00) = +1.82 rad or – 4.46 rad. 

The other “root” (+4.46 rad) can be rejected on the grounds that it would lead to a 

negative slope at t = 0.



101. (a) The graphs suggest that T = 0.40 s and κ = 4/0.2 = 0.02 N·m/rad. With these 

values, Eq. 15-23 can be used to determine the rotational inertia:   

I = κT
2
/4π2

 = 8.11 × 10
−5

 kg
.
m

2
.

(b) We note (from the graph) that θmax = 0.20 rad. Setting the maximum kinetic energy 

(
1

2
Iωmax

2
) equal to the maximum potential energy (see the hint in the problem) leads to 

ωmax = θmax κ/I = 3.14 rad/s. 



102. The angular frequency of the simple harmonic oscillation is given by Eq. 15-13: 

k

m
ω = .

Thus, for two different masses 1m  and 2m , with the same spring constant k, the ratio of 

the frequencies would be

11 2

2 12

/

/

k m m

mk m

ω

ω
= = .

In our case, with 1m m=  and 2 2.5m m= , the ratio is 1 2

2 1

2.5 1.58
m

m

ω

ω
= = = .



103. For simple harmonic motion, Eq. 15-24 must reduce to 

τ θ θ= − → −L F L Fg gsinc h c h

where θ is in radians. We take the percent difference (in absolute value) 

− − −

−
= −

LF LF

LF

g g

g

sin

sin sin

θ θ

θ

θ

θ

d i d i
1

and set this equal to 0.010 (corresponding to 1.0%). In order to solve for θ (since this is 

not possible “in closed form”), several approaches are available. Some calculators have 

built-in numerical routines to facilitate this, and most math software packages have this 

capability. Alternatively, we could expand sinθ ≈ θ – θ 3/6 (valid for small θ) and thereby 

find an approximate solution (which, in turn, might provide a seed value for a numerical 

search). Here we show the latter approach: 

1
6

0 010
1

1 6
1010

3 2
−

−
≈

−
≈

θ

θ θ θ/
. .

which leads to 6(0.01/1.01) 0.24  rad 14.0θ ≈ = = ° . A more accurate value (found 

numerically) for the θ value which results in a 1.0% deviation is 13.986°. 



104. (a) The graph makes it clear that the period is T = 0.20 s. 

(b) The period of the simple harmonic oscillator is given by Eq. 15-13: 

 = 2T
m

k
π .

Thus, using the result from part (a) with k = 200 N/m, we obtain m = 0.203 ≈ 0.20 kg. 

(c) The graph indicates that the speed is (momentarily) zero at t = 0, which implies that 

the block is at x0 = ±xm. From the graph we also note that the slope of the velocity curve 

(hence, the acceleration) is positive at t = 0, which implies (from ma = –kx) that the value 

of x is negative. Therefore, with xm = 0.20 m, we obtain x0 = –0.20 m. 

(d) We note from the graph that v = 0 at t = 0.10 s, which implied a = ±am = ±ω2
xm. Since 

acceleration is the instantaneous slope of the velocity graph, then (looking again at the 

graph) we choose the negative sign. Recalling ω2
 = k/m we obtain a = –197 ≈ –2.0 10

2

m/s
2
.

(e) The graph shows vm = 6.28 m/s, so 

 =
1

2
= 4.0 . 2K mvm m  J  



105. (a) From the graph, it is clear that xm = 0.30 m. 

(b) With F = –kx, we see k is the (negative) slope of the graph — which is 75/0.30 = 250 

N/m. Plugging this into Eq. 15-13 yields 

 = 2 0 28T
m

k
π = . .s

(c) As discussed in §15-2, the maximum acceleration is 

2 2 21.5 10  m/s .m m m

k
a x x

m
ω= = = ×

Alternatively, we could arrive at this result using am = (2π/T)
2

xm.

(d) Also in §15-2 is vm = ωxm so that the maximum kinetic energy is 

 =
1

2
=

1

2
=

1

2

2 2 2 2K mv m x kxm m m mω

which yields 11.3 ≈ 11 J. We note that the above manipulation reproduces the notion of 

energy conservation for this system (maximum kinetic energy being equal to the 

maximum potential energy). 



2 23 1 3
0

4 2 2

dE d d
Mv kx Mv a kxv

dt dt dt
= + = + =

cm cm cm cm

which leads to 

 =
2

3
.a

k

M
xcm −

F
HG
I
KJ

Comparing with Eq. 15-8, we see that ω = 2 3k M/  for this system. Since ω = 2π/T, we 

obtain the desired result: T M k= 2 3 2π / . 

106. (a) The potential energy at the turning point is equal (in the absence of friction) to 

the total kinetic energy (translational plus rotational) as it passes through the equilibrium 

position: 
2

2 2 2 2 2 2 cm
cm cm cm

2 2 2

cm cm cm

1 1 1 1 1 1

2 2 2 2 2 2

1 1 3

2 4 4

m

v
kx Mv I Mv MR

R

Mv Mv Mv

ω= + = +

= + =

which leads to Mv kxmcm

2 22 3= / = 0.125 J. The translational kinetic energy is therefore 
1
2

2 2 3 0 0625Mv kxmcm J= =/ . .

(b) And the rotational kinetic energy is 2 2 21
cm4

/ 6 0.03125J 3.13 10  JmMv kx −= = ≈ × .

(c) In this part, we use vcm to denote the speed at any instant (and not just the maximum 

speed as we had done in the previous parts). Since the energy is constant, then 



107. (a) From Eq. 16-12, T m k= =2 0π / .45 s.

(b) For a vertical spring, the distance between the unstretched length and the equilibrium 

length (with a mass m attached) is mg/k, where in this problem mg = 10 N and k = 200 

N/m (so that the distance is 0.05 m). During simple harmonic motion, the convention is to 

establish x = 0 at the equilibrium length (the middle level for the oscillation) and to write 

the total energy without any gravity term; i.e., 

E K U= + ,

where 2 / 2.U kx=  Thus, as the block passes through the unstretched position, the energy 

is E k= + =2 0 0 05 2 251
2

2. ( . ) . J . At its topmost and bottommost points of oscillation, the 

energy (using this convention) is all elastic potential: 1
2

2kxm . Therefore, by energy 

conservation,

 2.25 =
1

2
= 0.15 . 2kx xm m ±  m  

This gives the amplitude of oscillation as 0.15 m, but how far are these points from the 

unstretched position? We add (or subtract) the 0.05 m value found above and obtain 0.10 

m for the top-most position and 0.20 m for the bottom-most position. 

(c) As noted in part (b), xm = ±0.15 m. 

(d) The maximum kinetic energy equals the maximum potential energy (found in part (b)) 

and is equal to 2.25 J. 



(c) One interpretation of this question is “what is the most negative value of the 

acceleration?” in which case the answer is –am = –30 m/s
2
. Another interpretation is 

“what is the smallest value of the absolute-value of the acceleration?” in which case the 

answer is zero. 

(d) Since the period is T = 2π/ω = 0.628 s. Therefore, seven cycles of the motion requires 

t = 7T = 4.4 s. 

108. Using Eq. 15-12, we find ω = =k m/ 10 rad / s . We also use vm = xmω and am = 

xmω2
.

(a) The amplitude (meaning “displacement amplitude”) is xm = vm/ω = 3/10 = 0.30 m. 

(b) The acceleration-amplitude is am = (0.30 m)(10 rad/s)
2
 = 30 m/s

2
.



109. The mass is  =
0.108

6.02 10
= 1.8 10 . 

23

25m
 kg

 kg
×

× − Using Eq. 15-12 and the fact that f = 

ω/2π, we have 

( ) ( )
2

13 13 25 21
1 10  Hz = 2 10 1.8 10 7 10 N/m.

2

k
k

m
π

π
−× = × × ≈ ×



110. (a) Eq. 15-28 gives 

T
L

g

m
= = =2 2

17

9 8
8 3π π

.
. .

m / s
s

2

(b) Plugging I = mL
2
 into Eq. 15-25, we see that the mass m cancels out. Thus, the 

characteristics (such as the period) of the periodic motion do not depend on the mass. 



(d) Point O stays relatively stationary in the batting process, and that might be possible 

due to a force exerted by the batter or due to a finely tuned cancellation such as we have 

shown here. We assumed that the batter exerted no force, and our first expectation is that 

the impulse delivered by the impact would make all points on the bat go into motion, but 

for this particular choice of impact point, we have seen that the point being held by the 

batter is naturally stationary and exerts no force on the batter’s hands which would 

otherwise have to “fight” to keep a good hold of it. 

111. (a) The net horizontal force is F since the batter is assumed to exert no horizontal 

force on the bat. Thus, the horizontal acceleration (which applies as long as F acts on the 

bat) is a = F/m.

(b) The only torque on the system is that due to F, which is exerted at P, at a distance 

L Lo − 1
2  from C. Since Lo = 2L/3 (see Sample Problem 15-5), then the distance from C to 

P is 2
3

1
2

1
6L L L− = . Since the net torque is equal to the rotational inertia (I = 1/12mL

2

about the center of mass) multiplied by the angular acceleration, we obtain 

α
τ

= = =
I

F L

mL

F

mL

1
6

1
12

2

2b g
.

(c) The distance from C to O is r = L/2, so the contribution to the acceleration at O

stemming from the angular acceleration (in the counterclockwise direction of Fig. 15-11) 

is α αr L= 1
2  (leftward in that figure). Also, the contribution to the acceleration at O due to 

the result of part (a) is F/m (rightward in that figure). Thus, if we choose rightward as 

positive, then the net acceleration of O is 

 =
1

2
=

1

2

2
= 0. a

F

m
L

F

m

F

mL
LO − − FH
I
Kα



112. (a) A plot of x versus t (in SI units) is shown below:  

If we expand the plot near the end of that time interval we have 

This is close enough to a regular sine wave cycle that we can estimate its period (T = 0.18 

s, so ω = 35 rad/s) and its amplitude (ym = 0.008 m). 

(b) Now, with the new driving frequency (ωd = 13.2 rad/s), the x versus t graph (for the 

first one second of motion) is as shown below: 



It is a little more difficult in this case to estimate a regular sine-curve-like amplitude and 

period (for the part of the above graph near the end of that time interval), but we arrive at 

roughly ym = 0.07 m, T = 0.48 s, and ω = 13 rad/s. 

(c) Now, with ωd = 20 rad/s, we obtain (for the behavior of the graph, below, near the end 

of the interval) the estimates: ym = 0.03 m, T = 0.31 s, and ω = 20 rad/s. 



Chapter 16 
 



1. (a) The angular wave number is 12 2
3.49m .

1.80m
k −π π

= = =
λ

(b) The speed of the wave is 
( )( )1.80m 110rad s

31.5m s.
2 2

v f
ωλ

= λ = = =
π π
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2. The distance d between the beetle and the scorpion is related to the transverse speed tv

and longitudinal speed v  as 

t td v t v t= =

where tt  and t  are the  arrival times of the wave in the transverse and longitudinal 

directions, respectively. With 50 m/stv =  and 150 m/sv = , we have 

150 m/s
3.0

50 m/s

t

t

t v

t v
= = = .

Thus, if
3 33.0 2.0 4.0 10 s 2.0 10 s ,tt t t t t t t− −∆ = − = − = = × = ×

then 3(150 m/s)(2.0 10 s) 0.30 m 30 cm.d v t −= = × = =



3. (a) The motion from maximum displacement to zero is one-fourth of a cycle so 0.170 s 

is one-fourth of a period. The period is T = 4(0.170 s) = 0.680 s. 

(b) The frequency is the reciprocal of the period: 

1 1
1.47 Hz.

0.680s
f

T
= = =

(c) A sinusoidal wave travels one wavelength in one period: 

1.40m
2.06m s.

0.680s
v

T
= = =

λ



853 seats
21.87 seats/s 22 seats/s

39 s
v = = ≈ .

(b) The width w is equal to the distance the wave has moved during the average time 

required by a spectator to stand and then sit. Thus, 

(21.87 seats/s)(1.8 s) 39 seatsw vt= = ≈ .

4. (a) The speed of the wave is the distance divided by the required time. Thus,  



5. Let  y1 = 2.0 mm (corresponding to time t1) and y2 = –2.0 mm (corresponding to time 

t2).  Then we find

kx + 600t1  + φ = sin
−1

(2.0/6.0)

and

kx + 600t2  + φ = sin
−1

(–2.0/6.0)  . 

Subtracting equations gives

600(t1 – t2)  =  sin
−1

(2.0/6.0) – sin
−1

(–2.0/6.0).

Thus we find t1 – t2 = 0.011 s  (or  1.1 ms). 



6. Setting x = 0  in u = −ω ym cos(k x − ω t + φ) (see Eq. 16-21 or Eq. 16-28) gives 

u = −ω ym cos(−ω t+φ)

as the function being plotted in the graph.  We note that it has a positive “slope” 

(referring to its t-derivative) at t = 0: 

d u

d t
 = 

d (−ω ym cos(−ω t+ φ))
d t

= − ym ω² sin(−ω t + φ)   > 0  at t = 0.

This implies that – sinφ > 0 and consequently that φ is in either the third or fourth 

quadrant. The graph shows (at t = 0)  u = −4 m/s, and (at some later t) umax = 5 m/s.  We 

note that umax  = ym ω. Therefore, 

u = − umax cos(− ω t + φ)|t = 0 φ =  cos
−1( 4

5
) = ± 0.6435 rad

(bear in mind that cosθ = cos(−θ )), and we must choose  φ = −0.64 rad  (since this is 

about  −37° and is in fourth quadrant).  Of course, this answer added to 2nπ is still a valid 

answer (where n is any integer), so that, for example, φ = −0.64 + 2π = 5.64 rad  is also 

an acceptable result. 



7. Using v = fλ, we find the length of one cycle of the wave is

λ = 350/500 = 0.700 m = 700 mm. 

From f = 1/T, we find the time for one cycle of oscillation is T = 1/500 = 2.00 × 10
–3

 s = 

2.00 ms. 

(a) A cycle is equivalent to 2π radians, so that π/3 rad corresponds to one-sixth of a cycle. 

The corresponding length, therefore, is λ/6 = 700/6 = 117 mm. 

(b) The interval 1.00 ms is half of T and thus corresponds to half of one cycle, or half of 

2π rad. Thus, the phase difference is (1/2)2π = π rad. 



8. (a) The amplitude is ym = 6.0 cm. 

(b) We find λ from 2π/λ = 0.020π: λ = 1.0×10
2
 cm. 

(c) Solving 2πf = ω = 4.0π, we obtain f = 2.0 Hz. 

(d) The wave speed is v = λf = (100 cm) (2.0 Hz) = 2.0×10
2
 cm/s. 

(e) The wave propagates in the –x direction, since the argument of the trig function is kx

+ ωt instead of kx – ωt (as in Eq. 16-2). 

(f) The maximum transverse speed (found from the time derivative of y) is 

( ) ( )1

max 2 4.0 s 6.0cm 75cm s.mu fy −= π = π =

(g) y(3.5 cm, 0.26 s) = (6.0 cm) sin[0.020π(3.5) + 4.0π(0.26)] = –2.0 cm. 



(f) The function describing the wave can be written as 

( )0.040sin 5 400y x t φ= − +

where distances are in meters and time is in seconds. We adjust the phase constant φ to 

satisfy the condition y = 0.040 at x = t = 0. Therefore, sin φ = 1, for which the “simplest” 

root is φ = π/2. Consequently, the answer is 

0.040sin 5 400 .
2

y x t
π

= − +

(g) The sign in front of ω is minus. 

9. (a) Recalling from Ch. 12 the simple harmonic motion relation um = ymω, we have 

16
400rad/s.

0.040
ω = =

Since ω = 2πf, we obtain f = 64 Hz. 

(b) Using v = fλ, we find λ = 80/64 = 1.26 m 1.3 m≈ .

(c) The amplitude of the transverse displacement is 24.0 cm 4.0 10 m.my −= = ×

(d) The wave number is k = 2π/λ = 5.0 rad/m. 

(e) The angular frequency, as obtained in part (a), is 216 / 0.040 4.0 10 rad/s.ω = = ×



10. With length in centimeters and time in seconds, we have 

u =
du

dt
  = 225π sin (πx − 15πt) . 

Squaring this and adding it to the square of 15πy, we have 

u
2
 + (15πy)

2
  =  (225π )

2
 [sin

2
 (πx − 15π t) + cos

2
 (πx − 15π t)]

so that 

u  = (225π)
2
 - (15πy)

2
  =  15π 15

2
 - y

2
   . 

Therefore, where y = 12, u must be ± 135π.  Consequently, the speed there is 424 cm/s = 

4.24 m/s. 



(d) We choose the minus sign (between kx and ωt) in the argument of the sine function 

because the wave is shown traveling to the right [in the +x direction] – see section 16-5).  

Therefore, with SI units understood, we obtain 

y = ym sin(kx −kvt) ≈ 0.0030 sin(16 x  −  2.4 10
2

t) . 

11. (a) The amplitude ym is half of the 6.00 mm vertical range shown in the figure, i.e., 

3.0 mm.my =

(b) The speed of the wave is v = d/t = 15 m/s, where d = 0.060 m and t = 0.0040 s.  The 

angular wave number is k = 2π/λ where λ  = 0.40 m.  Thus,  

k = 
2π
 λ

  =  16 rad/m . 

(c) The angular frequency is found from  

ω = k v = (16 rad/m)(15 m/s)=2.4 10
2
 rad/s. 



12. The slope that they are plotting is the physical slope of sinusoidal waveshape (not to 

be confused with the more abstract “slope” of its time development; the physical slope is 

an x-derivative whereas the more abstract “slope” would be the t-derivative).  Thus, 

where the figure shows a maximum slope equal to 0.2 (with no unit), it refers to the 

maximum of the following function: 

d y

d x
 = 

d ym sin(k x − ω t)
d x

 = ym k cos(k x − ω t) .

The problem additionally gives t = 0, which we can substitute into the above expression 

if desired.  In any case, the maximum of the above expression is  ym k ,  where 

2 2
15.7 rad/m

0.40 m
k

π π

λ
= = = .

Therefore, setting ym k equal to 0.20 allows us to solve for the amplitude ym .  We find 

0.20
0.0127 m 1.3 cm

15.7 rad/m
my = = ≈ .



(d) The angular frequency is ω = 2π/T = π/5 = 0.63 rad/s.

(e) As found in part (a), the phase is φ π= .

(f) The sign is minus since the wave is traveling in the +x direction. 

(g) Since the frequency is f = 1/T = 0.10 s, the speed of the wave is v = fλ = 2.0 cm/s. 

(h) From the results above, the wave may be expressed as 

( , ) 4.0sin 4.0sin
10 5 10 5

x t x t
y x t

π π π π
π= − + = − − .

Taking the derivative of y with respect to t, we find 

( , ) 4.0 cos
10 5

y x t
u x t

t t

π π∂ π
= = −

∂

which yields u(0,5.0) = –2.5 cm/s. 

13. From Eq. 16-10, a general expression for a sinusoidal wave traveling along the +x

direction is

 ( , ) sin( )my x t y kx tω φ= − +

(a) The figure shows that at x = 0, 

(0, ) sin( )my t y tω φ= − + is a positive sine function, i.e., 

(0, ) sin .my t y tω= +  Therefore, the phase constant must 

be φ π= . At t =0, we then have 

( ,0) sin( ) sinm my x y kx y kxπ= + = −

which is a negative sine function. A plot of y(x,0) is 

depicted on the right. 

(b) From the figure we see that the amplitude is ym = 4.0 cm.  

(c) The angular wave number is given by k = 2π/λ = π/10 = 0.31 rad/cm. 



14. From v = τ µ , we have 

new newnew

old old old

2.
v

v

τ µ

τ µ
= =



15. The wave speed v is given by v = τ µ , where τ is the tension in the rope and µ is 

the linear mass density of the rope. The linear mass density is the mass per unit length of 

rope:

µ = m/L = (0.0600 kg)/(2.00 m) = 0.0300 kg/m. 

Thus,

500 N
129 m s.

0.0300 kg m
v = =



2
2

1 1 1

2

2 2 2

4
.

4

d d

d d

µ πρ

µ πρ
= =

Therefore, the ratio of diameters is 

1 1

2 2

3.0
3.2.

0.29

d

d

µ

µ
= = =

16. The volume of a cylinder of height  is V = πr
2

= πd
2

/4. The strings are long, 

narrow cylinders, one of diameter d1 and the other of diameter d2 (and corresponding 

linear densities µ1 and µ2). The mass is the (regular) density multiplied by the volume: m

= ρV, so that the mass-per-unit length is  

2 24

4

m d dρ ρ
µ

π π
= = =

and their ratio is 



17. (a) The amplitude of the wave is ym=0.120 mm. 

(b) The wave speed is given by v = τ µ , where τ is the tension in the string and µ is the 

linear mass density of the string, so the wavelength is λ = v/f = τ µ /f and the angular 

wave number is 

( ) 12 0.50kg m
2 2 100 Hz 141m .

10 N
k f −π

= = π = π =
λ

µ

τ

(c) The frequency is f = 100 Hz, so the angular frequency is

ω = 2πf = 2π(100 Hz) = 628 rad/s. 

(d) We may write the string displacement in the form y = ym sin(kx + ωt). The plus sign is 

used since the wave is traveling in the negative x direction. In summary, the wave can be 

expressed as 

( ) ( ) ( )1 10.120mm sin 141m  + 628s .y x t− −=



18. We use /v = ∝τ µ τ  to obtain 

( )
2 2

2
2 1

1

180 m/s
120 N 135N.

170 m/s

v

v
= = =τ τ



19. (a) The wave speed is given by v = λ/T = ω/k, where λ is the wavelength, T is the 

period, ω is the angular frequency (2π/T), and k is the angular wave number (2π/λ). The 

displacement has the form y = ym sin(kx + ωt), so k = 2.0 m
–1

 and ω = 30 rad/s. Thus

v = (30 rad/s)/(2.0 m
–1

) = 15 m/s. 

(b) Since the wave speed is given by v = τ µ , where τ is the tension in the string and µ

is the linear mass density of the string, the tension is 

( )( )
22 41.6 10 kg m 15m s 0.036 N.vτ µ −= = × =



20. (a) Comparing with Eq. 16-2, we see that k = 20/m and ω = 600/s. Therefore, the 

speed of the wave is (see Eq. 16-13) v = ω/k = 30 m/s. 

(b) From Eq. 16–26, we find 

2 2

15
0.017 kg m 17g m.

30v
= = = =

τ
µ



The solution is either 0.93 rad or 2.21 rad. In the first case the function has a positive 

slope at x = 0 and matches the graph. In the second case it has negative slope and does 

not match the graph. We select φ = 0.93 rad.

(i) The string displacement has the form y (x, t) = ym sin(kx + ωt + φ). A plus sign appears 

in the argument of the trigonometric function because the wave is moving in the negative 

x direction. Using the results obtained above, the expression for the displacement is 

( )2 1 1( , ) 5.0 10 m sin (16m ) (190s ) 0.93 .− − −= × + +y x t x t

21. (a) We read the amplitude from the graph. It is about 5.0 cm. 

(b) We read the wavelength from the graph. The curve crosses y = 0 at about x = 15 cm 

and again with the same slope at about x = 55 cm, so  

λ = (55 cm – 15 cm) = 40 cm = 0.40 m. 

(c) The wave speed is / ,v = τ µ  where τ is the tension in the string and µ is the linear 

mass density of the string. Thus, 

3

3.6 N
12 m/s.

25 10 kg/m
v

−
= =

×

(d) The frequency is f = v/λ = (12 m/s)/(0.40 m) = 30 Hz and the period is  

T = 1/f = 1/(30 Hz) = 0.033 s. 

(e) The maximum string speed is  

um = ωym = 2πfym = 2π(30 Hz) (5.0 cm) = 940 cm/s = 9.4 m/s. 

(f) The angular wave number is k = 2π/λ = 2π/(0.40 m) = 16 m
–1

.

(g) The angular frequency is ω = 2πf = 2π(30 Hz) = 1.9×10
2
 rad/s 

(h) According to the graph, the displacement at x = 0 and t = 0 is 4.0 × 10
–2

 m. The 

formula for the displacement gives y(0, 0) = ym sin φ. We wish to select φ so that

5.0 × 10
–2

 sin φ = 4.0 × 10
–2

.



22. (a) The general expression for y (x, t) for the wave is y (x, t) = ym sin(kx – ωt), which, 

at x = 10 cm, becomes y (x = 10 cm, t) = ym sin[k(10 cm – ωt)]. Comparing this with the 

expression given, we find ω = 4.0 rad/s, or f = ω/2π = 0.64 Hz. 

(b) Since k(10 cm) = 1.0, the wave number is k = 0.10/cm. Consequently, the wavelength 

is λ = 2π/k = 63 cm. 

(c) The amplitude is 5.0 cm.my =

(d) In part (b), we have shown that the angular wave number is k = 0.10/cm. 

(e) The angular frequency is ω = 4.0 rad/s. 

(f) The sign is minus since the wave is traveling in the +x direction. 

Summarizing the results obtained above by substituting the values of k and ω into the 

general expression for y (x, t), with centimeters and seconds understood, we obtain 

( , ) 5.0sin (0.10 4.0 ).y x t x t= −

(g) Since / / ,v k= =ω τ µ  the tension is 

2 1 2
2

2 1 2

(4.0g / cm)(4.0s )
6400g cm/s 0.064 N.

(0.10cm )

−

−
= = = ⋅ =

k

ω µ
τ



(250 N)(10.0m)
158m/s.

0.100kg
= = =

L
v

m

τ

Here τ is the tension in the wire and L/m is the linear mass density of the wire. The 

coordinate of the meeting point is 

310.0m (158m/s) (30.0 10 s)
7.37 m.

2
x

−+ ×
= =

This is the distance from the left end of the wire. The distance from the right end is L – x

= (10.0 m – 7.37 m ) = 2.63 m. 

23. The pulses have the same speed v. Suppose one pulse starts from the left end of the 

wire at time t = 0. Its coordinate at time t is x1 = vt. The other pulse starts from the right 

end, at x = L, where L is the length of the wire, at time t = 30 ms. If this time is denoted 

by t0 then the coordinate of this wave at time t is x2 = L – v(t – t0). They meet when x1 = 

x2, or, what is the same, when vt = L – v(t – t0). We solve for the time they meet: t = (L + 

vt0)/2v and the coordinate of the meeting point is x = vt = (L + vt0)/2. Now, we calculate 

the wave speed: 



24. (a) The tension in each string is given by τ = Mg/2. Thus, the wave speed in string 1 

is

2

1

1 1

(500g) (9.80m/s )
28.6m/s.

2 2(3.00g/m)

Mg
v

τ

µ µ
= = = =

(b) And the wave speed in string 2 is 

2

2

2

(500g) (9.80m/s )
22.1m/s.

2 2(5.00g/m)

Mg
v

µ
= = =

(c) Let 1 1 1 2 2 2/(2 ) /(2 )v M g v M g= = =µ µ and M1 + M2 = M. We solve for M1 and 

obtain

1

2 1

500g
187.5g 188g.

1 / 1 5.00 / 3.00

M
M

µ µ
= = = ≈

+ +

(d) And we solve for the second mass: M2 = M – M1 = (500 g – 187.5 g) ≈ 313 g. 



25. (a) The wave speed at any point on the rope is given by v = τ µ , where τ is the 

tension at that point and µ is the linear mass density. Because the rope is hanging the 

tension varies from point to point. Consider a point on the rope a distance y from the 

bottom end. The forces acting on it are the weight of the rope below it, pulling down, and 

the tension, pulling up. Since the rope is in equilibrium, these forces balance. The weight 

of the rope below is given by µgy, so the tension is τ = µgy. The wave speed is 

/ .= =v gy gyµ µ

(b) The time dt for the wave to move past a length dy, a distance y from the bottom end, 

is d d dt y v y gy= =  and the total time for the wave to move the entire length of the 

rope is 

0
0

d
2 2 .

L

L y y L
t

g ggy
= = =



26. Using Eq. 16–33 for the average power and Eq. 16–26 for the speed of the wave, we 

solve for f = ω/2π:

avg

3

21 1 2(85.0 W)
198 Hz.

2 2 (7.70 10 m)/ (36.0 N)(0.260kg / 2.70 m )m

P
f

y µ τ µ −
= = =

π π ×



27. We note from the graph (and from the fact that we are dealing with a cosine-squared, 

see Eq. 16-30) that the wave frequency is f = 
1

2 ms
= 500 Hz, and that the wavelength λ =

0.20 m.  We also note from the graph that the maximum value of dK/dt is 10 W.  Setting 

this equal to the maximum value of Eq. 16-29 (where we just set that cosine term equal to 

1) we find 

1

2
µ v ω2

ym
2
 = 10 

with SI units understood.  Substituting in µ = 0.002 kg/m, ω = 2πf  and v = f λ , we solve 

for the wave amplitude:  

ym = 
10

2π2µλ  f 
3  =  0.0032 m . 



28. Comparing 1 1( , ) (3.00 mm)sin[(4.00 m ) (7.00 s ) ]y x t x t− −= −  to the general expression 

( , ) sin( )my x t y kx tω= − , we see that 14.00 mk −= and 7.00 rad/sω = . The speed of the 

wave is
1/ (7.00 rad/s)/(4.00 m ) 1.75 m/s.v kω −= = =



29. The wave 1 1 1/ 2( , ) (2.00 mm)[(20 m ) (4.0 s ) ]y x t x t− −= −  is of the form ( )h kx tω− with

angular wave number 120 mk −=  and angular frequency 4.0 rad/sω = . Thus, the speed of 

the wave is
1/ (4.0 rad/s)/(20 m ) 0.20 m/s.v kω −= = =



30. The wave 1 1( , ) (4.00 mm) [(30 m ) (6.0 s ) ]y x t h x t− −= +  is of the form ( )h kx tω− with

angular wave number 130 mk −=  and angular frequency 6.0 rad/sω = . Thus, the speed 

of the wave is

1/ (6.0 rad/s)/(30 m ) 0.20 m/s.v kω −= = =



sin( ) sin( )m my y kx t y kx tω ω φ= − + − + ( ) ( )1 1
2 2

2 cos sinmy kx tφ ω φ= − + ,

where φ = π/2. The amplitude is  

( )1
2

2 cosmA y φ= 2 cos( / 4) 1.41m my y= π = .

31. The displacement of the string is given by  



32. (a) Let the phase difference be φ. Then from Eq. 16–52, 2ym cos(φ/2) = 1.50ym, which 

gives

1 1.50
2cos 82.8 .

2

m

m

y

y
φ −= = °

(b) Converting to radians, we have φ = 1.45 rad. 

(c) In terms of wavelength (the length of each cycle, where each cycle corresponds to 2π
rad), this is equivalent to 1.45 rad/2π = 0.230 wavelength. 



33. (a) The amplitude of the second wave is 9.00 mmmy = , as stated in the problem. 

(b) The figure indicates that λ = 40 cm = 0.40 m, which implies that the angular wave 

number is k = 2π/0.40 = 16  rad/m.    

(c) The figure (along with information in the problem) indicates that the speed of each 

wave is v = dx/t = (56.0 cm)/(8.0 ms) = 70 m/s.  This, in turn, implies that the angular 

frequency is

ω = k v =1100 rad/s = 1.1×10
3
 rad/s. 

(d) The figure depicts two traveling waves (both going in the –x direction) of equal 

amplitude ym.  The amplitude of their resultant wave, as shown in the figure, is y′m = 4.00

mm.  Eq. 16-52 applies: 

y′m = 2 ym cos(
1

2
φ2) φ2 = 2 cos

−1
(2.00/9.00) = 2.69 rad. 

(e) In making the plus-or-minus sign choice in y = ym sin(k x ± ω t + φ), we recall the 

discussion in section 16-5, where it shown that sinusoidal waves traveling in the –x

direction are of the form y = ym sin(k x + ω t + φ).  Here, φ should be thought of as the 

phase difference between the two waves (that is, φ1 = 0 for wave 1 and φ2 = 2.69 rad for 

wave 2).

In summary, the waves have the forms (with SI units understood): 

y1 = (0.00900)sin(16 x +1100 t)   and y2 = (0.00900)sin(16 x + 1100 t + 2.7 ) . 



34. (a) We use Eq. 16-26 and Eq. 16-33 with µ = 0.00200 kg/m and  ym = 0.00300 m.  

These give v = τ / µ  = 775 m/s and   

Pavg = 
1

2
 µv ω2

ym
2
 = 10 W. 

(b) In this situation, the waves are two separate string (no superposition occurs).  The 

answer is clearly twice that of part (a); P = 20 W. 

(c) Now they are on the same string.  If they are interfering constructively (as in Fig. 16-

16(a)) then the amplitude ym is doubled which means its square ym
2
 increases by a factor 

of 4.  Thus, the answer now is four times that of part (a);  P = 40 W. 

(d) Eq. 16-52 indicates in this case that the amplitude (for their superposition) is  

2 ymcos(0.2π) = 1.618 times the original amplitude ym.  Squared, this results in an increase 

in the power by a factor of 2.618.  Thus, P = 26 W in this case. 

(e) Now the situation depicted in Fig. 16-16(b) applies, so P = 0. 



35. The phasor diagram is shown below: y1m and y2m represent the original waves and ym

represents the resultant wave. The phasors corresponding to the two constituent waves 

make an angle of 90° with each other, so the triangle is a right triangle. The Pythagorean 

theorem gives  

2 2 2 2 2 2

1 2 (3.0cm) (4.0cm) (25cm)m m my y y= + = + = .

Thus ym = 5.0 cm. 



(d) In the part (c) situation, the amplitude is (8.0 mm + 5.0 mm) = 13 mm. 

(e) Using phasor terminology, the angle “between them” in this case is π/2 rad (90º), so 

the Pythagorean theorem applies: 

2 2(8.0 mm) (5.0 mm)+  = 9.4 mm . 

36. (a) As shown in Figure 16-16(b) in the textbook, the least-amplitude resultant wave is 

obtained when the phase difference is π rad.

(b) In this case, the amplitude is (8.0 mm – 5.0 mm) = 3.0 mm. 

(c) As shown in Figure 16-16(a) in the textbook, the greatest-amplitude resultant wave is 

obtained when the phase difference is 0 rad. 



37. The phasor diagram is shown on the right. We use the cosine 

theorem: 
2 2 2 2 2

1 2 1 2 1 2 1 22 cos 2 cos .m m m m m m m m my y y y y y y y yθ φ= + − = + +

We solve for cos φ :

2 2 2 2 2 2

1 2

1 2

(9.0mm) (5.0mm) (7.0mm)
cos 0.10.

2 2(5.0mm)(7.0mm)

m m m

m m

y y y

y y
φ

− − − −
= = =

The phase constant is therefore φ = 84°. 



38. We see that  y1 and  y3 cancel (they are 180º) out of phase, and y2 cancels with y4

because their phase difference is also equal to π rad (180º).  There is no resultant wave in 

this case. 



39. (a) Using the phasor technique, we think of these as two “vectors” (the first of 

“length” 4.6 mm and the second of “length” 5.60 mm) separated by an angle of φ = 0.8π
radians (or 144º).  Standard techniques for adding vectors then lead to a resultant vector 

of length 3.29 mm. 

(b) The angle (relative to the first vector) is equal to 88.8º (or 1.55 rad).  

(c) Clearly, it should in “in phase” with the result we just calculated, so its phase angle 

relative to the first phasor should be also 88.8º (or 1.55 rad). 



40. (a) The wave speed is given by 

3

7.00 N
66.1m/s.

2.00  10 kg/1.25m
v

−
= = =

×

τ

µ

(b) The wavelength of the wave with the lowest resonant frequency f1 is λ1 = 2L, where L

= 125 cm. Thus, 

1

1

66.1 m/s
26.4 Hz.

2(1.25 m)

v
f = = =

λ



41. Possible wavelengths are given by λ = 2L/n, where L is the length of the wire and n is 

an integer. The corresponding frequencies are given by f = v/λ = nv/2L, where v is the 

wave speed. The wave speed is given by / ,v L Mτ µ τ= =  where τ is the tension in 

the wire, µ is the linear mass density of the wire, and M is the mass of the wire. µ = M/L

was used to obtain the last form. Thus 

250 N
(7.91 Hz).

2 2 2 (10.0 m) (0.100 kg)
n

n L n n
f n

L M LM

τ τ
= = = =

(a) The lowest frequency is 1 7.91 Hz.f =

(b) The second lowest frequency is 2 2(7.91 Hz) 15.8 Hz.f = =

(c) The third lowest frequency is 3 3(7.91 Hz) 23.7 Hz.f = =



42. The nth resonant frequency of string A is 

, ,
2 2

A
n A

A

v n
f n

l L

τ

µ
= =

while for string B it is 

, ,

1
.

2 8 4

B
n B n A

B

v n
f n f

l L

τ

µ
= = =

(a) Thus, we see f1,A = f4,B. That is, the fourth harmonic of B matches the frequency of A’s

first harmonic. 

(b) Similarly, we find f2,A = f8,B.

(c) No harmonic of B would match 3,

3 3
,

2 2

A
A

A

v
f

l L

τ

µ
= =



43. (a) The wave speed is given by ,v τ µ=  where τ is the tension in the string and µ is 

the linear mass density of the string. Since the mass density is the mass per unit length, µ
= M/L, where M is the mass of the string and L is its length. Thus 

(96.0 N) (8.40 m)
82.0 m/s.

0.120 kg

L
v

M
= = =

τ

(b) The longest possible wavelength λ for a standing wave is related to the length of the 

string by L = λ/2, so λ = 2L = 2(8.40 m) = 16.8 m. 

(c) The frequency is f = v/λ = (82.0 m/s)/(16.8 m) = 4.88 Hz. 



44. The string is flat each time the particle passes through its equilibrium position. A 

particle may travel up to its positive amplitude point and back to equilibrium during this 

time. This describes half of one complete cycle, so we conclude T = 2(0.50 s) = 1.0 s. 

Thus, f = 1/T = 1.0 Hz, and the wavelength is 

10cm/s
10 cm.

1.0 Hz

v

f
λ = = =



45. (a) Eq. 16–26 gives the speed of the wave: 

2

3

150 N
144.34 m/s 1.44 10 m/s.

7.20 10 kg/m
v

τ

µ −
= = = ≈ ×

×

(b) From the figure, we find the wavelength of the standing wave to be  

λ = (2/3)(90.0 cm) = 60.0 cm. 

(c) The frequency is 
21.44 10 m/s

241Hz.
0.600m

v
f

×
= = =

λ



46. Use Eq. 16–66 (for the resonant frequencies) and Eq. 16–26 ( / )v τ µ=  to find fn:

2 2
n

nv n
f

L L

τ

µ
= =

which gives f3 = (3/2L) iτ µ .

(a) When τf = 4τi, we get the new frequency 

3 3

3
2 .

2

f
f f

L

τ
= =′

µ

(b) And we get the new wavelength 3 3

3

2
.

3

v L

f

′
′λ = = = λ

′



with n + 1. That is, f1 = nv/2L is the lower frequency and f2 = (n + 1)v/2L is the higher. 

The ratio of the frequencies is 

2

1

1
.

f n

f n

+
=

The solution for n is 

1

2 1

315 Hz
3.

420 Hz 315 Hz

f
n

f f
= = =

− −

The lowest possible resonant frequency is f = v/2L = f1/n = (315 Hz)/3 = 105 Hz. 

(b) The longest possible wavelength is λ = 2L. If f is the lowest possible frequency then

v = λf = 2Lf = 2(0.75 m)(105 Hz) = 158 m/s. 

47. (a) The resonant wavelengths are given by λ = 2L/n, where L is the length of the 

string and n is an integer, and the resonant frequencies are given by f = v/λ = nv/2L,

where v is the wave speed. Suppose the lower frequency is associated with the integer n.

Then, since there are no resonant frequencies between, the higher frequency is associated 



48. Using Eq. 16-26, we find the wave speed to be

665.2 10 N
4412m/s.

3.35kg/ m
v

τ

µ

×
= = =

The corresponding resonant frequencies are 

, 1, 2,3,
2 2

n

nv n
f n

L L

τ

µ
= = =

(a) The wavelength of the wave with the lowest (fundamental) resonant frequency f1 is λ1

= 2L, where L = 347 m. Thus, 

1

1

4412 m/s
6.36 Hz.

2(347 m)

v
f = = =

λ

(b) The frequency difference between successive modes is  

1

4412 m/s
6.36 Hz.

2 2(347 m)
n n

v
f f f

L
−∆ = − = = =



49. The harmonics are integer multiples of the fundamental, which implies that the 

difference between any successive pair of the harmonic frequencies is equal to the 

fundamental frequency.   Thus, f1 = (390 Hz – 325 Hz) = 65 Hz.  This further implies that 

the next higher resonance above 195 Hz should be (195 Hz + 65 Hz) = 260 Hz. 



and =
v

L f
L

λ = .

(a) Comparing the given function with Eq. 16-60, we obtain k = π/2 and ω = 12π rad/s. 

Since k = 2π/λ then 

2
4.0m 4.0m.

2
L

π π
= λ = =

λ

(b) Since ω = 2πf then 2 12  rad/s,fπ = π  which yields 

 6.0Hz       24m/s.f v f= = λ =

(c) Using Eq. 16–26, we have 

200 N
    24 m/s

/(4.0 m)
v

m

τ

µ
= =

which leads to m = 1.4 kg. 

(d) With 

3 3(24 m/s)
9.0Hz

2 2(4.0 m)

v
f

L
= = =

The period is T = 1/f = 0.11 s. 

50. Since the rope is fixed at both ends, then the phrase “second-harmonic standing wave 

pattern” describes the oscillation shown in Figure 16–23(b), where (see Eq. 16–65) 



51. (a) The amplitude of each of the traveling waves is half the maximum displacement 

of the string when the standing wave is present, or 0.25 cm. 

(b) Each traveling wave has an angular frequency of ω = 40π rad/s and an angular wave 

number of k = π/3 cm
–1

. The wave speed is

v = ω/k = (40π rad/s)/(π/3 cm
–1

) = 1.2×10
2
 cm/s. 

(c) The distance between nodes is half a wavelength: d = λ/2 = π/k = π/(π/3 cm
–1

) = 3.0 

cm. Here 2π/k was substituted for λ.

(d) The string speed is given by u(x, t) = ∂y/∂t = –ωymsin(kx)sin(ωt). For the given 

coordinate and time, 

( )1 1 9
(40  rad/s) (0.50cm) sin cm (1.5cm) sin  40 s s 0.

3 8
u − −π

= − π π =



52. The nodes are located from vanishing of the spatial factor sin 5πx = 0 for which the 

solutions are 

1 2 3
5 0, ,2 ,3 , 0, , , ,

5 5 5
x xπ = π π π =

(a) The smallest value of x which corresponds to a node is x = 0. 

(b) The second smallest value of x which corresponds to a node is x = 0.20 m. 

(c) The third smallest value of x which corresponds to a node is x = 0.40 m. 

(d) Every point (except at a node) is in simple harmonic motion of frequency f = ω/2π = 

40π/2π = 20 Hz. Therefore, the period of oscillation is T = 1/f = 0.050 s. 

(e) Comparing the given function with Eq. 16–58 through Eq. 16–60, we obtain 

1 20.020sin(5 40 ) and 0.020sin(5 40 )y x t y x t= π − π = π + π

for the two traveling waves. Thus, we infer from these that the speed is v = ω/k = 40π/5π
= 8.0 m/s. 

(f) And we see the amplitude is ym = 0.020 m. 

(g) The derivative of the given function with respect to time is 

(0.040)(40 )sin(5 )sin(40 )
y

u x t
t

∂
= = − π π π

∂

which vanishes (for all x) at times such as sin(40πt) = 0. Thus, 

1 2 3
40 0, ,2 ,3 , 0, , , ,

40 40 40
t tπ = π π π =

Thus, the first time in which all points on the string have zero transverse velocity is when  

t = 0 s. 

(h) The second time in which all points on the string have zero transverse velocity is 

when t = 1/40 s = 0.025 s. 

(i) The third time in which all points on the string have zero transverse velocity is when  

t = 2/40 s = 0.050 s. 



y1 = ym sin(kx – ωt), y2 = ym sin(kx + ωt).

The amplitude ym is half the maximum displacement of the standing wave, or 5.0 × 10
–3

m. 

(b) Since the standing wave has three loops, the string is three half-wavelengths long: L = 

3λ/2, or λ = 2L/3. With L = 3.0m, λ = 2.0 m. The angular wave number is  

k = 2π/λ = 2π/(2.0 m) = 3.1 m
–1

.

(c) If v is the wave speed, then the frequency is 

( )
( )

3 100m s3
50 Hz.

2 2 3.0m

v v
f

L
= = = =

λ

The angular frequency is the same as that of the standing wave, or  

ω = 2π f = 2π(50 Hz) = 314 rad/s. 

(d) The two waves are 

( ) ( ) ( )3 1 1

1 5.0 10 m sin 3.14 m 314sy x t− − −= × −

and

( ) ( ) ( )3 1 1

2 5.0 10 m sin 3.14 m 314s .y x t− − −= × +

Thus, if one of the waves has the form ( , ) sin( )my x t y kx tω= + , then the other wave must 

have the form '( , ) sin( )my x t y kx tω= − . The sign in front of ω for '( , )y x t is minus. 

53. (a) The waves have the same amplitude, the same angular frequency, and the same 

angular wave number, but they travel in opposite directions. We take them to be  



(c) We take the derivative with respect to time and obtain, at t = 0.50 s and x = 0.20 m, 

( ) ( )0.04 cos cos 0
dy

u kx t
dt

ω ω= = − = .

 d) The above equation yields u = –0.13 m/s at t = 1.0 s. 

(e) The sketch of this function at t = 0.50 s for 0 ≤ x ≤ 0.40 m is shown below: 

54. From the x = 0 plot (and the requirement of an anti-node at x = 0), we infer a standing 

wave function of the form ( , ) (0.04)cos( )sin( ),y x t kx tω= − where 2 /  rad/sTω π π= = ,

with length in meters and time in seconds. The parameter k is determined by the 

existence of the node at x = 0.10 (presumably the first node that one encounters as one 

moves from the origin in the positive x direction). This implies k(0.10) = π/2 so that k = 

5π rad/m. 

(a) With the parameters determined as discussed above and t = 0.50 s, we find 

(0.20 m, 0.50 s) 0.04cos( )sin( ) 0.040m .y kx tω= − =

(b) The above equation yields (0.30 m, 0.50 s) 0.04cos( )sin( ) 0 .y kx tω= − =



Nodes occur where cos(kx) = 0 or kx = nπ + π/2, where n is an integer (including zero). 

Since k = 1.0π m
–1

, this means ( )1
2

(1.00 m)x n= + . Thus, the smallest value of x which 

corresponds to a node is x = 0.500 m (n=0).

(e) The second smallest value of x which corresponds to a node is x = 1.50 m (n=1).

(f) The third smallest value of x which corresponds to a node is x = 2.50 m (n=2).

(g) The displacement is a maximum where cos(kx) = ±1. This means kx = nπ, where n is 

an integer. Thus, x = n(1.00 m). The smallest value of x which corresponds to an anti-

node (maximum) is x = 0 (n=0).

(h) The second smallest value of x which corresponds to an anti-node (maximum) is 

1.00 mx = (n=1).

(i) The third smallest value of x which corresponds to an anti-node (maximum) is 

2.00 mx = (n=2).

55. (a) The angular frequency is ω = 8.00π/2 = 4.00π rad/s, so the frequency is

f = ω/2π = (4.00π rad/s)/2π = 2.00 Hz. 

(b) The angular wave number is k = 2.00π/2 = 1.00π m
–1

, so the wavelength is

λ = 2π/k = 2π/(1.00π m
–1

) = 2.00 m. 

(c) The wave speed is 

(2.00m)(2.00Hz) = 4.00 m/s.v f= λ =

(d) We need to add two cosine functions. First convert them to sine functions using cos α
= sin (α + π/2), then apply

cos cos sin sin 2sin cos
2 2 2 2

2cos cos
2 2

π π + + π +
+ = + + + =

+ −
=

α β α β
α β α β

α β α β

Letting α = kx and β = ωt, we find 

cos( ) cos( ) 2 cos( )cos( ).m m my kx t y kx t y kx tω ω ω+ + − =



56. Reference to point A as an anti-node suggests that this is a standing wave pattern and 

thus that the waves are traveling in opposite directions.  Thus, we expect one of them to 

be of the form y = ym sin(kx + ωt) and the other to be of the form y = ym sin(kx – ωt).

(a) Using Eq. 16-60, we conclude that ym = 
1

2
(9.0 mm) = 4.5 mm, due to the fact that the 

amplitude of the standing wave is  
1

2
(1.80 cm) = 0.90 cm = 9.0 mm.   

(b) Since one full cycle of the wave (one wavelength) is 40 cm,  k = 2π/λ ≈ 16 m
−1

.

(c) The problem tells us that the time of half a full period of motion is 6.0 ms, so T = 12 

ms and Eq. 16-5 gives ω = 5.2 ×10
2
 rad/s.

(d) The two waves are therefore

                                y1(x, t) = (4.5 mm) sin[(16 m
−1

)x + (520 s
−1

)t]

and

y2(x, t) = (4.5 mm) sin[(16 m
−1

)x – (520 s
−1

)t] . 

If one wave has the form ( , ) sin( )my x t y kx tω= + as in y1, then the other wave must be of 

the form '( , ) sin( )my x t y kx tω= − as in y2. Therefore, the sign in front of ω is minus. 



The anti-node moves through 12 cm in simple harmonic motion, just as a mass on a 

vertical spring would move from its upper turning point to its lower turning point – 

which occurs during a half-period.  Since the period T is related to the angular frequency 

by Eq. 15-5, we have 

T = 
2π
ω

 =
2π

4.00 π
= 0.500 s .

Thus, in a time of t = 
1

2
T = 0.250 s, the wave moves a distance ∆x = vt  where the speed 

of the wave is v =
ω
k

= 1.00 m/s.  Therefore, ∆x = (1.00 m/s)(0.250 s) = 0.250 m. 

57. Recalling the discussion in section 16-12, we observe that this problem presents us 

with a standing wave condition with amplitude 12 cm.  The angular wave number and 

frequency are noted by comparing the given waves with the form y = ym sin(k x ± ω t).



58. With the string fixed on both ends, using Eq. 16-66 and Eq. 16-26, the resonant 

frequencies can be written as 

, 1, 2,3,
2 2 2

nv n n mg
f n

L L L

τ

µ µ
= = = =

(a) The mass that allows the oscillator to set up the 4th harmonic ( 4n = ) on the string is

2 2 2 2

2 2 2

4

4 4(1.20 m) (120 Hz) (0.00160 kg/m)
0.846 kg

(4) (9.80 m/s )n

L f
m

n g

µ

=

= = =

(b) If the mass of the block is 1.00 kgm = , the corresponding n is

2 2 2 2

2

4 4(1.20 m) (120 Hz) (0.00160 kg/m)
3.68

9.80 m/s

L f
n

g

µ
= = =

which is not an integer. Therefore, the mass cannot set up a standing wave on the string. 



µ1 = ρ1AL1/L1 = ρ1A

and 1 1/ .Aν τ ρ=  A similar expression holds for the wave speed in the steel section: 

2 2/ .v Aτ ρ=  We note that the cross-sectional area and the tension are the same for the 

two sections. The equality of the frequencies for the two sections now leads to 

1 1 1 2 2 2/ / ,n L n Lρ ρ=  where A has been canceled from both sides. The ratio of the 

integers is 

( )

( )

3 3

2 22

3 3
1 1 1

0.866 m 7.80 10 kg/m
2.50.

0.600 m 2.60 10 kg/m

Ln

n L

ρ

ρ

×
= = =

×

The smallest integers that have this ratio are n1 = 2 and n2 = 5. The frequency is 

( )1 1 1 1 1 1/ 2 / 2 / .f n v L n L Aτ ρ= =

The tension is provided by the hanging block and is τ  = mg, where m is the mass of the 

block. Thus, 

( )
( )( )

( )( )

2

1

3 3 6 2
1 1

10.0 kg 9.80 m/s2
324 Hz.

2 2 0.600 m 2.60 10 kg/m 1.00 10 m

n mg
f

L Aρ −
= = =

× ×

(b) The standing wave pattern has two loops in the aluminum section and five loops in 

the steel section, or seven loops in all. There are eight nodes, counting the end points. 

59. (a) The frequency of the wave is the same for both sections of the wire. The wave 

speed and wavelength, however, are both different in different sections. Suppose there 

are n1 loops in the aluminum section of the wire. Then,  

L1 = n1λ1/2 = n1v1/2f,

where λ1 is the wavelength and v1 is the wave speed in that section. In this consideration, 

we have substituted λ1 = v1/f, where f is the frequency. Thus f = n1v1/2L1. A similar 

expression holds for the steel section: f = n2v2/2L2. Since the frequency is the same for the 

two sections, n1v1/L1 = n2v2/L2. Now the wave speed in the aluminum section is given 

by 1 1/ ,ν τ µ=  where µ1 is the linear mass density of the aluminum wire. The mass of 

aluminum in the wire is given by m1 = ρ1AL1, where ρ1 is the mass density (mass per unit 

volume) for aluminum and A is the cross-sectional area of the wire. Thus



Therefore,  
447

286.1
 – 1 = 0.5624  must equal an odd integer (2n + 1) divided by a squared 

integer (n
2
).  That is, multiplying 0.5624 by a square (such as 1, 4, 9, 16, etc) should give 

us a number very close (within experimental uncertainty) to an odd number (1, 3, 5, …).  

Trying this out in succession (starting with multiplication by 1, then by 4, …), we find 

that multiplication by 16 gives a value very close to 9; we conclude n = 4 (so n
2
 = 16 and 

2n + 1 = 9).  Plugging m = 0.447 kg, n = 4, and the other values given in the problem, we 

find

µ = 0.000845 kg/m = 0.845 g/m. 

60. With the string fixed on both ends, using Eq. 16-66 and Eq. 16-26, the resonant 

frequencies can be written as 

, 1, 2,3,
2 2 2

nv n n mg
f n

L L L

τ

µ µ
= = = =

The mass that allows the oscillator to set up the nth harmonic on the string is  

2 2

2

4L f
m

n g

µ
= .

Thus, we see that the block mass is inversely proportional to the harmonic number 

squared.  Thus, if the 447 gram block corresponds to harmonic number n then 

447

286.1
  = 

(n + 1)
2

 n
2   =

n
2
 + 2n + 1

 n
2    =   1 + 

2n + 1

 n
2   . 



61. (a) The phasor diagram is shown here: y1, y2, and y3 represent the original waves and 

ym represents the resultant wave.

The horizontal component of the resultant is ymh = y1 – y3 = y1 – y1/3 = 2y1/3. The vertical 

component is ymv = y2 = y1/2. The amplitude of the resultant is 

2 2

2 2 1 1
1 1

2 5
0.83 .

3 2 6
m mh mv

y y
y y y y y= + = + = =

(b) The phase constant for the resultant is 

1 1 11

1

2 3
tan tan tan 0.644 rad 37 .

2 3 4

mv

mh

y y

y y
φ − − −= = = = = °

(c) The resultant wave is 

1

5
sin ( 0.644 rad).

6
y y kx tω= − +

The graph below shows the wave at time t = 0. As time goes on it moves to the right with 

speed v = ω/k.



62. Setting x = 0  in  y = ym sin(k x − ω t + φ) gives y = ym sin(−ω t + φ) as the function 

being plotted in the graph.  We note that it has a positive “slope” (referring to its t-

derivative) at t = 0: 

d y

d t
  = 

d ym sin(−ω t+ φ)
d t

 = – ymω cos(−ω t+ φ)   > 0  at t = 0.

This implies that  – cos(φ) > 0 and consequently that φ is in either the second or third 

quadrant. The graph shows (at t = 0) y = 2.00 mm, and (at some later t) ym = 6.00 mm.  

Therefore,

y = ym sin(−ω t + φ)|t = 0 φ = sin
−1

(
1

3
) =  0.34 rad   or   2.8 rad 

 (bear in mind that sin(θ) = sin(π − θ)), and we must choose  φ = 2.8 rad  because this is 

about 161° and is in second quadrant. Of course, this answer added to 2nπ is still a valid 

answer (where n is any integer), so that, for example,  φ = 2.8 – 2π = −3.48 rad  is also an 

acceptable result. 



63. We compare the resultant wave given with the standard expression (Eq. 16–52) to 

obtain ( )1 1
2

20m 2 / ,2 cos 3.0mmmk y−= = π λ =φ , and 1
2

0.820rad=φ .

(a) Therefore, λ = 2π/k = 0.31 m. 

(b) The phase difference is φ = 1.64 rad. 

(c) And the amplitude is ym = 2.2 mm. 



d ay

d t
 = 

d (–ω²ym sin(−ω t+ φ))
d t

 = ym ω3
 cos(− ω t + φ)   < 0  at t = 0.

This implies that  cosφ < 0 and consequently that φ is in either the second or third 

quadrant. The graph shows (at t = 0)  ay  = −100 m/s², and (at another t) amax = 400 m/s².  

Therefore,

ay = −amax sin(−ω t + φ)|t = 0 φ =  sin
−1

(
1

4
) =  0.25 rad   or   2.9 rad 

(bear in mind that sinθ = sin(π − θ)), and we must choose φ = 2.9 rad  because this is 

about 166° and is in the second quadrant.  Of course, this answer added to 2nπ is still a 

valid answer (where n is any integer), so that, for example, φ = 2.9 – 2π = −3.4 rad  is 

also an acceptable result. 

64. Setting x = 0  in  ay = –ω² y (see the solution to part (b) of Sample Problem 16-2) 

where y = ym sin(k x − ω t + φ) gives ay = –ω² ym sin(−ω t + φ) as the function being 

plotted in the graph.  We note that it has a negative “slope” (referring to its t-derivative)

at t = 0: 



65. We note that  

dy/dt = −ωcos(kx – ωt + φ),

which we will refer to as u(x,t). so that the ratio of the function y(x,t) divided by u(x,t)

is – tan(kx − ωt + φ)/ω.  With the given information (for x = 0 and t = 0) then we can take 

the inverse tangent of this ratio to solve for the phase constant: 

φ = tan
−1 -ω y(0,0)

 u(0,0)
 = tan

−1 -(440)(0.0045)

-0.75
= 1.2 rad. 



(d) The leading edge of the pulse reaches x = 10 cm at t = (10 – 4.0)/5 = 1.2 s. The 

particle (say, of the string that carries the pulse) at that location reaches a maximum 

displacement h = 2 cm at t = (10 – 3.0)/5 = 1.4 s. Finally, the trailing edge of the pulse 

departs from x = 10 cm at t = (10 – 1.0)/5 = 1.8 s. Thus, we find for h(t) at x = 10 cm 

(with the horizontal axis, t, in seconds): 

66. (a) Recalling the discussion in §16-5, we see that the speed of the wave given by a 

function with argument x – 5.0t (where x is in centimeters and t is in seconds) must be 

5.0 cm/s .

(b) In part (c), we show several “snapshots” of the wave: the one on the left is as shown 

in Figure 16–48 (at t = 0), the middle one is at t = 1.0 s, and the rightmost one is at 

2.0 st = . It is clear that the wave is traveling to the right (the +x direction). 

(c) The third picture in the sequence below shows the pulse at 2.0 s. The horizontal scale 

(and, presumably, the vertical one also) is in centimeters. 



67. (a) The displacement of the string is assumed to have the form y(x, t) =

ym sin (kx – ωt). The velocity of a point on the string is

u(x, t) = ∂y/∂t = –ω ym cos(kx – ωt)

and its maximum value is um = ωym. For this wave the frequency is f = 120 Hz and the 

angular frequency is ω = 2πf = 2π (120 Hz) = 754 rad/s. Since the bar moves through a 

distance of 1.00 cm, the amplitude is half of that, or ym = 5.00 × 10
–3

 m. The maximum 

speed is

um = (754 rad/s) (5.00 × 10
–3

 m) = 3.77 m/s. 

(b) Consider the string at coordinate x and at time t and suppose it makes the angle θ with 

the x axis. The tension is along the string and makes the same angle with the x axis. Its 

transverse component is τtrans = τ sin θ. Now θ is given by tan θ = ∂y/∂x = kym cos(kx – ωt)

and its maximum value is given by tan θm = kym. We must calculate the angular wave 

number k. It is given by k = ω/v, where v is the wave speed. The wave speed is given by 

/ ,v τ µ=  where τ is the tension in the rope and µ is the linear mass density of the rope. 

Using the data given, 

90.0 N
27.4 m/s

0.120kg/m
= =v

and

1754 rad/s
27.5m .

27.4 m/s
k −= =

Thus,
1 3tan (27.5m )(5.00 10 m) 0.138− −= × =mθ

and θ = 7.83°. The maximum value of the transverse component of the tension in the 

string is

τtrans = (90.0 N) sin 7.83° = 12.3 N. 

We note that sin θ is nearly the same as tan θ because θ is small. We can approximate the 

maximum value of the transverse component of the tension by τkym.

(c) We consider the string at x. The transverse component of the tension pulling on it due 

to the string to the left is –τ(∂y/∂x) = –τkym cos(kx – ωt) and it reaches its maximum value 

when cos(kx – ωt) = –1. The wave speed is

u = ∂y/∂t = –ωym cos (kx – ωt)

and it also reaches its maximum value when cos(kx – ωt) = –1. The two quantities reach 

their maximum values at the same value of the phase. When cos(kx – ωt) = –1 the value 

of sin(kx – ωt) is zero and the displacement of the string is y = 0. 



(d) When the string at any point moves through a small displacement ∆y, the tension does 

work ∆W = τtrans ∆y. The rate at which it does work is 

trans trans .
W y

P u
t t

τ τ
∆ ∆

= = =
∆ ∆

P has its maximum value when the transverse component τtrans of the tension and the 

string speed u have their maximum values. Hence the maximum power is (12.3 N)(3.77 

m/s) = 46.4 W. 

(e) As shown above y = 0 when the transverse component of the tension and the string 

speed have their maximum values. 

(f) The power transferred is zero when the transverse component of the tension and the 

string speed are zero. 

(g) P = 0 when cos(kx – ωt) = 0 and sin(kx – ωt) = ±1 at that time. The string 

displacement is y = ±ym = ±0.50 cm. 



(c) Since f = 120 Hz, ω = 2πf  = 754 rad/s 27.5 10  rad/s.≈ ×

(d) The sign in front of ω is minus since the waves are traveling in the +x direction. 

The results may be summarized as y = (3.0 mm) sin[(31.4 m
−1

)x – (754 s
−1

)t]] (this 

applies to each wave when they are in phase).

68. We use Eq. 16-52 in interpreting the figure.   

(a) Since y’= 6.0 mm when φ = 0, then Eq. 16-52 can be used to determine ym = 3.0 mm.   

(b) We note that y’= 0 when the shift distance is 10 cm; this occurs because cos(φ/2) = 0 

there φ = π rad  or ½ cycle.  Since a full cycle corresponds to a distance of one full 

wavelength, this ½ cycle shift corresponds to a distance of λ/2.  Therefore, λ = 20 cm  

k = 2π/λ = 31 m
−1

.



69. (a) We take the form of the displacement to be y (x, t) = ym sin(kx – ωt). The speed of 

a point on the cord is

u(x, t) = ∂y/∂t = –ωym cos(kx – ωt),

and its maximum value is um = ωym. The wave speed, on the other hand, is given by v = 

λ/T = ω/k. The ratio is 

2
.

/

m m m
m

u y y
ky

v k

π
= = =

λ

ω

ω

(b) The ratio of the speeds depends only on the ratio of the amplitude to the wavelength. 

Different waves on different cords have the same ratio of speeds if they have the same 

amplitude and wavelength, regardless of the wave speeds, linear densities of the cords, 

and the tensions in the cords. 



(f) The speed of the wave is 

2510 rad s
40m s.

62.8rad/m
v

T k

ωλ
= = = =

70. We write the expression for the displacement in the form y (x, t) = ym sin(kx – ωt).

(a) The amplitude is ym = 2.0 cm = 0.020 m, as given in the problem. 

(b) The angular wave number k is k = 2π/λ = 2π/(0.10 m) = 63 m
–1

(c) The angular frequency is ω = 2πf = 2π(400 Hz) = 2510 rad/s = 2.5×10
3
 rad/s. 

(d) A minus sign is used before the ωt term in the argument of the sine function because 

the wave is traveling in the positive x direction.

Using the results above, the wave may be written as 

( ) ( ) ( ) ( )( )1 1, 2.00cm sin 62.8m 2510s .y x t x t− −= −

(e) The (transverse) speed of a point on the cord is given by taking the derivative of y:

( ) ( ), cosm

y
u x t y kx t

t

∂
= = − −

∂
ω ω

which leads to a maximum speed of um = ωym = (2510 rad/s)(0.020 m) = 50 m/s. 



71. (a) The amplitude is ym = 1.00 cm = 0.0100 m, as given in the problem. 

(b) Since the frequency is f = 550 Hz, the angular frequency is ω = 2πf = 3.46×10
3
 rad/s. 

(c) The angular wave number is 3/ (3.46 10  rad/s) /(330 m/s) 10.5 rad/mk vω= = × = .

(d) Since the wave is traveling in the –x direction, the sign in front of ω is plus and the 

argument of the trig function is kx + ωt.

The results may be summarized as 

( ) ( )

( ) ( )

m m

3

, sin sin 2

0.010m sin 2 550Hz
330m s

            (0.010m) sin[(10.5 rad/s) (3.46 10  rad/s) ].

x
y x t y kx t y f t

v

x
t

x t

ω π

π

= + = +

= +

= + ×



72. We orient one phasor along the x axis with length 3.0 mm and angle 0 and the other at 

70° (in the first quadrant) with length 5.0 mm. Adding the components, we obtain 

( )(3.0  mm) (5.0  mm)cos 70 4.71mm along axis

(5.0 mm)sin (70 ) 4.70 mm  along axis.

x

y

+ ° =

° =

(a) Thus, amplitude of the resultant wave is 2 2(4.71 mm) (4.70 mm) 6.7 mm.+ =

(b) And the angle (phase constant) is tan
–1

 (4.70/4.71) = 45°. 



73. (a) Using v = fλ, we obtain 

240m/s
75 Hz.

3.2 m
f = =

(b) Since frequency is the reciprocal of the period, we find 

1 1
0.0133s 13ms.

75Hz
T

f
= = = ≈



74. By Eq. 16–66, the higher frequencies are integer multiples of the lowest (the 

fundamental).  

(a) The frequency of the second harmonic is f2 = 2(440) = 880 Hz. 

(b) The frequency of the third harmonic is and f3 = 3(440) = 1320 Hz.



75. We make use of Eq. 16–65 with L = 120 cm.  

(a) The longest wavelength for waves traveling on the string  if standing waves are to be 

set up is 1 2 /1 240 cm.Lλ = =

(b) The second longest wavelength for waves traveling on the string  if standing waves 

are to be set up is 2 2 / 2 120 cm.Lλ = =

(c) The third longest wavelength for waves traveling on the string  if standing waves are 

to be set up is 3 2 / 3 80.0 cm.Lλ = =

The three standing waves are shown below: 



76. (a) At x = 2.3 m and t = 0.16 s the displacement is 

( ) ( ) ( )[ ]( , ) 0.15sin 0.79 2.3 13 0.16 m = 0.039 m.y x t = − −

(b) We choose ym = 0.15 m, so that there would be nodes (where the wave amplitude is 

zero) in the string as a result. 

(c) The second wave must be traveling with the same speed and frequency. This implies 
10.79 mk −= ,

(d) and 13 rad/sω = .

(e) The wave must be traveling in –x direction, implying a plus sign in front of ω.

Thus, its general form is y´ (x,t) = (0.15 m)sin(0.79x + 13t).

(f) The displacement of the standing wave at x = 2.3 m and t = 0.16 s is 

( , ) 0.039 m (0.15m)sin[(0.79)(2.3) 13(0.16)] 0.14 m.y x t = − + + = −



77. (a) The wave speed is 

3

120 N
144 m/s.

8.70 10 kg /1.50m−
= = =

×
v

τ

µ

(b) For the one-loop standing wave we have λ1 = 2L = 2(1.50 m) = 3.00 m.  

(c) For the two-loop standing wave λ2 = L = 1.50 m. 

(d) The frequency for the one-loop wave is f1 = v/λ1 = (144 m/s)/(3.00 m) = 48.0 Hz. 

(e) The frequency for the two-loop wave is f2 = v/λ2 = (144 m/s)/(1.50 m) = 96.0 Hz. 



78. We use 2 2 2 21
2

.mP y vf f= ∝ ∝µνω τ

(a) If the tension is quadrupled, then 2 1
2 1 1 1

1 1

4
2 .P P P P= = =

τ τ

τ τ

(b) If the frequency is halved, then 

2 2

2 1
2 1 1 1

1 1

/ 2 1
.

4

f f
P P P P

f f
= = =



79. We use Eq. 16-2, Eq. 16-5, Eq. 16-9, Eq. 16-13, and take the derivative to obtain the 

transverse speed u.

(a) The amplitude is ym = 2.0 mm. 

(b) Since ω = 600 rad/s, the frequency is found to be f = 600/2π ≈ 95 Hz. 

(c) Since k = 20 rad/m, the velocity of the wave is v = ω/k = 600/20 = 30 m/s in the +x

direction.

(d) The wavelength is λ = 2π/k ≈ 0.31 m, or 31 cm. 

(e) We obtain 

cos( )m m m

dy
u y kx t u y

dt
ω ω ω= = − − =

so that the maximum transverse speed is um = (600)(2.0) = 1200 mm/s, or 1.2 m/s. 



80. (a) Since the string has four loops its length must be two wavelengths. That is, λ = 

L/2, where λ is the wavelength and L is the length of the string. The wavelength is related 

to the frequency f and wave speed v by λ = v/f, so L/2 = v/f and

L = 2v/f = 2(400 m/s)/(600 Hz) = 1.3 m. 

(b) We write the expression for the string displacement in the form y = ym sin(kx) cos(ωt),

where ym is the maximum displacement, k is the angular wave number, and ω is the 

angular frequency. The angular wave number is  

k = 2π/λ = 2πf/v = 2π(600 Hz)/(400 m/s) = 9.4m
–1

and the angular frequency is

ω = 2πf = 2π(600 Hz) = 3800 rad/s. 

With ym = 2.0 mm, the displacement is given by 

1 1( , ) (2.0mm)sin[(9.4m ) ]cos[(3800s ) ].y x t x t− −=



81. To oscillate in four loops means n = 4 in Eq. 16-65 (treating both ends of the string as 

effectively “fixed”). Thus, λ = 2(0.90 m)/4 = 0.45 m. Therefore, the speed of the wave is 

v = fλ = 27 m/s. The mass-per-unit-length is  

µ = m/L = (0.044 kg)/(0.90 m) = 0.049 kg/m. 

Thus, using Eq. 16-26, we obtain the tension:

τ = v
2 µ = (27 m/s)

2
(0.049 kg/m) = 36 N. 



82. (a) This distance is determined by the longitudinal speed: 

( ) ( )6 22000m/s 40 10 s 8.0 10 m.d tν − −= = × = ×

(b) Assuming the acceleration is constant (justified by the near-straightness of the curve a

= 300/40 × 10
–6

) we find the stopping distance d:

( ) ( )
( )

2 6

2 2
300 40 10

2
2 300

o ad dν ν
−×

= + =

which gives d = 6.0×10
–3

 m. This and the radius r form the legs of a right triangle (where 

r is opposite from θ = 60°). Therefore, 

2tan 60 tan 60 1.0 10 m.
r

r d
d

−° = = ° = ×



83. (a) Let the cross-sectional area of the wire be A and the density of steel be ρ. The 

tensile stress is given by τ/A where τ is the tension in the wire. Also, µ = ρA. Thus, 

8 2
2max max

max 3

7.00 10 N m
     3.00 10 m s

7800kg m

A
v

τ τ

µ ρ

×
= = = = ×

(b) The result does not depend on  the diameter of the wire. 



84. (a) Let the displacements of the wave at (y,t) be z(y,t). Then

z(y,t) = zm sin(ky – ωt),

where zm = 3.0 mm, k = 60 cm
–1

, and ω = 2π/T = 2π/0.20 s = 10π s–1
. Thus 

( ) ( )1 1( , ) (3.0mm)sin 60cm 10 s .z y t y t− −= − π

(b) The maximum transverse speed is (2 / 0.20s)(3.0mm)=94 mm/s.m mu z= = πω



85. (a) With length in centimeters and time in seconds, we have 

60 cos 4 .
8

dy x
u t

dt

π
= = − π − π

Thus, when x = 6 and 1
4

t = , we obtain 

60
60 cos 133

4 2
u

−π − π
= − π = = −

so that the speed there is 1.33 m/s. 

(b) The numerical coefficient of the cosine in the expression for u is –60π. Thus, the 

maximum speed is 1.88 m/s. 

(c) Taking another derivative, 

2240 sin 4
8

du x
a t

dt

π
= = − π − π

so that when x = 6 and t = 1
4

 we obtain a = –240π2
 sin(−π/4) which yields a = 16.7 m/s

2
.

(d) The numerical coefficient of the sine in the expression for a is –240π2
. Thus, the 

maximum acceleration is 23.7 m/s
2
.



86. Repeating the steps of Eq. 16-47 → Eq. 16-53, but applying 

cos cos 2cos cos
2 2

α β α β
α β

+ −
+ =

(see Appendix E) instead of Eq. 16-50, we obtain [0.10cos ]cos4y x t′ = π π , with SI units 

understood.

(a) For non-negative x, the smallest value to produce cos πx = 0 is x = 1/2, so the answer 

is x = 0.50 m. 

(b) Taking the derivative, 

[ ]( )0.10cos 4 sin 4
dy

u x t
dt

′
′ = = π − π π

We observe that the last factor is zero when 31 1
4 2 4

0, , , ,t =  Thus, the value of the first 

time the particle at x=0 has zero velocity is t = 0. 

(c) Using the result obtained in (b), the second time where the velocity at x =0 vanishes 

would be t = 0.25 s, 

(d) and the third time is t = 0.50 s. 



87. (a)  From the frequency information, we find ω = 2πf = 10π rad/s.  A point on the 

rope undergoing simple harmonic motion (discussed in Chapter 15) has maximum speed 

as it passes through its "middle" point, which is equal to ymω.  Thus, 

5.0 m/s = ymω ym = 0.16 m   . 

(b) Because of the oscillation being in the fundamental mode (as illustrated in Fig. 16-

23(a) in the textbook), we have λ = 2L = 4.0 m.  Therefore, the speed of waves along the 

rope is v = fλ = 20 m/s.  Then, with µ = m/L = 0.60 kg/m, Eq. 16-26 leads to 

v =
τ
µ

τ = µ v
2
 = 240 N 22.4 10 N≈ × .

(c) We note that for the fundamental, k = 2π/λ = π/L, and we observe that the anti-node 

having zero displacement at t = 0 suggests the use of sine instead of cosine for the simple 

harmonic motion factor.  Now, if the fundamental mode is the only one present (so the 

amplitude calculated in part (a) is indeed the amplitude of the fundamental wave pattern) 

then we have 

y =  (0.16 m) sin 
πx

2
 sin (10πt) 1(0.16 m)sin[(1.57 m ) ]sin[(31.4 rad/s) ]x t−=



88. (a) The frequency is f = 1/T = 1/4 Hz, so v = fλ = 5.0 cm/s. 

(b) We refer to the graph to see that the maximum transverse speed (which we will refer 

to as um) is 5.0 cm/s. Recalling from Ch. 11 the simple harmonic motion relation um = 

ymω = ym2πf, we have 

1
5.0 2      3.2 cm.

4
m my y= π =

(c) As already noted, f = 0.25 Hz. 

(d) Since k = 2π/λ, we have k = 10π rad/m. There must be a sign difference between the t

and x terms in the argument in order for the wave to travel to the right. The figure shows 

that at x = 0, the transverse velocity function is 0.050 sin / 2tπ . Therefore, the function 

u(x,t) is 

( , ) 0.050sin 10
2

u x t t x
π

= − π

with lengths in meters and time in seconds. Integrating this with respect to time yields 

( )2 0.050
( , ) cos 10

2
y x t t x C

π
= − − π +

π

where C is an integration constant (which we will assume to be zero). The sketch of this 

function at t = 2.0 s for 0 ≤ x ≤ 0.20 m is shown below. 



( )
.

/( )

∆ ∆ + ∆
= = =

+ ∆

F k k
v

m mµ

(b) The time required is 

2 ( ) 2 ( )
2 1 .

( ) /

m
t

v kk m

π + ∆ π + ∆
= = = π +

∆∆ + ∆

Thus if / 1∆ , then / 1/ ;t ∝ ∆ ∝ ∆  and if / 1∆ , then 

2 / const.t m kπ =

89. (a) The wave speed is 



y1b as the remaining traveling wave. Since the argument of y1b involves the subtraction 

kx – ωt, then y1b travels in the +x direction. 

(c) If y2 (which travels in the –x direction, which for simplicity will be called “leftward”) 

had the larger amplitude, then the system would consist of a standing wave plus a 

leftward moving wave. A simple way to obtain such a situation would be to interchange 

the amplitudes of the given waves. 

(d) Examining carefully the vertical axes, the graphs above certainly suggest that the 

largest amplitude of oscillation is ymax = 4.0 mm and occurs at x = λ/4 = 62.6 mm.  

(e) The smallest amplitude of oscillation is ymin = 1.0 mm and occurs at x = 0 and at x = 

λ/2 = 125 mm. 

(f) The largest amplitude can be related to the amplitudes of y1 and y2 in a simple way: 

ymax = y1m + y2m, where y1m = 2.5 mm and y2m = 1.5 mm are the amplitudes of the original 

traveling waves. 

(g) The smallest amplitudes is ymin = y1m – y2m, where y1m = 2.5 mm and y2m = 1.5 mm are 

the amplitudes of the original traveling waves. 

90. (a) The wave number for each wave is k = 25.1/m, which means λ = 2π/k = 250.3 mm. 

The angular frequency is ω = 440/s; therefore, the period is T = 2π/ω = 14.3 ms. We plot 

the superposition of the two waves y = y1 + y2 over the time interval 0 ≤ t ≤ 15 ms. The 

first two graphs below show the oscillatory behavior at x = 0 (the graph on the left) and at 

x = λ/8 ≈ 31 mm. The time unit is understood to be the millisecond and vertical axis (y) is 

in millimeters. 

The following three graphs show the oscillation at x = λ/4 =62.6 mm ≈ 63 mm (graph on 

the left), at x = 3λ/8 ≈ 94 mm (middle graph), and at x = λ/2 ≈ 125 mm. 

(b) We can think of wave y1 as being made of two smaller waves going in the same 

direction, a wave y1a of amplitude 1.50 mm (the same as y2) and a wave y1b of amplitude 

1.00 mm. It is made clear in §16-12 that two equal-magnitude oppositely-moving waves 

form a standing wave pattern. Thus, waves y1a and y2 form a standing wave, which leaves 



91. Using Eq. 16-50, we have 

' 0.60cos sin 5 200
6 6

y x t
π π

= π − π +

with length in meters and time in seconds (see Eq. 16-55 for comparison). 

(a) The amplitude is seen to be 

0.60cos 0.3 3 0.52 m.
6

π
= =

(b) Since k = 5π and ω  = 200π, then (using Eq. 16-12) 40m/s.v
k

= =
ω

(c) k = 2π/λ leads to λ = 0.40 m. 



8
14

max 9

min

3.0 10 m s
7.5 10 Hz.

400 10 m

c
f

−

×
= = = ×

λ ×

(b) For radio waves 
8

min 6

max

3.0 10 m s
1.0m

300 10 Hz

c ×
λ = = =

λ ×

and
8

2

max 6

min

3.0 10 m s
2.0 10 m.

1.5 10 Hz

c ×
λ = = = ×

λ ×

(c) For X rays 

8
16

min 9

max

3.0 10 m s
6.0 10 Hz

5.0 10 m

c
f

−

×
= = = ×

λ ×

and
8

19

max 11

min

3.0 10 m s
3.0 10 Hz.

1.0 10 m

c
f

−

×
= = = ×

λ ×

92. (a) For visible light 

8
14

min 9

max

3.0 10 m s
4.3 10 Hz

700 10 m

c
f

−

×
= = = ×

λ ×

and



And the final one, shown below, is at t = 0.010 s. 

(c) The wave can be written as ( , ) sin( )my x t y kx tω= + , where /v kω=  is the speed of 

propagation. From the problem statement, we see that 2 / 0.40 5  rad/sω π π= = and

2 / 80 / 40 rad/cmk π π= = . This yields 22.0 10  cm/s 2.0 m/sv = × =

(d) These graphs (as well as the discussion in the textbook) make it clear that the wave is 

traveling in the –x direction. 

93. (a) Centimeters are to be understood as the length unit and seconds as the time unit. 

Making sure our (graphing) calculator is in radians mode, we find 

(b) The previous graph is at t = 0, and this next one is at t = 0.050 s. 



Chapter 17 
 



1. (a) When the speed is constant, we have v = d/t where v = 343 m/s is assumed. 

Therefore, with t = 15/2 s being the time for sound to travel to the far wall we obtain d = 

(343 m/s) × (15/2 s) which yields a distance of 2.6 km. 

(b) Just as the 1
2

factor in part (a) was 1/(n + 1) for n = 1 reflection, so also can we write 

( )
( )( )343 1515s

343m/s 1
1

d n
n d

= = −
+

for multiple reflections (with d in meters). For d = 25.7 m, we find n = 199 22.0 10≈ × .
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2. The time it takes for a soldier in the rear end of the column to switch from the left to 

the right foot to stride forward is t = 1 min/120 = 1/120 min = 0.50 s. This is also the time 

for the sound of the music to reach from the musicians (who are in the front) to the rear 

end of the column. Thus the length of the column is 

2(343m/s)(0.50s) =1.7  10 m.l vt= = ×



3. (a) The time for the sound to travel from the kicker to a spectator is given by d/v,

where d is the distance and v is the speed of sound. The time for light to travel the same 

distance is given by d/c, where c is the speed of light. The delay between seeing and 

hearing the kick is ∆t = (d/v) – (d/c). The speed of light is so much greater than the speed 

of sound that the delay can be approximated by ∆t = d/v. This means d = v ∆t. The 

distance from the kicker to spectator A is

dA = v ∆tA = (343 m/s)(0.23 s) = 79 m. 

(b) The distance from the kicker to spectator B is dB = v ∆tB = (343 m/s)(0.12 s) = 41 m. 

(c) Lines from the kicker to each spectator and from one spectator to the other form a 

right triangle with the line joining the spectators as the hypotenuse, so the distance 

between the spectators is 

( ) ( )
2 22 2 79 m 41m 89 mA BD d d= + = + = .



3

3

0.0320kg
1.43kg/m .

0.0224 m
= =ρ

From /v B ρ=  we find

( ) ( )22 3 5317 m/s 1.43kg/m 1.44 10 Pa.B v= = = ×ρ

4. The density of oxygen gas is 



5. Let tf be the time for the stone to fall to the water and ts be the time for the sound of the 

splash to travel from the water to the top of the well. Then, the total time elapsed from 

dropping the stone to hearing the splash is t = tf + ts. If d is the depth of the well, then the 

kinematics of free fall gives  

21

2
fd gt= 2 / .ft d g=

The sound travels at a constant speed vs, so d = vsts, or ts = d/vs. Thus the total time is 

2 / / st d g d v= + . This equation is to be solved for d. Rewrite it as 2 / / sd g t d v= −

and square both sides to obtain

2d/g = t
2
 – 2(t/vs)d + (1 + 2

sv )d
2
.

Now multiply by g 2

sv  and rearrange to get

gd
2
 – 2vs(gt + vs)d + g 2

sv t
2
 = 0. 

This is a quadratic equation for d. Its solutions are 

( )
22 2 2 22 ( ) 4 4

.
2

s s s s sv gt v v gt v g v t
d

g

+ ± + −
=

The physical solution must yield d = 0 for t = 0, so we take the solution with the negative 

sign in front of the square root. Once values are substituted the result d = 40.7 m is 

obtained.



( / )

( / )

s s s s

i i i i

f v B dp dV

f v B dp dV
= = = .

Thus, we have
2 2

( / ) 1
9.00

( / ) 0.333

s i i

i s s

dV dp B f

dV dp B f
= = = = .

6. Using Eqs. 16-13 and 17-3, the speed of sound can be expressed as 

B
v fλ

ρ
= = ,

where ( / ) /B dp dV V= − .  Since , andV λ ρ  are not changed appreciably, the frequency 

ratio becomes 



7. If d is the distance from the location of the earthquake to the seismograph and vs is the 

speed of the S waves then the time for these waves to reach the seismograph is ts. = d/vs.

Similarly, the time for P waves to reach the seismograph is tp = d/vp. The time delay is  

∆t = (d/vs) – (d/vp) = d(vp – vs)/vsvp,

so

3(4.5  km/s)(8.0km/s)(3.0min)(60s /min)
1.9 10 km.

( ) 8.0km/s 4.5km/s

s p

p s

v v t
d

v v

∆
= = = ×

− −

We note that values for the speeds were substituted as given, in km/s, but that the value 

for the time delay was converted from minutes to seconds. 



8. Let  be the length of the rod. Then the time of travel for sound in air (speed vs) will 

be /s st v= . And the time of travel for compressional waves in the rod (speed vr) will be 

/r rt v= . In these terms, the problem tells us that 

1 1
0.12s .s r

s r

t t
v v

− = = −

Thus, with vs = 343 m/s and vr = 15vs = 5145 m/s, we find 44 m= .



9. (a) Using λ = v/f, where v is the speed of sound in air and f is the frequency, we find 

5

6

343m/s
7.62 10 m.

4.50 10 Hz

−λ = = ×
×

(b) Now, λ = v/f, where v is the speed of sound in tissue. The frequency is the same for 

air and tissue. Thus

λ = (1500 m/s)/(4.50 × 10
6
 Hz) = 3.33 × 10

–4
 m. 



10. (a) The amplitude of a sinusoidal wave is the numerical coefficient of the sine (or 

cosine) function: pm = 1.50 Pa. 

(b) We identify k = 0.9π and ω = 315π (in SI units), which leads to f = ω/2π = 158 Hz. 

(c) We also obtain λ = 2π/k = 2.22 m. 

(d) The speed of the wave is v = ω/k = 350 m/s. 



11. Without loss of generality we take x = 0, and let t = 0 be when s = 0. This means the 

phase is φ = −π/2 and the function is s = (6.0 nm)sin(ωt) at x = 0.  Noting that ω = 3000 

rad/s, we note that at t = sin
−1

(1/3)/ω = 0.1133 ms the displacement is s = +2.0 nm.  

Doubling that time (so that we consider the excursion from –2.0 nm to +2.0 nm) we 

conclude that the time required is 2(0.1133 ms) = 0.23 ms.  



12. The key idea here is that the time delay t∆  is due to the distance d that each 

wavefront must travel to reach your left ear (L) after it reaches your right ear (R).

(a) From the figure, we find 
sind D

t
v v

θ
∆ = = .

(b) Since the speed of sound in water is now wv , with 90θ = ° , we have 

sin 90
w

w w

D D
t

v v

°
∆ = = .

(c) The apparent angle can be found by substituting / wD v  for t∆ :

sin

w

D D
t

v v

θ
∆ = = .

Solving for θ  with 1482 m/swv =  (see Table 17-1), we obtain 

1 1 1343 m/s
sin sin sin (0.231) 13

1482 m/sw

v

v
θ − − −= = = = °



13. (a) Consider a string of pulses returning to the stage. A pulse which came back just 

before the previous one has traveled an extra distance of 2w, taking an extra amount of 

time ∆t = 2w/v. The frequency of the pulse is therefore 

( )
21 343m/s

2.3 10 Hz.
2 2 0.75m

v
f

t w
= = = = ×

∆

(b) Since f ∝ 1/w, the frequency would be higher if w were smaller. 



14. (a) The period is T  = 2.0 ms (or 0.0020 s) and the amplitude is ∆pm = 8.0 mPa (which 

is equivalent to 0.0080 N/m
2
).  From Eq. 17-15 we get 

sm = 
∆pm

vρω
  =

∆pm

vρ(2π/T)
  =  6.1 × 10

−9
m . 

where ρ = 1.21 kg/m
3
 and v = 343 m/s. 

(b) The angular wave number is k = ω/v = 2π/vT = 9.2 rad/m.   

(c) The angular frequency is ω = 2π/T = 3142 rad/s 33.1 10  rad/s≈ × .

The results may be summarized as s(x, t) = (6.1 nm) cos[(9.2 m
−1

)x – (3.1 × 10
3
 s

−1
)t].

(d) Using similar reasoning, but with the new values for density ( ρ′  = 1.35 kg/m
3
) and 

speed ( v′ = 320 m/s), we obtain 

95.9 10  m.
' ' ' '(2 / )

m m
m

p p
s

v v Tρ ω ρ π
−∆ ∆

= = = ×

(e) The angular wave number is k = ω/v’ = 2π/v’T = 9.8 rad/m.   

(f) The angular frequency is ω = 2π/T = 3142 rad/s 33.1 10  rad/s≈ × .

The new displacement function is s(x, t) = (5.9 nm) cos[(9.8 m
−1

)x – (3.1 × 10
3
 s

−1
)t].



Using the fact that k = 2π/λ we find λ = 0.357 m, which means 

f = v/λ = 343/0.357 = 960 Hz. 

Another way to complete this problem (once k is found) is to use  kv = ω  and then the 

fact that ω = 2πf.

15. The problem says “At one instant..” and we choose that instant (without loss of 

generality) to be t = 0.  Thus, the displacement of “air molecule A” at that instant is

sA = +sm = smcos(kxA − ωt + φ)|
t=0

 = smcos(kxA + φ),

where xA = 2.00 m.  Regarding “air molecule B” we have

sB = +
1

3
sm = sm cos( kxB − ωt + φ )|

t=0
 = sm cos( kxB + φ ).

These statements lead to the following conditions: 

kxA + φ = 0
kxB + φ = cos

−1
(1/3) = 1.231 

where xB = 2.07 m. Subtracting these equations leads to  

k(xB − xA) = 1.231 k = 17.6 rad/m. 



16. Let the separation between the point and the two sources (labeled 1 and 2) be x1 and 

x2, respectively. Then the phase difference is 

1 2 1 2
1 2

2 ( ) 2 (4.40 m 4.00 m)
2 2 4.12 rad.

(330 m/s) / 540 Hz

x x x x
ft ft

π π
φ φ φ π π

λ λ λ

− −
∆ = − = + − + = = =



17. (a) The problem is asking at how many angles will there be “loud” resultant waves, 

and at how many will there be “quiet” ones?  We note that at all points (at large distance 

from the origin) along the x axis there will be quiet ones; one way to see this is to note 

that the path-length difference (for the waves traveling from their respective sources) 

divided by wavelength gives the (dimensionless) value 3.5, implying a half-wavelength 

(180º) phase difference (destructive interference) between the waves.  To distinguish the 

destructive interference along the +x axis from the destructive interference along the –x

axis, we label one with +3.5 and the other –3.5.  This labeling is useful in that it suggests 

that the complete enumeration of the quiet directions in the upper-half plane (including 

the x axis) is: –3.5, –2.5, –1.5, –0.5, +0.5, +1.5, +2.5, +3.5.  Similarly, the complete 

enumeration of the loud directions in the upper-half plane is: –3, –2, –1, 0, +1, +2, +3.

Counting also the “other” –3, –2, –1,  0, +1, +2, +3 values for the lower-half plane, then 

we conclude there are a total of  7 + 7 = 14  “loud”  directions. 

(b) The discussion about the “quiet” directions was started in part (a).  The number of 

values in the list: –3.5, –2.5, –1.5, –0.5, +0.5, +1.5, +2.5, +3.5 along with  –2.5, –1.5, –0.5,

+0.5, +1.5, +2.5 (for the lower-half plane) is 14.  There are 14 “quiet” directions. 



18. At the location of the detector, the phase difference between the wave which traveled 

straight down the tube and the other one which took the semi-circular detour is 

2
( 2 ).k d r r

π
∆ = ∆ = π −

λ
φ

For r = rmin we have ∆φ = π, which is the smallest phase difference for a destructive 

interference to occur. Thus, 

min

40.0cm
17.5cm.

2( 2) 2( 2)
r

λ
= = =

π − π −



19. Let L1 be the distance from the closer speaker to the listener. The distance from the 

other speaker to the listener is 2 2

2 1L L d= + , where d is the distance between the 

speakers. The phase difference at the listener is φ = 2π(L2 – L1)/λ, where λ is the 

wavelength.

For a minimum in intensity at the listener, φ = (2n + 1)π, where n is an integer. Thus,

λ = 2(L2 – L1)/(2n + 1). 

The frequency is 

( ) ( )2 2 2 2

1 1

(2 1) (2 1)(343m/s)
(2 1)(343Hz).

2 2 (3.75m) (2.00m) 3.75m

v n v n
f n

L d L

+ +
= = = = +

λ + − + −

Now 20,000/343 = 58.3, so 2n + 1 must range from 0 to 57 for the frequency to be in the 

audible range. This means n ranges from 0 to 28. 

(a) The lowest frequency that gives minimum signal is (n = 0) min,1 343 Hz.f =

(b) The second lowest frequency is (n = 1) min,2 min,1[2(1) 1]343 Hz 1029 Hz 3 .f f= + = =

Thus, the factor is 3.

(c) The third lowest frequency is (n=2) min,3 min,1[2(2) 1]343 Hz 1715 Hz 5 .f f= + = =  Thus, 

the factor is 5.

For a maximum in intensity at the listener, φ = 2nπ, where n is any positive integer. Thus 

( )2 2

1 1(1/ )n L d Lλ = + −  and 

2 2 2 2

1 1

(343m/s)
(686 Hz).

(3.75m) (2.00m) 3.75m

v nv n
f n

L d L
= = = =

λ + − + −

Since 20,000/686 = 29.2, n must be in the range from 1 to 29 for the frequency to be 

audible.

(d) The lowest frequency that gives maximum signal is (n =1)
max,1 686 Hz.f =

(e) The second lowest frequency is (n = 2) 
max,2 max,12(686 Hz) 1372 Hz 2 .f f= = =  Thus, 

the factor is 2. 

(f) The third lowest frequency is (n = 3) max,3 max,13(686 Hz) 2058 Hz 3 .f f= = =  Thus, the 

factor is 3. 



20. (a) To be out of phase (and thus result in destructive interference if they superpose) 

means their path difference must be λ/2 (or 3λ/2 or 5λ/2 or …).  Here we see their path 

difference is L, so we must have (in the least possibility) L = λ/2, or q =L/λ = 0.5. 

(b) As noted above, the next possibility is L = 3λ/2, or q =L/λ = 1.5. 



max,2 max,12(286 Hz) 572 Hz 2 .f f= = =

Thus, the factor is 2. 

(f) The third lowest frequency that gives constructive interference is (n = 3) 

max,3 max,13(286 Hz) 858 Hz 3 .f f= = =

Thus, the factor is 3. 

21. Building on the theory developed in §17 – 5, we set / 1/ 2,  1, 2,...L n nλ∆ = − =  in 

order to have destructive interference. Since v = fλ, we can write this in terms of 

frequency:

min,

(2 1)
( 1/ 2)(286 Hz)

2
n

n v
f n

L

−
= = −

∆

where we have used v = 343 m/s (note the remarks made in the textbook at the beginning 

of the exercises and problems section) and ∆L = (19.5 – 18.3 ) m = 1.2 m. 

(a) The lowest frequency that gives destructive interference is (n = 1) 

min,1 (1 1/ 2)(286 Hz) 143 Hz.f = − =

(b) The second lowest frequency that gives destructive interference is (n = 2) 

min,2 min,1(2 1/ 2)(286 Hz) 429 Hz 3(143 Hz) 3 .f f= − = = =

So the factor is 3. 

(c) The third lowest frequency that gives destructive interference is (n = 3) 

min,3 min,1(3 1/ 2)(286 Hz) 715 Hz 5(143 Hz) 5 .f f= − = = =

So the factor is 5. 

Now we set 1
2

/L∆ =λ  (even numbers) — which can be written more simply as “(all 

integers n = 1, 2,…)” — in order to establish constructive interference. Thus, 

max, (286 Hz).n

nv
f n

L
= =

∆

(d) The lowest frequency that gives constructive interference is (n =1) max,1 (286 Hz).f =

(e) The second lowest frequency that gives constructive interference is (n = 2) 



22. (a) The problem indicates that we should ignore the decrease in sound amplitude 

which means that all waves passing through point P have equal amplitude.  Their 

superposition at P if d = λ/4 results in a net effect of zero there since there are four 

sources (so the first and third are λ/2 apart and thus interfere destructively; similarly for 

the second and fourth sources). 

(b) Their superposition at P if d = λ/2 also results in a net effect of zero there since there 

are an even number of sources (so the first and second being λ/2 apart will interfere 

destructively; similarly for the waves from the third and fourth sources). 

(c) If d = λ then the waves from the first and second sources will arrive at P in phase; 

similar observations apply to the second and third, and to the third and fourth sources.  

Thus, four waves interfere constructively there with net amplitude equal to 4sm.



Thus, in terms of λ, the phase difference is identical to the path length difference: 

| | 0= > . Consider / 2= . Then 2 2 / 2d x x+ = + λ . Squaring both sides, 

rearranging, and solving, we find 
2

.
4

d
x

λ
= −

λ

In general, if =  for some multiplier ξ > 0, we find 

2 1 64.0

2 2

d
x ξ ξ

ξ ξ
= − λ = −

λ

where we have used d = 16.0 m and λ = 2.00 m. 

(d) For 0.50= , or 0.50ξ = , we have 0.50) m 127.5 m 128 mx = (64.0/0.50 − = ≈ .

(e) For 1.00= , or 1.00ξ = , we have 1.00) m 63.0 mx = (64.0/1.00 − = .

(f) For 1.50= , or 1.50ξ = , we have 1.50) m 41.2 mx = (64.0/1.50 − = .

Note that since whole cycle phase differences are equivalent (as far as the wave 

superposition goes) to zero phase difference, then the ξ = 1, 2 cases give constructive 

interference. A shift of a half-cycle brings “troughs” of one wave in superposition with 

“crests” of the other, thereby canceling the waves; therefore, the 3 51
2 2 2
, ,ξ =  cases 

produce destructive interference. 

23. (a) If point P is infinitely far away, then the small distance d between the two sources 

is of no consequence (they seem effectively to be the same distance away from P). Thus, 

there is no perceived phase difference. 

(b) Since the sources oscillate in phase, then the situation described in part (a) produces 

fully constructive interference. 

(c) For finite values of x, the difference in source positions becomes significant. The path 

lengths for waves to travel from S1 and S2 become now different. We interpret the 

question as asking for the behavior of the absolute value of the phase difference |∆φ|, in 

which case any change from zero (the answer for part (a)) is certainly an increase. 

The path length difference for waves traveling from S1 and S2 is 

2 2 for 0.d x x x∆ = + − >

The phase difference in “cycles” (in absolute value) is therefore 

2 2

.
d x x∆ + −

∆ = =
λ λ

φ



24. (a) Since intensity is power divided by area, and for an isotropic source the area may 

be written A = 4πr
2
 (the area of a sphere), then we have 

2

2

1.0W
0.080W/m .

4 (1.0m)

P
I

A
= = =

π

(b) This calculation may be done exactly as shown in part (a) (but with r = 2.5 m instead 

of r = 1.0 m), or it may be done by setting up a ratio. We illustrate the latter approach. 

Thus,
22

2

/ 4 ( )

/ 4

I P r r

I P r r

′ ′π
= =

′π

leads to I′ = (0.080 W/m
2
)(1.0/2.5)

2
 = 0.013 W/m

2
.



the power output and I is the intensity a distance r from the source, then P = IA = 4πr
2
I,

where A (= 4πr
2
) is the surface area of a sphere of radius r. Thus

P = 4π(2.50 m)
2
 (1.91 × 10

–4
 W/m

2
) = 1.50 × 10

–2
 W. 

25. The intensity is the rate of energy flow per unit area perpendicular to the flow. The 

rate at which energy flow across every sphere centered at the source is the same, 

regardless of the sphere radius, and is the same as the power output of the source. If P is 



26. Sample Problem 17-5 shows that a decibel difference ∆β is directly related to an 

intensity ratio (which we write as /I I= ′ ). Thus, 

/10 0.110log( )  10 10 1.26.∆∆ = = = =ββ



27. The intensity is given by 2 21
2

,mI v s= ρ ω  where ρ is the density of air, v is the speed of 

sound in air, ω is the angular frequency, and sm is the displacement amplitude for the 

sound wave. Replace ω with 2πf and solve for sm:

6 2
8

2 2 2 3 2

1.00 10 W/m
3.68 10 m.

2 2 (1.21kg/m )(343m/s)(300Hz)
m

I
s

v fρ

−
−×

= = = ×
π π



28. (a) The intensity is given by I = P/4πr
2
 when the source is “point-like.” Therefore, at 

r = 3.00 m, 
6

9 2

2

1.00 10 W
8.84 10 W/m .

4 (3.00m)
I

−
−×

= = ×
π

(b) The sound level there is 

9 2

12 2

8.84 10 W/m
10 log 39.5dB.

1.00 10 W/m

−

−

×
= =

×
β



29. (a) Let I1 be the original intensity and I2 be the final intensity. The original sound 

level is β1 = (10 dB) log(I1/I0) and the final sound level is β2 = (10 dB) log(I2/I0), where I0

is the reference intensity. Since β2 = β1 + 30 dB which yields 

 (10 dB) log(I2/I0) = (10 dB) log(I1/I0) + 30 dB, 

or

(10 dB) log(I2/I0) – (10 dB) log(I1/I0) = 30 dB. 

Divide by 10 dB and use log(I2/I0) – log(I1/I0) = log(I2/I1) to obtain log(I2/I1) = 3. Now 

use each side as an exponent of 10 and recognize that 
( )2 1log

2 110 /
I I

I I= . The result is I2/I1

= 10
3
. The intensity is increased by a factor of 1.0×10

3
.

(b) The pressure amplitude is proportional to the square root of the intensity so it is 

increased by a factor of 1000 32.≈



30. (a) Eq. 17-29 gives the relation between sound level β and intensity I, namely 

( /10dB) 12 2 ( /10dB) 12 ( /10dB) 2

010 (10 W/m )10 10 W/mI I β β β− − += = =

Thus we find that for a β = 70 dB level we have a high intensity value of Ihigh = 10 µW/m
2
.

(b) Similarly, for β = 50 dB level we have a low intensity value of Ilow = 0.10 µW/m
2
.

(c) Eq. 17-27 gives the relation between the displacement amplitude and I.  Using the 

values for density and wave speed, we find sm = 70 nm for the high intensity case. 

(d) Similarly, for the low intensity case we have sm = 7.0 nm.   

We note that although the intensities differed by a factor of 100, the amplitudes differed 

by only a factor of 10. 



31. We use β = 10 log(I/Io) with Io = 1 × 10
–12

 W/m
2
 and Eq. 17–27 with ω = 2πf = 

2π(260 Hz), v = 343 m/s and ρ = 1.21 kg/m
3
.

( ) ( )
28.5 2 7

o

1
10 2       7.6 10 m 0.76 m.

2
m mI I v f s sρ µ−= = π = × =



32. (a) Since ω = 2πf, Eq. 17-15 leads to 

( )
( ) ( ) ( )

3

3

1.13 10 Pa
2

2 1665Hz 343m/s 1.21 kg/m
m m mp v f s sρ π

−×
∆ = =

π

which yields sm = 0.26 nm. The nano prefix represents 10
–9

. We use the speed of sound 

and air density values given at the beginning of the exercises and problems section in the 

textbook.

(b) We can plug into Eq. 17–27 or into its equivalent form, rewritten in terms of the 

pressure amplitude: 

( ) ( )
( )( )

2
2 3

2

3

1.13 10 Pa1 1
1.5 nW/m .

2 2 1.21kg/m 343m/s

mp
I

vρ

−×∆
= = =



33. We use β = 10 log (I/Io) with Io = 1 × 10
–12

 W/m
2
 and I = P/4πr

2
 (an assumption we 

are asked to make in the problem). We estimate r ≈ 0.3 m (distance from knuckle to ear) 

and find 

( ) ( )2 12 2 6.2 64 0.3m 1 10 W/m 10 2 10 W 2 W.P µ− −≈ π × = × =



(10 db) log
f

f i

i

I

I
β β β∆ = − = .

Thus, if 5.0 dbβ∆ = , then log( / ) 1/ 2f iI I = , which implies that 10f iI I= . On the other 

hand, the intensity at a distance r from the source is 
24

P
I

rπ
= , where P  is the power of 

the source. A fixed P implies that 2 2

i i f fI r I r= . Thus, with 1.2 m,ir =  we obtain 

1/ 2
1/ 4

1
(1.2 m) 0.67 m

10

i
f i

f

I
r r

I
= = = .

34. The difference in sound level is given by Eq. 17-37: 



35. (a) The intensity is 

5 2

2 2

30.0W
5.97 10 W/m .

4 (4 )(200m)

P
I

r

−= = = ×
π π

(b) Let A (= 0.750 cm
2
) be the cross-sectional area of the microphone. Then the power 

intercepted by the microphone is 

5 2 2 4 2 2 90 (6.0 10 W/m )(0.750cm )(10 m / cm ) 4.48 10 W.P IA − − −′ = = = × = ×



36. Combining Eqs.17-28 and 17-29 we have β = 10 log
P

Io4πr2  .  Taking differences (for 

sounds A and B) we find 

∆β =  10 log
PA

Io4πr2  – 10 log
PB

Io4πr2 = 10 log
PA

PB

using well-known properties of logarithms.  Thus, we see that ∆β is independent of r and 

can be evaluated anywhere.

(a) We can solve the above relation (once we know ∆β = 5.0) for the ratio of powers; we 

find PA /PB ≈ 3.2.

(b) At r = 1000 m it is easily seen (in the graph) that ∆β = 5.0 dB.  This is the same ∆β we 

expect to find, then, at r = 10 m.   



using Eq. 17-44.  In this equation, we substitute ρ = 1.21 kg/m
3
, A = πr

2
 = π(0.020 m)

2
, v

= 343 m/s, ω = 3000 rad/s, sm = 12 ×10
−9

 m, and obtain  the answer 3.4 × 10
−10

W.   

(b) The second string is in a separate tube, so there is no question about the waves 

superposing.  The total rate of energy, then, is just the addition of the two: 2(3.4 × 10
−10

W) = 6.8 × 10
−10

W. 

(c) Now we do have superposition, with φ = 0, so the resultant amplitude is twice that of 

the individual wave which leads to the energy transport rate being four times that of part 

(a).  We obtain 4(3.4 × 10
−10

W) = 1.4 × 10
−9

W. 

(d) In this case φ = 0.4π, which means (using Eq. 17-39)   

sm′  =  2 sm cos(φ/2) = 1.618sm.

This means the energy transport rate is (1.618)
2
 = 2.618  times that of part (a).  We obtain 

2.618(3.4 × 10
−10

 W) = 8.8 × 10
−10

W. 

(e) The situation is as shown in Fig. 17-14(b).  The answer is zero. 

37. (a) As discussed on page 408, the average potential energy transport rate is the same 

as that of the kinetic energy.  This implies that the (average) rate for the total energy is 

dE

dt avg
  = 2

dK

dt avg
  =  2 ( ¼ ρ A v ω2

 sm
2
)



38. (a) Using Eq. 17–39 with v = 343 m/s and n = 1, we find f = nv/2L = 86 Hz for the 

fundamental frequency in a nasal passage of length L = 2.0 m (subject to various 

assumptions about the nature of the passage as a “bent tube open at both ends”). 

(b) The sound would be perceptible as sound (as opposed to just a general vibration) of 

very low frequency. 

(c) Smaller L implies larger f by the formula cited above. Thus, the female's sound is of 

higher pitch (frequency). 



39. (a) From Eq. 17–53, we have 

(1)(250m/s)
833Hz.

2 2(0.150m)

nv
f

L
= = =

(b) The frequency of the wave on the string is the same as the frequency of the sound 

wave it produces during its vibration. Consequently, the wavelength in air is 

sound 348m/s
0.418m.

833Hz

v

f
λ = = =



40. The distance between nodes referred to in the problem means that  λ/2 = 3.8 cm, or  

λ = 0.076 m.  Therefore, the frequency is  

f = v/λ = (1500 m/s)/(0.076 m) ≈ 20 × 10
3
Hz.



41. (a) We note that 1.2 = 6/5.  This suggests that both even and odd harmonics are 

present, which means the pipe is open at both ends (see Eq. 17-39). 

(b) Here we observe 1.4 = 7/5. This suggests that only odd harmonics are present, which 

means the pipe is open at only one end (see Eq. 17-41). 



42. At the beginning of the exercises and problems section in the textbook, we are told to 

assume vsound = 343 m/s unless told otherwise. The second harmonic of pipe A is found 

from Eq. 17–39 with n = 2 and L = LA, and the third harmonic of pipe B is found from Eq. 

17–41 with n = 3 and L = LB. Since these frequencies are equal, we have 

sound sound2 3 3
.

2 4 4
B A

A B

v v
L L

L L
= =

(a) Since the fundamental frequency for pipe A is 300 Hz, we immediately know that the 

second harmonic has f = 2(300 Hz) = 600 Hz. Using this, Eq. 17–39 gives

LA = (2)(343 m/s)/2(600 s
−1

) = 0.572 m. 

(b) The length of pipe B is 3
4

0.429 m.B AL L= =



43. (a) When the string (fixed at both ends) is vibrating at its lowest resonant frequency, 

exactly one-half of a wavelength fits between the ends. Thus, λ = 2L. We obtain  

v = fλ = 2Lf = 2(0.220 m)(920 Hz) = 405 m/s. 

(b) The wave speed is given by / ,v τ µ=  where τ is the tension in the string and µ is 

the linear mass density of the string. If M is the mass of the (uniform) string, then µ = 

M/L. Thus,

 
τ = µv

2
 = (M/L)v

2
 = [(800 × 10

–6
 kg)/(0.220 m)] (405 m/s)

2
 = 596 N. 

(c) The wavelength is λ = 2L = 2(0.220 m) = 0.440 m. 

(d) The frequency of the sound wave in air is the same as the frequency of oscillation of 

the string. The wavelength is different because the wave speed is different. If va is the 

speed of sound in air the wavelength in air is

λa = va/f = (343 m/s)/(920 Hz) = 0.373 m. 



44. The frequency is f = 686 Hz and the speed of sound is vsound = 343 m/s. If L is the 

length of the air-column, then using Eq. 17–41, the water height is (in unit of meters) 

(343)
1.00 1.00 1.00 (1.00 0.125 ) m

4 4(686)

nv n
h L n

f
= − = − = − = −

where n = 1, 3, 5,… with only one end closed. 

(a) There are 4 values of n (n = 1,3,5,7) which satisfies h > 0. 

(b) The smallest water height for resonance to occur corresponds to n = 7 with 

0.125 mh = .

(c) The second smallest water height corresponds to n = 5 with h  = 0.375 m. 



45. (a) Since the pipe is open at both ends there are displacement antinodes at both ends 

and an integer number of half-wavelengths fit into the length of the pipe. If L is the pipe 

length and λ is the wavelength then λ = 2L/n, where n is an integer. If v is the speed of 

sound then the resonant frequencies are given by f = v/λ = nv/2L. Now L = 0.457 m, so  

f = n(344 m/s)/2(0.457 m) = 376.4n Hz. 

To find the resonant frequencies that lie between 1000 Hz and 2000 Hz, first set f = 1000 

Hz and solve for n, then set f = 2000 Hz and again solve for n. The results are 2.66 and 

5.32, which imply that n = 3, 4, and 5 are the appropriate values of n. Thus, there are 3 

frequencies.

(b) The lowest frequency at which resonance occurs is (n = 3) f = 3(376.4 Hz) = 1129 Hz.

(c) The second lowest frequency at which resonance occurs is (n = 4)

f = 4(376.4 Hz) = 1506 Hz. 



46. (a) Since the difference between consecutive harmonics is equal to the fundamental 

frequency (see section 17-6) then  f1 = (390 – 325) Hz = 65 Hz.  The next harmonic after 

195 Hz is therefore (195 + 65) Hz = 260 Hz. 

(b) Since fn = nf1  then n = 260/65 = 4. 

(c) Only odd harmonics are present in tube B so the difference between consecutive 

harmonics is equal to twice the fundamental frequency in this case (consider taking 

differences of Eq. 17-41 for various values of n). Therefore,

f1 = 
1

2
(1320 – 1080) Hz = 120 Hz. 

The next harmonic after 600 Hz is consequently [600 + 2(120)] Hz = 840 Hz. 

(d) Since fn = nf1  (for n odd) then n = 840/120 = 7. 



47. The string is fixed at both ends so the resonant wavelengths are given by λ = 2L/n,

where L is the length of the string and n is an integer. The resonant frequencies are given 

by f = v/λ = nv/2L, where v is the wave speed on the string. Now /v = τ µ , where τ is 

the tension in the string and µ is the linear mass density of the string. Thus 

( / 2 ) /f n L= τ µ . Suppose the lower frequency is associated with n = n1 and the higher 

frequency is associated with n = n1 + 1. There are no resonant frequencies between so 

you know that the integers associated with the given frequencies differ by 1. Thus 

1 1( / 2 ) /f n L= τ µ  and 

1 1
2 1

1 1 1
.

2 2 2 2

n n
f f

L L L L

+
= = + = +

τ τ τ τ

µ µ µ µ

This means 2 1 (1/ 2 ) /f f L− = τ µ  and 

2 2 2 3 2

2 14 ( ) 4(0.300m) (0.650 10 kg/m)(1320Hz 880Hz) 45.3N.L f fτ µ −= − = × − =



48. (a) Using Eq. 17–39 with n = 1 (for the fundamental mode of vibration) and 343 m/s 

for the speed of sound, we obtain 

sound

tube

(1) 343m/s
71.5Hz.

4 4(1.20m)

v
f

L
= = =

(b) For the wire (using Eq. 17–53) we have 

wire

wire wire

1

2 2

nv
f

L L

τ

µ
′ = =

where µ = mwire/Lwire. Recognizing that f = f ′ (both the wire and the air in the tube vibrate 

at the same frequency), we solve this for the tension τ:

2 2 2 3wire
wire wire wire

wire

(2 ) 4 4(71.5Hz) (9.60 10 kg)(0.330 m) 64.8 N.
m

L f f m L
L

τ −= = = × =



/ ,v B ρ=  where B is the bulk modulus and ρ is the density of air in the well. Thus 

(1/ 4 ) /f d B ρ= and

5

3

1 1 1.33 10 Pa
12.4 m.

4 4(7.00Hz) 1.10kg/m

B
d

f ρ

×
= = =

49. The top of the water is a displacement node and the top of the well is a displacement 

anti-node. At the lowest resonant frequency exactly one-fourth of a wavelength fits into 

the depth of the well. If d is the depth and λ is the wavelength then λ = 4d. The frequency 

is f = v/λ = v/4d, where v is the speed of sound. The speed of sound is given by 



50. We observe that “third lowest … frequency” corresponds to harmonic number nA = 3 

for pipe A which is open at both ends. Also,  “second lowest … frequency” corresponds 

to harmonic number nB = 3 for pipe B which is closed at one end. 

(a) Since the frequency of B matches the frequency of A, using Eqs. 17-39 and 17-41, we 

have  

3 3

2 4
A B

A B

v v
f f

L L
= =

which implies / 2 (1.20 m) / 2 0.60 mB AL L= = = . Using Eq. 17-40, the corresponding 

wavelength is 

4 4(0.60 m)
0.80 m

3 3

BL
λ = = = .

The change from node to anti-node requires a distance of λ/4 so that every increment of 

0.20 m along the x axis involves a switch between node and anti-node. Since the closed 

end is a node, the next node appears at x = 0.40 m So there are 2 nodes. The situation 

corresponds to that illustrated in Fig. 17-15(b) with 3n = .

(b) The smallest value of x where a node is present is x = 0. 

(c) The second smallest value of x where a node is present is x = 0.40m. 

(d) Using v = 343 m/s, we find f3 = v/λ = 429 Hz. Now, we find the fundamental resonant 

frequency by dividing by the harmonic number, f1 = f3/3 = 143 Hz. 



51. Let the period be T. Then the beat frequency is 1/ 440Hz 4.00beats/s.T − =

Therefore, T = 2.25 × 10
–3

 s. The string that is “too tightly stretched” has the higher 

tension and thus the higher (fundamental) frequency. 



52. Since the beat frequency equals the difference between the frequencies of the two 

tuning forks, the frequency of the first fork is either 381 Hz or 387 Hz. When mass is 

added to this fork its frequency decreases (recall, for example, that the frequency of a 

mass-spring oscillator is proportional to 1/ m ). Since the beat frequency also decreases 

the frequency of the first fork must be greater than the frequency of the second. It must 

be 387 Hz. 



53. Each wire is vibrating in its fundamental mode so the wavelength is twice the length 

of the wire (λ = 2L) and the frequency is

/ (1/ 2 ) /f v L= λ = τ µ ,

where /v τ µ=  is the wave speed for the wire, τ is the tension in the wire, and µ is the 

linear mass density of the wire. Suppose the tension in one wire is τ and the oscillation 

frequency of that wire is f1. The tension in the other wire is τ + ∆τ and its frequency is f2.

You want to calculate ∆τ/τ for f1 = 600 Hz and f2 = 606 Hz. Now, 1 (1/ 2 ) /f L= τ µ  and 

2 (1/ 2 ) ( /f L= + ∆τ τ µ , so 

2 1/ ( ) / 1 ( / ).f f = + ∆ = + ∆τ τ τ τ τ

This leads to 2 2

2 1/ ( / ) 1 [(606 Hz) /(600 Hz)] 1 0.020.f f∆ = − = − =τ τ



54. (a) The number of different ways of picking up a pair of tuning forks out of a set of 

five is 5!/(2!3!) = 10. For each of the pairs selected, there will be one beat frequency. If 

these frequencies are all different from each other, we get the maximum possible number 

of 10. 

(b) First, we note that the minimum number occurs when the frequencies of these forks, 

labeled 1 through 5, increase in equal increments: fn = f1 + n∆f, where n = 2, 3, 4, 5. Now, 

there are only 4 different beat frequencies: fbeat = n∆f, where n = 1, 2, 3, 4. 



55. In the general Doppler shift equation, the trooper’s speed is the source speed and the 

speeder’s speed is the detector’s speed. The Doppler effect formula, Eq. 17–47, and its 

accompanying rule for choosing ± signs, are discussed in §17-10. Using that notation, we 

have v = 343 m/s,  

vD = vS =  160 km/h = (160000 m)/(3600 s) = 44.4 m/s, 

and f = 500 Hz. Thus, 

343 m/s 44.4 m/s
(500 Hz) 500 Hz  0.

343 m/s 44.4 m/s
f f

−
′ = = ∆ =

−



56. The Doppler effect formula, Eq. 17–47, and its accompanying rule for choosing ±
signs, are discussed in §17-10. Using that notation, we have v = 343 m/s, vD = 2.44 m/s,  

f ′ = 1590 Hz and f = 1600 Hz. Thus, 

  ( ) 4.61m/s.D
S D

S

v v f
f f v v v v

v v f

+
′ = = + − =

′+



57. We use vS = rω (with r = 0.600 m and ω = 15.0 rad/s) for the linear speed during 

circular motion, and Eq. 17–47 for the Doppler effect (where f = 540 Hz, and v = 343 m/s 

for the speed of sound). 

(a) The lowest frequency is

0
526 Hz

S

v
f f

v v

+
′ = =

+
.

(b) The highest frequency is 

0
555 Hz

S

v
f f

v v

+
′ = =

−
.



58. We are combining two effects: the reception of a moving object (the truck of speed u

= 45.0 m/s) of waves emitted by a stationary object (the motion detector), and the 

subsequent emission of those waves by the moving object (the truck) which are picked up 

by the stationary detector. This could be figured in two steps, but is more compactly 

computed in one step as shown here: 

final initial

343m/s  45m/s
(0.150 MHz) 0.195MHz.

343m/s  45m/s

v u
f f

v u

+ +
= = =

− −



59. In this case, the intruder is moving away from the source with a speed u satisfying u/v

 1. The Doppler shift (with u = –0.950 m/s) leads to 

beat

2 | | 2(0.95m/s)(28.0 kHz)
) 155Hz

343m/s
r s s

u
f f f f

v
= − ≈ = = .



60. We use Eq. 17–47 with f = 1200 Hz and v = 329 m/s. 

(a) In this case, vD = 65.8 m/s and vS = 29.9 m/s, and we choose signs so that f ′ is larger 

than f:

3329 m/s 65.8 m/s
1.58 10 Hz.

329 m/s 29.9 m/s
f f

+
′ = = ×

−

(b) The wavelength is λ = v/f ′ = 0.208 m. 

(c) The wave (of frequency f ′) “emitted” by the moving reflector (now treated as a 

“source,” so vS = 65.8 m/s) is returned to the detector (now treated as a detector, so vD = 

29.9 m/s) and registered as a new frequency f ′′:

3329 m/s 29.9 m/s
2.16 10 Hz.

329 m/s 65.8 m/s
f f

+
′′ ′= = ×

−

(d) This has wavelength /v f ′′  = 0.152 m. 



61. We denote the speed of the French submarine by u1 and that of the U.S. sub by u2.

(a) The frequency as detected by the U.S. sub is 

3 32
1 1

1

5470 km/h 70.00 km/h
(1.000 10 Hz) 1.022  10 Hz.

5470 km/h  50.00 km/h

v u
f f

v u

+ +
′= = × = ×

− −

(b) If the French sub were stationary, the frequency of the reflected wave would be fr = 

f1(v+u2)/(v – u2). Since the French sub is moving towards the reflected signal with speed 

u1, then 
3

1 1 2
1

2

3

( )( ) (1.000 10 Hz)(5470 50.00)(5470 70.00)

( ) (5470)(5470 70.00)

   1.045 10 Hz.

r r

v u v u v u
f f f

v v v u

+ + + × + +
′ = = =

− −

= ×



62. When the detector is stationary (with respect to the air) then Eq. 17-47 gives  

1 /s

f
f

v v
′ =

−

where vs is the speed of the source (assumed to be approaching the detector in the way 

we’ve written it, above).  The difference between the approach and the recession is 

f f′ ′′− = f 
1

1 –  vs /v
  –

1

1 +  vs /v
  = f

2 vs /v

1 –  (vs /v)
2

which, after setting  ( f f′ ′′− )/f = 1/2, leads to an equation which can be solved for the 

ratio vs/v.  The result is 5 – 2   = 0.236.  Thus, vs/v = 0.236. 



63. As a result of the Doppler effect, the frequency of the reflected sound as heard by the 

bat is 

4 4bat

bat

/ 40
(3.9 10 Hz) 4.1 10 Hz.

/ 40
r

v u v v
f f

v u v v

+ +
′= = × = ×

− −



where dv  is the speed of the detector (assumed to be moving away from the source, in the 

way we’ve written it, above).  The problem, then, wants us to find dv  such that f′ = f1

when the emitted frequency is  f = f3.  That is, we require 1 – dv /v = 1/3.  Clearly, the 

solution to this is dv /v = 2/3 (independent of length and whether one or both ends are 

open [the latter point being due to the fact that the odd harmonics occur in both systems]). 

Thus,

(a) For tube 1, dv =2v/3.

(b) For tube 2, dv =2v /3. 

(c) For tube 3, dv =2v /3. 

(d) For tube 4, dv =2v /3. 

64. The “third harmonic” refers to a resonant frequency f3 = 3 f1, where f1 is the 

fundamental lowest resonant frequency. When the source is stationary, with respect to the 

air, then Eq. 17-47 gives

1 dv
f f

v
′ = −



65. (a) The expression for the Doppler shifted frequency is 

,D

S

v v
f f

v v

±
′ =

where f is the unshifted frequency, v is the speed of sound, vD is the speed of the detector 

(the uncle), and vS is the speed of the source (the locomotive). All speeds are relative to 

the air. The uncle is at rest with respect to the air, so vD = 0. The speed of the source is vS

= 10 m/s. Since the locomotive is moving away from the uncle the frequency decreases 

and we use the plus sign in the denominator. Thus 

343m/s
(500.0 Hz) 485.8Hz.

343m/s + 10.00m/sS

v
f f

v v
′ = = =

+

(b) The girl is now the detector. Relative to the air she is moving with speed vD = 10.00 

m/s toward the source. This tends to increase the frequency and we use the plus sign in 

the numerator. The source is moving at vS = 10.00 m/s away from the girl. This tends to 

decrease the frequency and we use the plus sign in the denominator. Thus (v + vD) =

(v + vS) and f′ = f = 500.0 Hz. 

(c) Relative to the air the locomotive is moving at vS = 20.00 m/s away from the uncle. 

Use the plus sign in the denominator. Relative to the air the uncle is moving at vD =

10.00 m/s toward the locomotive. Use the plus sign in the numerator. Thus 

343m/s + 10.00m/s
(500.0 Hz) 486.2 Hz.

343m/s + 20.00m/s

D

S

v v
f f

v v

+
′ = = =

+

(d) Relative to the air the locomotive is moving at vS = 20.00 m/s away from the girl and 

the girl is moving at vD = 20.00 m/s toward the locomotive. Use the plus signs in both the 

numerator and the denominator. Thus (v + vD) = (v + vS) and f′ = f = 500.0 Hz. 



66. We use Eq. 17–47 with f = 500 Hz and v = 343 m/s. We choose signs to produce f′ > f.

(a) The frequency heard in still air is 

343 m/s 30.5 m/s
(500 Hz) 598Hz.

343 m/s 30.5 m/s
f

+
′ = =

−

(b) In a frame of reference where the air seems still, the velocity of the detector is 30.5 – 

30.5 = 0, and that of the source is 2(30.5). Therefore, 

343 m/s 0
(500 Hz) 608Hz.

343 m/s 2(30.5 m/s)
f

+
′ = =

−

(c) We again pick a frame of reference where the air seems still. Now, the velocity of the 

source is 30.5 – 30.5 = 0, and that of the detector is 2(30.5). Consequently, 

343 m/s 2(30.5 m/s)
(500 Hz) 589 Hz.

343 m/s 0
f

+
′ = =

−



67. The Doppler shift formula, Eq. 17–47, is valid only when both uS and uD are 

measured with respect to a stationary medium (i.e., no wind). To modify this formula in 

the presence of a wind, we switch to a new reference frame in which there is no wind. 

(a) When the wind is blowing from the source to the observer with a speed w, we have u′S
= u′D = w in the new reference frame that moves together with the wind. Since the 

observer is now approaching the source while the source is backing off from the observer, 

we have, in the new reference frame, 

32.0 10 Hz.D

S

v u v w
f f f

v u v w

′+ +
′ = = = ×

′+ +

In other words, there is no Doppler shift. 

(b) In this case, all we need to do is to reverse the signs in front of both u′D and u′S. The 

result is that there is still no Doppler shift: 

32.0 10 Hz.D

S

v u v w
f f f

v u v w

′− −
′ = = = ×

′− −

In general, there will always be no Doppler shift as long as there is no relative motion 

between the observer and the source, regardless of whether a wind is present or not. 



68. We note that 1350 km/h is vS  = 375 m/s.  Then, with θ = 60º, Eq. 17-57 gives v = 

3.3×10
2
 m/s. 



69. (a) The half angle θ of the Mach cone is given by sin θ = v/vS, where v is the speed of 

sound and vS is the speed of the plane. Since vS = 1.5v, sin θ = v/1.5v = 1/1.5. This means 

θ = 42°. 

(b) Let h be the altitude of the plane and suppose the Mach 

cone intersects Earth's surface a distance d behind the plane. 

The situation is shown on the diagram below, with P 

indicating the plane and O indicating the observer. The cone 

angle is related to h and d by tan θ = h/d, so d = h/tan θ. The 

shock wave reaches O in the time the plane takes to fly the 

distance d:

5000 m
11s

tan 1.5(331 m/s)tan42

d h
t

v v θ
= = = =

°
.



70. The altitude H and the horizontal distance x for the legs of a right triangle, so we have

tan tan 1.25 sinpH x v t vt= = =θ θ θ

where v is the speed of sound, vp is the speed of the plane and

1 1sin sin 53.1 .
1.25p

v v

v v
θ − −= = = °

Thus the altitude is

( ) ( ) ( ) ( ) 4tan 1.25 330m/s 60s tan53.1 3.30 10 m.H x= = ° = ×θ



71. (a) Incorporating a term (λ/2) to account for the phase shift upon reflection, then the 

path difference for the waves (when they come back together) is 

L2 + (2d)2 − L + λ/2 = ∆(path) . 

Setting this equal to the condition needed to destructive interference (λ/2, 3λ/2, 5λ/2 …) 

leads to d = 0, 2.10 m, …    Since the problem explicitly excludes the d = 0 possibility, 

then our answer is d = 2.10 m. 

(b) Setting this equal to the condition needed to constructive interference (λ, 2λ, 3λ …) 

leads to d = 1.47 m, …   Our answer is d = 1.47 m. 



72. When the source is stationary (with respect to the air) then Eq. 17-47 gives  

1 dv
f f

v
′ = − ,

 where v d is the speed of the detector (assumed to be moving away from the source, in the 

way we’ve written it, above).  The difference between the approach and the recession is 

1 1 2d d dv v v
f f f f

v v v
′′ ′− = + − − =

which, after setting  ( f f′′ ′− )/f =1/2, leads to an equation which can be solved for the 

ratio vd /v.  The result is 1/4. Thus, vd /v = 0.250. 



73. (a) Adapting Eq. 17-39 to the notation of this chapter, we have 

sm′  =  2 sm cos(φ/2) = 2(12 nm) cos(π/6) = 20.78 nm. 

Thus, the amplitude of the resultant wave is roughly 21 nm. 

(b) The wavelength (λ = 35 cm) does not change as a result of the superposition. 

(c) Recalling Eq. 17-47 (and the accompanying discussion) from the previous chapter, we 

conclude that the standing wave amplitude is 2(12 nm) = 24 nm when they are traveling 

in opposite directions. 

(d) Again, the wavelength (λ = 35 cm) does not change as a result of the superposition. 



74. (a) The separation distance between points A and B is one-quarter of a wavelength; 

therefore, λ = 4(0.15 m) = 0.60 m.  The frequency, then, is   

f = v/λ =  (343 m/s)/(0.60 m) = 572 Hz. 

(b) The separation distance between points C and D is one-half of a wavelength; 

therefore, λ = 2(0.15 m) = 0.30 m.  The frequency, then, is   

f = v/λ =  (343 m/s)/(0.30 m) = 1144 Hz (or approximately 1.14 kHz). 



75. Any phase changes associated with the reflections themselves are rendered 

inconsequential by the fact that there are an even number of reflections. The additional 

path length traveled by wave A consists of the vertical legs in the zig-zag path: 2L. To be 

(minimally) out of phase means, therefore, that 2L = λ/2 (corresponding to a half-cycle, 

or 180°, phase difference). Thus, L = λ/4, or L/λ = 1/4 = 0.25. 



76. Since they are approaching each other, the sound produced (of emitted frequency f)

by the flatcar-trumpet received by an observer on the ground will be of higher pitch f ′. In 

these terms, we are told f ′ – f = 4.0 Hz, and consequently that f ‘/ f = 444/440 = 1.0091. 

With vS designating the speed of the flatcar and v = 343 m/s being the speed of sound, the 

Doppler equation leads to 

( )
0 1.0091 1

343 m/s 3.1m/s.
1.0091

S

S

f v
v

f v v

′ + −
= = =

−



77. The siren is between you and the cliff, moving away from you and towards the cliff. 

Both “detectors” (you and the cliff) are stationary, so vD = 0 in Eq. 17–47 (and see the 

discussion in the textbook immediately after that equation regarding the selection of ±
signs). The source is the siren with vS = 10 m/s. The problem asks us to use v = 330 m/s 

for the speed of sound. 

(a) With f = 1000 Hz, the frequency fy you hear becomes 

20
970.6 Hz 9.7 10 Hz.y

S

v
f f

v v

+
= = ≈ ×

+

(b) The frequency heard by an observer at the cliff (and thus the frequency of the sound 

reflected by the cliff, ultimately reaching your ears at some distance from the cliff) is 

30
1031.3Hz 1.0 10 Hz.c

S

v
f f

v v

+
= = ≈ ×

−

(c) The beat frequency is fc – fy = 60 beats/s (which, due to specific features of the human 

ear, is too large to be perceptible). 



78. Let r stand for the ratio of the source speed to the speed of sound.  Then, Eq. 17-55 

(plus the fact that frequency is inversely proportional to wavelength) leads to 

2
1

1 + r
   =

1

1 – r
  . 

Solving, we find r = 1/3.  Thus, vs/v = 0.33. 



2
2

2 2 1

2

1 1 2

/ 4
.

/ 4

I P r r

I P r r

π
= =

π

(a) With I1 = 9.60 × 10
–4

 W/m
2
, r1 = 6.10 m, and r2 = 30.0 m, we find  

I2 = (9.60 × 10
–4

 W/m
2
)(6.10/30.0)

2
 = 3.97 × 10

–5
 W/m

2
.

(b) Using Eq. 17–27 with I1 = 9.60 × 10
–4

 W/m
2
, ω = 2π(2000 Hz), v = 343 m/s and ρ = 

1.21 kg/m
3
, we obtain 

7

2

2
1.71 10 m.m

I
s

v

−= = ×
ρ ω

(c) Eq. 17-15 gives the pressure amplitude: 

0.893 Pa.m mp v sρ ω∆ = =

79. The source being isotropic means Asphere = 4πr
2
 is used in the intensity definition I = 

P/A, which further implies 



80. When φ = 0 it is clear that the superposition wave has amplitude 2∆pm. For the other 

cases, it is useful to write 

( ) ( )( )1 2 sin sin 2 cos sin .
2 2

m mp p p t t p t∆ + ∆ = ∆ + − = ∆ −
φ φ

ω ω φ ω

The factor in front of the sine function gives the amplitude ∆pr. Thus, 

/ 2cos( / 2).r mp p φ∆ ∆ =

(a) When 0φ = , / 2cos(0) 2.00.r mp p∆ ∆ = =

(b) When / 2φ π= , / 2cos( / 4) 2 1.41.r mp p π∆ ∆ = = =

(c) When / 3φ π= , / 2cos( / 6) 3 1.73.r mp p π∆ ∆ = = =

(d) When / 4φ π= , / 2cos( / 8) 1.85.r mp p π∆ ∆ = =



Alternatively, a ratio I′ /I = (r/r′ )2
 could have been used. 

(c) Using Eq. 17–29 with I = 0.0080 W/m
2
, we have 

0

10log 99dB
I

I
= =β

where I0 = 1.0 × 10
–12

 W/m
2
.

81. (a) With r = 10 m in Eq. 17–28, we have 

2
10W.

4

P
I P

r
= =

π

(b) Using that value of P in Eq. 17–28 with a new value for r, we obtain 

( )
2 2

W
0.032 .

m4 5.0

P
I = =

π



82. We use /v B ρ=  to find the bulk modulus B:

( ) ( )
2

2 3 3 3 105.4 10 m/s 2.7 10 kg/m 7.9 10 Pa.B v= = × × = ×ρ



83. Let the frequencies of sound heard by the person from the left and right forks be fl

and fr, respectively. 

(a) If the speeds of both forks are u, then fl,r = fv/(v ± u) and 

( )( )( )
( ) ( )

beat 2 22 2

2 440Hz 3.00m/s 343m/s1 1 2

343m/s 3.00m/s

7.70Hz.

r l

fuv
f f f fv

v u v u v u
= − = − = =

− + − −

=

(b) If the speed of the listener is u, then fl,r = f(v ± u)/v and 

( )beat

3.00 m/s
2 2 440 Hz 7.70 Hz.

343m/s
l r

u
f f f f

v
= − = = =



84. The rule: if you divide the time (in seconds) by 3, then you get (approximately) the 

straight-line distance d. We note that the speed of sound we are to use is given at the 

beginning of the problem section in the textbook, and that the speed of light is very much 

larger than the speed of sound. The proof of our rule is as follows: 

sound light sound

sound

.
343m/s 0.343km/s

d d d
t t t t

v
= − ≈ = = =

Cross-multiplying yields (approximately) (0.3 km/s)t = d which (since 1/3 ≈ 0.3) 

demonstrates why the rule works fairly well. 



= (∆pm)
2
/2ρv. For waves of the same frequency the ratio of the intensity for propagation 

in water to the intensity for propagation in air is 

2

,w mw a a

a ma w w

I p v

I p v

ρ

ρ

∆
=

∆

where the subscript a denotes air and the subscript w denotes water. Since Ia = Iw,

3 3

3

(0.998 10 kg/m )(1482 m/s)
59.7.

(1.21kg/m )(343m/s)

mw w w

ma a a

p v

p v

∆ ×
= = =

∆

ρ

ρ

The speeds of sound are given in Table 17-1 and the densities are given in Table 15-1. 

(b) Now, ∆pmw = ∆pma, so 

3
4

3 3

(1.21kg/m )(343m/s)
2.81 10 .

(0.998 10 kg/m )(1482 m/s)

w a a

a w w

I v

I v

−= = = ×
×

ρ

ρ

85. (a) The intensity is given by 2 21
2

,mI v sρ ω=  where ρ is the density of the medium, v is 

the speed of sound, ω is the angular frequency, and sm is the displacement amplitude. The 

displacement and pressure amplitudes are related by ∆pm = ρvωsm, so sm = ∆pm/ρvω and I



86. We use ∆β12 = β1 – β2 = (10 dB) log(I1/I2).

(a) Since ∆β12 = (10 dB) log(I1/I2) = 37 dB, we get

I1/I2 = 10
37 dB/10 dB

 = 10
3.7

 = 5.0 × 10
3
.

(b) Since m mp s I∆ ∝ ∝ , we have

3

1 2 1 2/ / 5.0 10 71.m mp p I I∆ ∆ = = × =

(c) The displacement amplitude ratio is 1 2 1 2/ / 71.m ms s I I= =



sSAD – sSBD, where the subscripts indicate the paths of the waves. At the maximum, the 

waves interfere constructively and the displacement amplitude is the sum of the 

amplitudes of the individual waves: sm = sSAD + sSBD. Solve

100 ( )SAD SBDC s s= − and 900 ( )SAD SBDC s s= −

for sSAD and sSBD. Adding the equations give 

SADs = ( 100 900 / 2 20 / ,C C+ =

while subtracting them yields  

SBDs = ( 900 100) / 2 10 / .C C− =

Thus, the ratio of the amplitudes is sSAD/sSBD = 2. 

(c) Any energy losses, such as might be caused by frictional forces of the walls on the air 

in the tubes, result in a decrease in the displacement amplitude. Those losses are greater 

on path B since it is longer than path A. 

87. (a) When the right side of the instrument is pulled out a distance d the path length for 

sound waves increases by 2d. Since the interference pattern changes from a minimum to 

the next maximum, this distance must be half a wavelength of the sound. So 2d = λ/2,

where λ is the wavelength. Thus λ = 4d and, if v is the speed of sound, the frequency is

f = v/λ = v/4d = (343 m/s)/4(0.0165 m) = 5.2 × 10
3
 Hz. 

(b) The displacement amplitude is proportional to the square root of the intensity (see Eq. 

17–27). Write mI Cs= , where I is the intensity, sm is the displacement amplitude, and C

is a constant of proportionality. At the minimum, interference is destructive and the 

displacement amplitude is the difference in the amplitudes of the individual waves: sm = 



88. The angle is sin
–1

(v/vs) = sin
–1

 (343/685) = 30°. 



89. The round-trip time is t = 2L/v where we estimate from the chart that the time 

between clicks is 3 ms. Thus, with v = 1372 m/s, we find 1
2

2.1 mL vt= = .



90. The wave is written as ( , ) cos( )ms x t s kx tω= ± .

(a) The amplitude ms  is equal to the maximum displacement: 0.30 cmms = .

(b) Since λ = 24 cm, the angular wave number is 12 / 0.26 cmk π λ −= = .

(c) The angular frequency is 22 2 (25 Hz) 1.6 10  rad/sfω π π= = = × .

(d) The speed of the wave is v = λf = (24 cm)(25 Hz) = 6.0 × 10
2
cm/s. 

(e) Since the direction of propagation is x− , the sign is plus, i.e., ( , ) cos( )ms x t s kx tω= + .



From the discussion in §17-5, we know that the intensity ratio between “barely audible” 

and the “painful threshold” is 10
–12

 = I2/I1. Thus, with r2 = 10000 m, we find  

12

1 2 10 0.01m 1 cm.r r −= = =

91. The source being a “point source” means Asphere = 4πr
2
 is used in the intensity 

definition I = P/A, which further implies 

2
2

2 2 1

2

1 1 2

/ 4
.

/ 4

I P r r

I P r r

π
= =

π



92. (a) The time it takes for sound to travel in air is ta = L/v, while it takes tm = L/vm for 

the sound to travel in the metal. Thus, 

( )
.m

a m

m m

L v vL L
t t t

v v v v

−
∆ = − = − =

(b) Using the values indicated (see Table 17-1), we obtain 

1.00s
364m. 

1/ 1/ 1/(343m/s)  1/(5941m/s)m

t
L

v v

∆
= = =

− −



93. (a) We observe that “third lowest … frequency” corresponds to harmonic number n = 

5 for such a system. Using Eq. 17–41, we have 

( )
5

750 Hz
4 4 0.60 m

nv v
f

L
= =

so that v = 3.6×10
2
 m/s. 

(b) As noted, n = 5; therefore, f1 = 750/5 = 150 Hz. 



94. We note that waves 1 and 3 differ in phase by π radians (so they cancel upon 

superposition).  Waves 2 and 4 also differ in phase by π radians (and also cancel upon 

superposition).   Consequently, there is no resultant wave. 



95. Since they oscillate out of phase, then their waves will cancel (producing a node) at a 

point exactly midway between them (the midpoint of the system, where we choose x = 0). 

We note that Figure 17-14, and the n = 3 case of Figure 17-15(a) have this property (of a 

node at the midpoint). The distance ∆x between nodes is λ/2, where λ = v/f and f = 300 

Hz and v = 343 m/s. Thus, ∆x = v/2f = 0.572 m.  

Therefore, nodes are found at the following positions: 

(0.572m),  0, 1, 2,...x n x n n= ∆ = = ± ±

(a)  The shortest distance from the midpoint where nodes are found is ∆x =0.

(b) The second shortest distance from the midpoint where nodes are found is ∆x=0.572 m.  

(c) The third shortest distance from the midpoint where nodes are found is 2∆x =1.14 m. 



96. (a) With f = 686 Hz and v = 343 m/s, then the “separation between adjacent 

wavefronts” is λ = v/f = 0.50 m. 

(b) This is one of the effects which are part of the Doppler phenomena.  Here, the 

wavelength shift (relative to its “true” value in part (a)) equals the source speed sv  (with 

appropriate ± sign) relative to the speed of sound v :

sv

v

λ

λ

∆
= ± .

In front of the source, the shift in wavelength is  –(0.50 m)(110 m/s)/(343 m/s) = –0.16 m, 

and the wavefront separation is 0.50 m  – 0.16 m = 0.34 m.  

(c) Behind the source, the shift in wavelength is +(0.50 m)(110 m/s)/(343 m/s) = +0.16 m, 

and the wavefront separation is 0.50 m + 0.16 m = 0.66 m. 



97. We use I ∝ r
–2

 appropriate for an isotropic source. We have 

( )
2

2

1
,

2

r d

r D d

D dI

I D

=

= −

−
= =

where d = 50.0 m. We solve for  

( ) ( ) ( ): 2 / 2 1 2 50.0m / 2 1 171m.D D d= − = − =



(c) The surface area of a cylinder of “height” d is 2πrd, so the intensity of the surface 

wave is  

( )
( )

3 2

cylinder

0.20 /
25 10 W/m

2

K tP
I

A rd

∆
= = = ×

π

using d = 5.0 m, r = 200 × 10
3
 m and the smaller value for K from part (a). Using instead 

the larger estimate for K, we obtain I = 58 kW/m
2
.

(d) Although several factors are involved in determining which seismic waves are most 

likely to be detected, we observe that on the basis of the above findings we should expect 

the more intense waves (the surface waves) to be more readily detected. 

98. (a) Using m = 7.3 × 10
7
 kg, the initial gravitational potential energy is 

113.9 10  JU mgy= = × , where h = 550 m. Assuming this converts primarily into kinetic 

energy during the fall, then K = 3.9 × 10
11

 J just before impact with the ground. Using 

instead the mass estimate m = 1.7 × 10
8
 kg, we arrive at K = 9.2 × 10

11
 J. 

(b) The process of converting this kinetic energy into other forms of energy (during the 

impact with the ground) is assumed to take ∆t = 0.50 s (and in the average sense, we take 

the “power” P to be wave-energy/∆t). With 20% of the energy going into creating a 

seismic wave, the intensity of the body wave is estimated to be 

( )
( )

2

21
hemisphere 2

0.20 /
0.63W/m

4

K tP
I

A r

∆
= = =

π

using r = 200 × 10
3
 m and the smaller value for K from part (a). Using instead the larger 

estimate for K, we obtain I = 1.5 W/m
2
.



99. (a) The period is the reciprocal of the frequency:

T = 1/f = 1/(90 Hz) = 1.1 × 10
–2

 s. 

(b) Using v = 343 m/s, we find λ = v/f = 3.8 m. 



100. (a) The problem asks for the source frequency f. We use Eq. 17–47 with great care 

(regarding its ± sign conventions). 

340 m/s 16 m/s
'

340 m/s 40 m/s
f f

−
=

−

Therefore, with f ′ = 950 Hz, we obtain f = 880 Hz. 

(b) We now have 

340 m/s 16 m/s
'

340 m/s 40 m/s
f f

+
=

+

so that with f = 880 Hz, we find f ′ = 824 Hz. 



where blood cos .xv v θ=  If we write the ratio of frequencies as R = (f + ∆f)/f, then the 

solution of the above equation for the speed of the blood is 

( )
( )blood

1
0.90m/s

1 cos

R v
v

R

−
= =

+ θ

where v = 1540 m/s, θ = 20°, and R = 1 + 5495/5 × 10
6
.

(c) We interpret the question as asking how ∆f (still taken to be positive, since the 

detector is in the “forward” direction) changes as the detection angle θ changes. Since 

larger θ means smaller horizontal component of velocity vx then we expect ∆f to decrease 

towards zero as θ is increased towards 90°. 

101. (a) The blood is moving towards the right (towards the detector), because the 

Doppler shift in frequency is an increase: ∆f > 0. 

(b) The reception of the ultrasound by the blood and the subsequent remitting of the 

signal by the blood back toward the detector is a two-step process which may be 

compactly written as  

x

x

v v
f f f

v v

+
+ ∆ =

−



102. Pipe A (which can only support odd harmonics – see Eq. 17-41) has length LA.  Pipe 

B (which supports both odd and even harmonics [any value of n] – see Eq. 17-39) has 

length LB = 4LA . Taking ratios of these equations leads to the condition: 

n

2 B
  = ( )nodd

A
    . 

Solving for nB we have nB = 2nodd.

(a) Thus, the smallest value of nB at which a harmonic frequency of B matches that of A

is nB = 2(1)=2.

(b) The second smallest value of nB at which a harmonic frequency of B matches that of 

A is nB = 2(3)=6. 

(c) The third smallest value of nB at which a harmonic frequency of B matches that of A

is nB = 2(5)=10. 



The graph has frequency in Hertz along the vertical axis and 1/L in inverse meters along 

the horizontal axis. The function found by the least squares fit procedure is f = 276(1/L) + 

0.037. We shall assume that this fits either the model of an open organ pipe 

(mathematically similar to a string fixed at both ends) or that of a pipe closed at one end. 

(a) In a tube with two open ends, f = v/2L. If the least-squares slope of 276 fits the first 

model, then a value of  

v = 2(276 m/s) = 553 m/s 25.5 10  m/s≈ ×
is implied. 

(b) In a tube with only one open end, f = v/4L, and we find v = 4(276 m/s) = 1106 m/s 
31.1 10  m/s≈ × which is more “in the ballpark” of the 1400 m/s value cited in the problem.  

(c) This suggests that the acoustic resonance involved in this situation is more closely 

related to the n = 1 case of Figure 17-15(b) than to Figure 17-14. 

103. The points and the least-squares fit is shown in the graph that follows.



104. (a) Since the source is moving toward the wall, the frequency of the sound as 

received at the wall is 

( )
343m/s

' 440 Hz 467 Hz.
343m/s 20.0m/sS

v
f f

v v
= = =

− −

(b) Since the person is moving with a speed u toward the reflected sound with frequency

f ′, the frequency registered at the source is 

( )
343m/s 20.0m/s

' 467 Hz 494 Hz.
343m/s

r

v u
f f

v

+ +
= = =



105. Using Eq. 17-47 with great care (regarding its ± sign conventions), we have 

340 m/s 80.0 m/s
(440 Hz) 400 Hz

340 m/s 54.0 m/s
f

−
′ = =

−
.



The displacement amplitude is proportional to the reciprocal of the distance from the 

source. We take the wave to be sinusoidal. It travels radially outward from the source, 

with points on a sphere of radius r in phase. If ω is the angular frequency and k is the 

angular wave number then the time dependence is sin(kr – ωt). Letting / 4 ,b P C= π  the 

displacement wave is then given by 

1
( , ) sin( ) sin( ).

4

P b
s r t kr t kr t

C r r
= − = −

π
ω ω

(b) Since s and r both have dimensions of length and the trigonometric function is 

dimensionless, the dimensions of b must be length squared. 

106. (a) Let P be the power output of the source. This is the rate at which energy crosses 

the surface of any sphere centered at the source and is therefore equal to the product of 

the intensity I at the sphere surface and the area of the sphere. For a sphere of radius r, P

= 4πr
2

I and I = P/4πr
2
. The intensity is proportional to the square of the displacement 

amplitude sm. If we write 2

mI Cs= , where C is a constant of proportionality, then 
2 2/ 4mCs P r= π . Thus,

( )2/ 4 / 4 (1/ ).ms P r C P C r= π = π



107. (a) The problem is asking at how many angles will there be “loud” resultant waves, 

and at how many will there be “quiet” ones?  We consider the resultant wave (at large 

distance from the origin) along the +x axis; we note that the path-length difference (for 

the waves traveling from their respective sources) divided by wavelength gives the 

(dimensionless) value n = 3.2, implying a sort of intermediate condition between 

constructive interference (which would follow if, say, n = 3) and destructive interference 

(such as the n = 3.5 situation found in the solution to the previous problem) between the 

waves.  To distinguish this resultant along the +x axis from the similar one along the –x

axis, we label one with n = +3.2 and the other n = –3.2.  This labeling facilitates the 

complete enumeration of the loud directions in the upper-half plane: n = –3, –2, –1,  0, +1,

+2, +3.  Counting also the “other” –3, –2, –1,  0, +1, +2, +3 values for the lower-half

plane, then we conclude there are a total of  7 + 7 = 14  “loud”  directions. 

(b) The labeling also helps us enumerate the quiet directions.  In the upper-half plane we 

find: n =  –2.5, –1.5, –0.5, +0.5, +1.5, +2.5.  This is duplicated in the lower half plane, so 

the total number of quiet directions is 6 + 6 = 12. 



108. The source being isotropic means Asphere = 4πr
2
 is used in the intensity definition I = 

P/A. Since intensity is proportional to the square of the amplitude (see Eq. 17–27), this 

further implies 
2 2

2

22 2 1

2

1 1 1 2

/ 4

/ 4

m

m

sI P r r

I s P r r

π
= = =

π

or sm2/sm1 = r1/r2.

(a) I = P/4πr
2
 = (10 W)/4π(3.0 m)

2
 = 0.088 W/m

2
.

(b) Using the notation A instead of sm for the amplitude, we find 

4

3

3.0m
0.75

4.0 m

A

A
= = .



109. (a) In regions where the speed is constant, it is equal to distance divided by time. 

Thus, we conclude that the time difference is 

L d d L
t

V V V V

−
∆ = + −

− ∆

where the first term is the travel time through bone and rock and the last term is the 

expected travel time purely through rock. Solving for d and simplifying, we obtain 

( ) 2

.
V V V V

d t t
V V

− ∆
= ∆ ≈ ∆

∆ ∆

(b) If we estimate d ≈ 10 cm (as the lower limit of a range that goes up to a diameter of 

20 cm), then the above expression (with the numerical values given in the problem) leads 

to ∆t = 0.8 µs (as the lower limit of a range that goes up to a time difference of 1.6 µs).



110. (a) We expect the center of the star to be a displacement node. The star has spherical 

symmetry and the waves are spherical. If matter at the center moved it would move 

equally in all directions and this is not possible. 

(b) We assume the oscillation is at the lowest resonance frequency. Then, exactly one-

fourth of a wavelength fits the star radius. If λ is the wavelength and R is the star radius 

then λ = 4R. The frequency is f = v/λ = v/4R, where v is the speed of sound in the star. 

The period is T = 1/f = 4R/v.

(c) The speed of sound is /v B= ρ , where B is the bulk modulus and ρ  is the density 

of stellar material. The radius is R = 9.0 × 10
–3

Rs, where Rs is the radius of the Sun (6.96 

× 10
8
 m). Thus 

10 3
3 8

22

1.0 10 kg/m
4 4(9.0 10 )(6.96 10 m) 22 s.

1.33 10 Pa
T R

B

ρ − ×
= = × × =

×



111. We find the difference in the two applications of the Doppler formula: 

2 1

340 m/s 25 m/s 340 m/s 25 m/s
37 Hz

340 m/s 15 m/s 340 m/s 15 m/s 340 m/s 15 m/s
f f f f

+
− = = − =

− − −

which leads to 24.8 10  Hzf = × .



/
    

/

f f

f f

λ τ µ τ

λ τ µ τ

′ ′ ′ ′
= =

where we are making an assumption that the mass-per-unit-length of the string does not 

change significantly. Thus, with τ ′ =1.2τ, we have / 440 1.2 ,f ′ = which 

gives 482 Hzf ′ = .

(b) In this case, neither tension nor mass-per-unit-length change, so the wave speed v is 

unchanged. Hence, using Eq. 17–38 with 1n = ,

( ) ( )2 2f f f L f L′ ′ ′ ′λ = λ =

Since 2
3

L L′ = , we obtain ( )3
2

440 660 Hzf ′ = = .

112. (a) We proceed by dividing the (velocity) equation involving the new (fundamental) 

frequency f ′ by the equation when the frequency f is 440 Hz to obtain 



Chapter 18 
 



1. Let TL be the temperature and pL be the pressure in the left-hand thermometer. 

Similarly, let TR be the temperature and pR be the pressure in the right-hand thermometer. 

According to the problem statement, the pressure is the same in the two thermometers 

when they are both at the triple point of water. We take this pressure to be p3. Writing Eq. 

18-5 for each thermometer, 

3 3

(273.16 K) and (273.16 K) ,L R
L R

p p
T T

p p
= =

we subtract the second equation from the first to obtain 

3

(273.16 K) .L R
L R

p p
T T

p

−
− =

First, we take TL = 373.125 K (the boiling point of water) and TR = 273.16 K (the triple 

point of water). Then, pL – pR = 120 torr. We solve 

3

120 torr
373.125K 273.16 K (273.16 K) 

p
− =

for p3. The result is p3 = 328 torr. Now, we let TL = 273.16 K (the triple point of water) 

and TR be the unknown temperature. The pressure difference is pL – pR = 90.0 torr. 

Solving the equation 

90.0 torr
273.16 K (273.16 K) 

328 torr
RT− =

for the unknown temperature, we obtain TR = 348 K. 
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H

373.16 K
(80kPa) 109.287 kPa.

273.16 K
p = =

(a) The difference is pN − pH = 0.056 kPa 0.06 kPa≈ .

(b) The pressure in the nitrogen thermometer is higher than the pressure in the hydrogen 

thermometer.  

2. We take p3 to be 80 kPa for both thermometers. According to Fig. 18-6, the nitrogen 

thermometer gives 373.35 K for the boiling point of water. Use Eq. 18-5 to compute the 

pressure:

N 3

373.35K
(80kPa) = 109.343kPa.

273.16 K 273.16 K

T
p p= =

The hydrogen thermometer gives 373.16 K for the boiling point of water and 



3. From Eq. 18-6, we see that the limiting value of the pressure ratio is the same as the 

absolute temperature ratio: (373.15 K)/(273.16 K) = 1.366. 



4. (a) Let the reading on the Celsius scale be x and the reading on the Fahrenheit scale be 

y. Then 9
5

32y x= + . For x = –71°C, this gives y = –96°F. 

(b) The relationship between y and x may be inverted to yield 5
9
( 32)x y= − . Thus, for y

= 134 we find x ≈ 56.7 on the Celsius scale. 



5. (a) Let the reading on the Celsius scale be x and the reading on the Fahrenheit scale be 

y. Then 9
5

32y x= + . If we require y = 2x, then we have 

9
2 32        (5) (32) 160 C

5
x x x= + = = °

which yields y = 2x = 320°F. 

(b) In this case, we require 1
2

y x=  and find 

1 9 (10)(32)
32        24.6 C

2 5 13
x x x= + = − ≈ − °

which yields y = x/2 = –12.3°F. 



6. We assume scales X and Y are linearly related in the sense that reading x is related to 

reading y by a linear relationship y = mx + b. We determine the constants m and b by 

solving the simultaneous equations: 

( )

( )

70.00 125.0

30.00 375.0

m b

m b

− = − +

− = +

which yield the solutions m = 40.00/500.0 = 8.000 × 10
–2

 and b = –60.00. With these 

values, we find x for y = 50.00: 

50.00 60.00
1375 .

0.08000

y b
x X

m

− +
= = = °



7. We assume scale X is a linear scale in the sense that if its reading is x then it is related 

to a reading y on the Kelvin scale by a linear relationship y = mx + b. We determine the 

constants m and b by solving the simultaneous equations: 

373.15 ( 53.5)

273.15 ( 170)

m b

m b

= − +

= − +

which yield the solutions m = 100/(170 – 53.5) = 0.858 and b = 419. With these values, 

we find x for y = 340: 

340 419
92.1 .

0.858

y b
x X

m

− −
= = = − °



8. The change in length for the aluminum pole is 

6

0 1 (33m)(23 10 / C )(15 C) = 0.011m.A Tα −∆ = ∆ = × ° °



9. Since a volume is the product of three lengths, the change in volume due to a 

temperature change ∆T is given by ∆V = 3αV ∆T, where V is the original volume and α is 

the coefficient of linear expansion. See Eq. 18-11. Since V = (4π/3)R
3
, where R is the 

original radius of the sphere, then 

( )( )( ) ( )
33 6 34

3   = 23 10 / C 4 10cm 100 C 29cm .
3

V R Tα −π
∆ = ∆ × ° π ° =

The value for the coefficient of linear expansion is found in Table 18-2. 



10. (a) The coefficient of linear expansion α for the alloy is 

510.015cm 10.000cm
1.88 10 / C .

(10.01cm)(100 C 20.000 C)

L

L T
α −∆ −

= = = × °
∆ ° − °

Thus, from 100°C to 0°C we have 

5 2(10.015cm)(1.88 10 / C )(0 C 100 C) = 1.88  10 cm.L L T − −∆ = ∆ = × ° ° − ° − ×α

The length at 0°C is therefore L′ = L + ∆L = (10.015 cm – 0.0188 cm) = 9.996 cm. 

(b) Let the temperature be Tx. Then from 20°C to Tx we have 

510.009cm 10.000cm = (1.88 10 / C )(10.000cm) ,L L T T−∆ = − ∆ = × ° ∆α

giving ∆T = 48 °C. Thus, Tx = (20°C + 48 °C )= 68°C. 



11. The new diameter is 

6

0 1(1 ) (2.725cm)[1+(23 10 / C )(100.0 C 0.000 C)] 2.731cm.AD D Tα −= + ∆ = × ° ° − ° =



12. The increase in the surface area of the brass cube (which has six faces), which had 

side length is L at 20°, is 

2 2 2 6 2

b

2

6( ) 6 12 12 12 (19 10 / C ) (30cm) (75 C 20 C)

11cm .

A L L L L L L Tα −∆ = + ∆ − ≈ ∆ = ∆ = × ° ° − °

=



13. The volume at 30°C is given by 

3 6

3

' (1 ) (1 3 ) (50.00cm )[1 3(29.00 10 / C ) (30.00 C 60.00 C)]

49.87 cm

V V T V Tβ α −= + ∆ = + ∆ = + × ° ° − °

=

where we have used β = 3α.



14. (a) We use ρ = m/V and

2( / ) ( / ) / ( / ) 3 ( / )m V m 1 V m V V V V L L .ρ ρ ρ∆ = ∆ = ∆ − ∆ = − ∆ = − ∆

The percent change in density is 

3 3(0.23%) 0.69%.
L

L

ρ

ρ

∆ ∆
= − = − = −

(b) Since α = ∆L/(L∆T ) = (0.23 × 10
–2

) / (100°C – 0.0°C) = 23 × 10
–6

 /C°, the metal is 

aluminum (using Table 18-2). 



15. If Vc is the original volume of the cup, αa is the coefficient of linear expansion of 

aluminum, and ∆T is the temperature increase, then the change in the volume of the cup 

is ∆Vc = 3αa Vc ∆T. See Eq. 18-11. If β is the coefficient of volume expansion for 

glycerin then the change in the volume of glycerin is ∆Vg = βVc ∆T. Note that the original 

volume of glycerin is the same as the original volume of the cup. The volume of glycerin 

that spills is 

( ) ( ) ( ) ( )( )4 6 3

3

3 5.1 10 / C 3 23 10 / C 100cm 6.0 C

                0.26cm .

g c a cV V V Tβ α − −∆ − ∆ = − ∆ = × ° − × ° °

=



16. The change in length for the section of the steel ruler between its 20.05 cm mark and 

20.11 cm mark is 

6(20.11cm)(11 10 / C )(270 C 20 C) = 0.055cm.s s sL L T −∆ = ∆ = × ° ° − °α

Thus, the actual change in length for the rod is  

∆L = (20.11 cm – 20.05 cm) + 0.055 cm = 0.115 cm. 

The coefficient of thermal expansion for the material of which the rod is made is then 

60.115 cm
23 10 / C .

270 C  20 C

L

T
α −∆

= = = × °
∆ ° − °



17. After the change in temperature the diameter of the steel rod is Ds = Ds0 + αsDs0 ∆T

and the diameter of the brass ring is Db = Db0 + αbDb0 ∆T, where Ds0 and Db0 are the 

original diameters, αs and αb are the coefficients of linear expansion, and ∆T is the 

change in temperature. The rod just fits through the ring if Ds = Db. This means  

Ds0 + αsDs0 ∆T = Db0 + αbDb0 ∆T.

Therefore,

( )( ) ( )( )
0 0

6 6
0 0

3.000cm 2.992cm

19.00  10 / C 2.992cm 11.00 10 / C 3.000cm

335.0 C.

s b

b b s s

D D
T

D Dα α − −

− −
∆ = =

− × ° − × °

= °

The temperature is T = (25.00°C + 335.0 °C) = 360.0°C. 



(e) The coefficient of linear expansion is 

2
50.18 10

1.8 10 C .
100 C

D
/

D T
α

−
−∆ ×

= = = × °
∆ °

18. (a) Since A = πD
2
/4, we have the differential dA = 2(πD/4)dD. Dividing the latter 

relation by the former, we obtain dA/A = 2 dD/D. In terms of ∆'s, this reads 

2       for   1.
A D D

A D D

∆ ∆ ∆
=

We can think of the factor of 2 as being due to the fact that area is a two-dimensional 

quantity. Therefore, the area increases by 2(0.18%) = 0.36%. 

(b) Assuming that all dimensions are allowed to freely expand, then the thickness 

increases by 0.18%. 

(c) The volume (a three-dimensional quantity) increases by 3(0.18%) = 0.54%. 

(d) The mass does not change. 



19. The initial volume V0 of the liquid is h0A0 where A0 is the initial cross-section area 

and h0 = 0.64 m. Its final volume is V = hA where h – h0 is what we wish to compute. 

Now, the area expands according to how the glass expands, which we analyze as follows: 

Using 2A rπ= , we obtain 

( ) 22 2 2 ( ) 2dA r dr r r dT r dT AdTπ π α α π α= = = = .

Therefore, the height is 

( )
( )

0 liquid

0 glass

1
.

1 2

V TV
h

A A T

β

α

+ ∆
= =

+ ∆

Thus, with V0/A0 = h0 we obtain 

( )
( )( )

( )( )

5

liquid 4

0 0 5
glass

1 4 10 101
1 0.64 1.3 10 m.

1 2 1 2 1 10 10

T
h h h

T

β

α

−

−

−

+ × °+ ∆
− = − = = ×

+ ∆ + × °



20. We divide Eq. 18-9 by the time increment ∆t and equate it to the (constant) speed v = 

100 × 10
–9

 m/s. 

0

T
v L

t
α

∆
=

∆

where L0 = 0.0200 m and α = 23 × 10
–6

/C°. Thus, we obtain 

C K
0.217 0.217 .

s s

T

t

∆ °
= =

∆



2 2 2 2 2

0 0 0 02 2x T T= + ∆ − = ∆α α

and

( )( )6 2

0

3.77 m
2 2 25 10 /C 32 C 7.5 10 m.

2
x Tα − −= ∆ = × ° ° = ×

21. Consider half the bar. Its original length is 0 0 / 2L=  and its length after the 

temperature increase is 0 0 T= + ∆α . The old position of the half-bar, its new position, 

and the distance x that one end is displaced form a right triangle, with a hypotenuse of 

length , one side of length 0 , and the other side of length x. The Pythagorean theorem 

yields
2 2 2 2 2 2

0 0 0(1 ) .x Tα= − = + ∆ −

Since the change in length is small we may approximate (1 + α ∆T )
2
 by 1 + 2α ∆T,

where the small term (α ∆T )
2
 was neglected. Then, 



22. (a) The specific heat is given by c = Q/m(Tf – Ti), where Q is the heat added, m is the 

mass of the sample, Ti is the initial temperature, and Tf is the final temperature. Thus, 

recalling that a change in Celsius degrees is equal to the corresponding change on the 

Kelvin scale, 

( ) ( )3

314J
523J/kg K.

30.0 10 kg 45.0 C 25.0 C
c

−
= = ⋅

× ° − °

(b) The molar specific heat is given by 

( ) ( ) ( )
314J

26.2J/mol K.
0.600mol 45.0 C 25.0 C

m

f i

Q
c

N T T
= = = ⋅

° − °−

(c) If N is the number of moles of the substance and M is the mass per mole, then m = 

NM, so 
3

3

30.0 10 kg
0.600mol.

50 10 kg/mol

m
N

M

−

−

×
= = =

×



23. We use Q = cm∆T. The textbook notes that a nutritionist's “Calorie” is equivalent to 

1000 cal. The mass m of the water that must be consumed is 

( ) ( )

3
43500 10 cal

94.6 10 g,
1g/cal C 37.0 C 0.0 C 

Q
m

c T

×
= = = ×

∆ ⋅ ° ° − °

which is equivalent to 9.46 × 10
4
 g/(1000 g/liter) = 94.6 liters of water. This is certainly 

too much to drink in a single day! 



24. The amount of water m that is frozen is 

50.2 kJ
0.151kg 151g.

333kJ/kgF

Q
m

L
= = = =

Therefore the amount of water which remains unfrozen is 260 g – 151 g = 109 g. 



4( ) (236J/kg K)(0.130kg)(1235 C 288 C) 2.91 10 J.f iQ cm T T= − = ⋅ ° − ° = ×

Now the silver at its melting point must be melted. If LF is the heat of fusion for silver 

this requires 

( ) ( )3 40.130kg 105 10 J/kg 1.36 10 J.FQ mL= = × = ×

The total heat required is ( 2.91 × 10
4
 J + 1.36 × 10

4
 J ) = 4.27 × 10

4
 J. 

25. The melting point of silver is 1235 K, so the temperature of the silver must first be 

raised from 15.0° C (= 288 K) to 1235 K. This requires heat 



26. (a) The water (of mass m) releases energy in two steps, first by lowering its 

temperature from 20°C to 0°C, and then by freezing into ice. Thus the total energy 

transferred from the water to the surroundings is 

( ) ( ) ( ) ( ) ( ) 74190J/kg K 125kg 20 C 333kJ/kg 125kg 5.2 10 J.w FQ c m T L m= ∆ + = ⋅ ° + = ×

(b) Before all the water freezes, the lowest temperature possible is 0°C, below which the 

water must have already turned into ice. 



27. The mass m = 0.100 kg of water, with specific heat c = 4190 J/kg·K, is raised from an 

initial temperature Ti = 23°C to its boiling point Tf = 100°C. The heat input is given by Q

= cm(Tf – Ti). This must be the power output of the heater P multiplied by the time t; Q = 

Pt. Thus, 

( ) ( ) ( )( ) 4190J/kg K 0.100kg 100 C 23 C
160s.

200J/s

f icm T TQ
t

P P

− ⋅ ° − °
= = = =



28. The work the man has to do to climb to the top of Mt. Everest is given by

W = mgy = (73.0 kg)(9.80 m/s
2
)(8840 m) = 6.32 × 10

6
 J. 

Thus, the amount of butter needed is 

( )6 1.00cal
4.186J(6.32 10 J) 

250g.
6000cal/g

m
×

= ≈



( 0.0 C) (79.7 cal / g)(150g) (1cal / g· C)(150g)(50 C 0.0°C)

(100 C ) 539cal / g (1cal / g C )(100 C 50 C)

    33g.

F c w c f

s

s w f

L m c m T
m

L c T

+ − ° + ° ° −
= =

+ ° − + ⋅ ° ° − °

=

29. Let the mass of the steam be ms and that of the ice be mi. Then  

( 0.0 C) (100 C )F c w c f s s s w fL m c m T m L m c T+ − ° = + ° − ,

where Tf = 50°C is the final temperature. We solve for ms:



30. (a) Using Eq. 18-17, the heat transferred to the water is 

( )( )( ) ( )( )1cal/g C 220g 100 C 20.0 C 539cal/g 5.00g

20.3kcal.

w w w V sQ c m T L m= ∆ + = ⋅ ° ° − ° +

=

(b) The heat transferred to the bowl is 

( ) ( ) ( )0.0923cal/g C 150g 100 C 20.0 C 1.11kcal.b b bQ c m T= ∆ = ⋅ ° ° − ° =

(c) If the original temperature of the cylinder be Ti, then Qw + Qb = ccmc(Ti – Tf), which 

leads to

( ) ( )
20.3kcal + 1.11kcal

100 C = 873 C.
0.0923cal/g C 300g

w b
i f

c c

Q Q
T T

c m

+
= + = + ° °

⋅ °



31. We note from Eq. 18-12 that 1 Btu = 252 cal. The heat relates to the power, and to the 

temperature change, through Q = Pt = cm∆T. Therefore, the time t required is 

5

(1000cal / kg C )(40gal)(1000kg / 264gal)(100 F 70 F)(5 C / 9 F)

(2.0 10 Btu / h)(252.0 cal / Btu)(1 h / 60 min)

3.0min .

cm T
t

P

∆ ⋅ ° ° − ° ° °
= =

×

=

The metric version proceeds similarly: 

3 3(4190 J/kg·C )(1000 kg/m )(150 L)(1 m /1000 L)(38 C 21 C)

(59000 J/s)(60 s /1min)

 3.0min.

c V T
t

P

∆ ° ° − °
= =

=

ρ



32. We note that the heat capacity of sample B is given by the reciprocal of the slope of 

the line in Figure 18-32(b) (compare with Eq. 18-14).  Since the reciprocal of that slope is 

16/4 = 4 kJ/kg·C°, then cB = 4000 J/kg·C° = 4000 J/kg·K (since a change in Celsius is 

equivalent to a change in Kelvins).  Now, following the same procedure as shown in 

Sample Problem 18-4, we find  

                                                 cA mA (Tf − TA) + cB mB (Tf − TB) = 0 

  cA (5.0 kg)(40°C – 100°C) + (4000 J/kg·C°)(1.5 kg)(40°C – 20°C) = 0 

which leads to cA = 4.0×10
2
 J/kg·K.



33. The power consumed by the system is 

3 3 3

4

1 1 (4.18J / g C)(200 10 cm )(1g / cm )(40 C 20 C)

20% 20% (1.0h)(3600s / h)

  2.3 10 W.

cm T
P

t

∆ ⋅° × ° − °
= =

= ×

The area needed is then 
4

2

2

2.3 10 W
33m .

700W / m
A

×
= =



34. While the sample is in its liquid phase, its temperature change (in absolute values) is  

| ∆T | = 30 °C.  Thus, with m = 0.40 kg, the absolute value of Eq. 18-14 leads to 

|Q| = c m |∆T | = (3000 J/ kg C⋅° )(0.40 kg)(30 C° ) = 36000 J . 

The rate (which is constant) is  

P = |Q| / t = (36000 J)/(40 min) = 900 J/min, 

which is equivalent to 15 Watts.   

(a) During the next 30 minutes, a phase change occurs which is described by Eq. 18-16:

|Q| = P t = (900 J/min)(30 min) = 27000 J =  L m .

Thus, with m = 0.40 kg, we find L = 67500 J/kg ≈  68 kJ/kg. 

(b) During the final 20 minutes, the sample is solid and undergoes a temperature change 

(in absolute values) of | ∆T | = 20 C°.  Now, the absolute value of Eq. 18-14 leads to 

c = 
|Q|

m |∆T|
 = 

P t

m |∆T|
=

(900)(20)

(0.40)(20)
 = 2250

J

kg·C°
≈  2.3

kJ

kg·C°
 . 



Note that we work in Celsius temperature, which poses no difficulty for the J/kg·K values 

of specific heat capacity (see Table 18-3) since a change of Kelvin temperature is 

numerically equal to the corresponding change on the Celsius scale. Therefore, the 

temperature of the coffee will cool by |∆T | = 80.0°C – 66.5°C = 13.5C°. 

35. We denote the ice with subscript I and the coffee with c, respectively. Let the final 

temperature be Tf. The heat absorbed by the ice is  

QI = λFmI + mIcw (Tf – 0°C), 

and the heat given away by the coffee is |Qc| = mwcw (TI – Tf). Setting QI = |Qc|, we solve 

for Tf :

3(130g) (4190J/kg C ) (80.0 C) (333 10 J/g) (12.0g)

( ) (12.0g +130g ) (4190J/kg C°)

66.5 C.

w w I F I
f

I c w

m c T m
T

m m c

−λ ⋅ ° ° − ×
= =

+ ⋅

= °



36. (a)  Eq. 18-14 (in absolute value) gives

|Q| = (4190 J/ kg C⋅° )(0.530 kg)(40 °C) = 88828 J. 

Since
d Q

d t
is assumed constant (we will call it P) then we have 

P =
88828 J

40 min
 = 

88828 J

2400 s
 = 37 W . 

(b) During that same time (used in part (a)) the ice warms by 20 C°.  Using Table 18-3 

and Eq. 18-14 again we have 

mice  = 
Q

cice ∆T
   =

88828

(2220)(20°)
=  2.0 kg . 

(c) To find the ice produced (by freezing the water that has already reached 0°C – so we 

concerned with the 40 min < t < 60 min  time span), we use Table 18-4 and Eq. 18-16: 

mwater becoming ice  =
Q 20 min

LF
   =  

44414

333000
 =  0.13 kg. 



37. To accomplish the phase change at 78°C,  

Q = LVm = (879 kJ/kg) (0.510 kg) = 448.29 kJ 

must be removed. To cool the liquid to –114°C,

Q = cm|∆T| = (2.43 kJ/ kg K⋅ ) (0.510 kg) (192 K) = 237.95 kJ, 

must be removed. Finally, to accomplish the phase change at –114°C,  

Q = LFm = (109 kJ/kg) (0.510 kg) = 55.59 kJ 

must be removed. The grand total of heat removed is therefore (448.29 + 237.95 + 55.59) 

kJ = 742 kJ. 



15.0 C
2

5.0 C

15.0
2 3

5.0

 (2.09) (0.20 0.14 0.023 )

  (2.0) (0.20 0.070 0.00767 ) (cal)

  82cal.

f f

i i

T T

T T
Q cm dT m cdT T T dT

T T T

°

°
= = = + +

= + +

=

38. The heat needed is found by integrating the heat capacity: 



39. We compute with Celsius temperature, which poses no difficulty for the J/kg·K 

values of specific heat capacity (see Table 18-3) since a change of Kelvin temperature is 

numerically equal to the corresponding change on the Celsius scale. If the equilibrium 

temperature is Tf then the energy absorbed as heat by the ice is  

QI = LFmI + cwmI(Tf – 0°C), 

while the energy transferred as heat from the water is Qw = cwmw(Tf – Ti). The system is 

insulated, so Qw + QI = 0, and we solve for Tf : 

.
( )

w w i F I
f

I C w

c m T L m
T

m m c

−
=

+

(a) Now Ti = 90°C so 

3(4190J / kg C )(0.500kg)(90 C) (333 10 J / kg)(0.500kg)
5.3 C.

(0.500kg 0.500kg)(4190J / kg C )
fT

⋅ ° ° − ×
= = °

+ ⋅ °

(b) Since no ice has remained at 5.3fT C= ° , we have 0fm = .

(c) If we were to use the formula above with Ti = 70°C, we would get Tf < 0, which is 

impossible. In fact, not all the ice has melted in this case and the equilibrium temperature 

is Tf = 0°C.

(d) The amount of ice that melts is given by 

3

( 0 C) (4190J / kg C )(0.500kg)(70C°)
0.440kg.

333 10 J / kg

w w i
I

F

c m T
m

L

− ° ⋅ °
′ = = =

×

Therefore, the amount of (solid) ice remaining is mf = mI – m'I = 500 g – 440 g = 60.0 g, 

and (as mentioned) we have Tf = 0°C (because the system is an ice-water mixture in 

thermal equilibrium). 



Recall that a change in Celsius temperature is numerically equivalent to a change on the 

Kelvin scale. 

(b) The heat of fusion in this process is ,FQ L m=  where 53.33 10  J/kgFL = × .

Differentiating the expression with respect to t and equating the result with condP , we have 

cond F

dQ dm
P L

dt dt
= = .

Thus, the rate of mass converted from liquid to ice is 

5cond

5

16.7  W
(5.02 10 ) kg/s

3.33 10  J/kgF

Pdm A
A

dt L

−= = = ×
×

.

(c) Since m V Ahρ ρ= = , differentiating both sides of the expression gives 

( )
dm d dh

Ah A
dt dt dt

ρ ρ= = .

Thus, the rate of change of the icicle length is  

5 2
8

3

1 5.02 10 kg/m s
5.02 10 m/s

1000 kg/m

dh dm

dt A dtρ

−
−× ⋅

= = = ×

40. (a) Using Eq. 18-32, we find the rate of energy conducted upward to be 

cond

5.0 C
(0.400 W/m C) (16.7 ) W.

0.12 m

H CT TQ
P kA A A

t L

− °
= = = ⋅° =



If mI is the mass of the ice and cI is its specific heat then the ice absorbs heat 

( ).I I f IiQ c m T T= −

Since no energy is lost to the environment, these two heats (in absolute value) must be 

the same. Consequently, 

( ) ( ).W W Wi f I I f Iic m T T c m T T− = −

The solution for the equilibrium temperature is 

(4190J / kg K)(0.200kg)(25 C) (2220J/kg K)(0.100kg)( 15 C)

(4190J/kg K)(0.200kg) (2220J/kg K)(0.100kg)

   16.6 C.

W W Wi I I Ii
f

W W I I

c m T c m T
T

c m c m

+
=

+

⋅ ° + ⋅ − °
=

⋅ + ⋅

= °

This is above the melting point of ice, which invalidates our assumption that no ice has 

melted. That is, the calculation just completed does not take into account the melting of 

the ice and is in error. Consequently, we start with a new assumption: that the water and 

ice reach thermal equilibrium at Tf = 0°C, with mass m (< mI) of the ice melted. The 

magnitude of the heat rejected by the water is 

| | = ,W W WiQ c m T

41. (a) We work in Celsius temperature, which poses no difficulty for the J/kg·K values 

of specific heat capacity (see Table 18-3) since a change of Kelvin temperature is 

numerically equal to the corresponding change on the Celsius scale. There are three 

possibilities: 

• None of the ice melts and the water-ice system reaches thermal equilibrium at a 

temperature that is at or below the melting point of ice. 

• The system reaches thermal equilibrium at the melting point of ice, with some of the ice 

melted. 

• All of the ice melts and the system reaches thermal equilibrium at a temperature at or 

above the melting point of ice. 

First, suppose that no ice melts. The temperature of the water decreases from TWi = 25°C 

to some final temperature Tf and the temperature of the ice increases from TIi = –15°C to 

Tf. If mW is the mass of the water and cW is its specific heat then the water rejects heat 

| | ( ).W W Wi fQ c m T T= −



Since the total mass of ice present initially was 100 g, there is enough ice to bring the 

water temperature down to 0°C. This is then the solution: the ice and water reach thermal 

equilibrium at a temperature of 0°C with 53 g of ice melted. 

(b) Now there is less than 53 g of ice present initially. All the ice melts and the final 

temperature is above the melting point of ice. The heat rejected by the water is 

( )W W W i fQ c m T T= −

and the heat absorbed by the ice and the water it becomes when it melts is 

(0 ) ( 0) .I I Ii W I f I FQ c m T c m T m L= − + − +

The first term is the energy required to raise the temperature of the ice to 0°C, the second 

term is the energy required to raise the temperature of the melted ice from 0°C to Tf, and 

the third term is the energy required to melt all the ice. Since the two heats are equal, 

( ) ( ) .W W W i f I I I i W I f I Fc m T T c m T c m T m L− = − + +

The solution for Tf is 

.
( )

W W W i I I Ii I F

f

W W I

c m T c m T m L
T

c m m

+ −
=

+

Inserting the given values, we obtain Tf = 2.5°C. 

where LF is the heat of fusion for water. The first term is the energy required to warm all 

the ice from its initial temperature to 0°C and the second term is the energy required to 

melt mass m of the ice. The two heats are equal, so 

.W W Wi I I Ii Fc m T c m T mL= − +

This equation can be solved for the mass m of ice melted: 

3

2

(4190J / kg K)(0.200kg)(25 C) (2220J / kg K)(0.100kg)( 15 C )

333 10 J / kg

5.3 10 kg 53g.

W W Wi I I Ii

F

c m T c m T
m

L

−

+
=

⋅ ° + ⋅ − °
=

×

= × =

and the heat absorbed by the ice is 

(0 ) ,I I Ii FQ c m T mL= − +



0 0 0

0 0

6

6 6

2.54000cm 2.54508cm (2.54508cm)(23 10 /C )(100.0 C)

(2.54508cm)(23 10 / C ) (2.54000cm) (17 10 /C°)

50.38 C.

r s s a i
f

s a r c

D D D T
T

D D

α

α α
−

− −

− +
=

−

− + × ° °
=

× ° − ×

= °

The expansion coefficients are from Table 18-2 of the text. Since the initial temperature 

of the ring is 0°C, the heat it absorbs is ,c r fQ c m T=  where cc is the specific heat of 

copper and mr is the mass of the ring. The heat rejected up by the sphere is 

( )a s i fQ c m T T= −

where ca is the specific heat of aluminum and ms is the mass of the sphere. Since these 

two heats are equal, 

( ) ,c r f a s i fc m T c m T T= −

we use specific heat capacities from the textbook to obtain 

3(386J/kg K)(0.0200kg)(50.38 C)
8.71 10 kg.

( ) (900J/kg K)(100 C 50.38 C)

c r f

s

a i f

c m T
m

c T T

−⋅ °
= = = ×

− ⋅ ° − °

42. If the ring diameter at 0.000°C is Dr0 then its diameter when the ring and sphere are in 

thermal equilibrium is 

0 (1 ),r r c fD D Tα= +

where Tf is the final temperature and αc is the coefficient of linear expansion for copper. 

Similarly, if the sphere diameter at Ti (= 100.0°C) is Ds0 then its diameter at the final 

temperature is 

0 [1 ( )],s s a f iD D T Tα= + −

where αa is the coefficient of linear expansion for aluminum. At equilibrium the two 

diameters are equal, so 

0 0(1 ) [1 ( )].r c f s a f iD T D T Tα α+ = + −

The solution for the final temperature is 



W = WAB + WBC + WCA = 60 J – 90 J + 0 = –30 J 

and the total heat absorbed is Q = W = –30 J. This means the gas loses 30 J of energy in 

the form of heat. 

43. Over a cycle, the internal energy is the same at the beginning and end, so the heat Q

absorbed equals the work done: Q = W. Over the portion of the cycle from A to B the 

pressure p is a linear function of the volume V and we may write 

310 20
Pa +  Pa/m ,

3 3
p V=

where the coefficients were chosen so that p = 10 Pa when V = 1.0 m
3
 and p = 30 Pa 

when V = 4.0 m
3
. The work done by the gas during this portion of the cycle is 

4
4 4

2

1 1
1

10 20 10 10
  =   = 

3 3 3 3

40 160 10 10
=  J 60 J.

3 3 3 3

ABW pdV V dV V V+ = +

+ − − =

The BC portion of the cycle is at constant pressure and the work done by the gas is

WBC = p∆V = (30 Pa)(1.0 m
3
 – 4.0 m

3
) = –90 J. 

The CA portion of the cycle is at constant volume, so no work is done. The total work 

done by the gas is



44. (a) Since work is done on the system (perhaps to compress it) we write W = –200 J. 

(b) Since heat leaves the system, we have Q = –70.0 cal = –293 J. 

(c) The change in internal energy is ∆Eint = Q – W = –293 J – (–200 J) = –93 J. 



45. (a) One part of path A represents a constant pressure process. The volume changes 

from 1.0 m
3
 to 4.0 m

3
 while the pressure remains at 40 Pa. The work done is 

3 3 2(40Pa)(4.0m 1.0m ) 1.2 10 J.AW p V= ∆ = − = ×

(b) The other part of the path represents a constant volume process. No work is done 

during this process. The total work done over the entire path is 120 J. To find the work 

done over path B we need to know the pressure as a function of volume. Then, we can 

evaluate the integral W = p dV. According to the graph, the pressure is a linear function 

of the volume, so we may write p = a + bV, where a and b are constants. In order for the 

pressure to be 40 Pa when the volume is 1.0 m
3
 and 10 Pa when the volume is 4.00 m

3

the values of the constants must be a = 50 Pa and b = –10 Pa/m
3
. Thus,

p = 50 Pa – (10 Pa/m
3
)V

and

( ) ( )
4 4

2 4

1
1 1

 50 10 50 5 200 J 50 J 80 J  +  5.0 J = 75J.BW p dV V dV V V= = − = − = − −

(c) One part of path C represents a constant pressure process in which the volume 

changes from 1.0 m
3
 to 4.0 m

3
 while p remains at 10 Pa. The work done is 

3 3(10 Pa)(4.0m 1.0m ) 30J.CW p V= ∆ = − =

The other part of the process is at constant volume and no work is done. The total work is 

30 J. We note that the work is different for different paths. 



During process B → C, the system is neither expanding nor contracting. Thus, 

(c) W = 0. 

(d) The sign of ∆Eint must be the same (by the first law of thermodynamics) as that of Q

which is given as positive. Thus, ∆Eint > 0. 

During process C → A, the system is contracting. The environment is doing work on the 

system, which implies W < 0. Also, ∆Eint < 0 because ∆Eint = 0 (for the whole cycle) 

and the other values of ∆Eint (for the other processes) were positive. Therefore, Q = W + 

∆Eint must also be negative. 

(e) Q < 0. 

(f) W < 0. 

(g) ∆Eint < 0. 

(h) The area of a triangle is 1
2

 (base)(height). Applying this to the figure, we find 
31

net 2
| | (2.0m )(20 Pa) 20JW = = . Since process C → A involves larger negative work (it 

occurs at higher average pressure) than the positive work done during process A → B,

then the net work done during the cycle must be negative. The answer is therefore Wnet

= –20 J. 

46. During process A → B, the system is expanding, doing work on its environment, so W

> 0, and since ∆Eint > 0 is given then Q = W + ∆Eint must also be positive. 

(a) Q > 0. 

(b) W > 0. 



47. We note that there is no work done in the process going from d to a, so Qda = ∆Eint da

= 80 J.  Also, since the total change in internal energy around the cycle is zero, then

∆Eint ac + ∆Eint cd   + ∆Eint da = 0 

−200 J   + ∆Eint cd  + 80 J    = 0 

which yields  ∆Eint cd = 120 J.  Thus, applying the first law of thermodynamics to the c to 

d process gives the work done as

Wcd = Qcd − ∆Eint cd  = 180 J  – 120 J  = 60 J. 



48. (a) We note that process a to b is an expansion, so W > 0 for it.  Thus, Wab = +5.0 J.   

We are told that the change in internal energy during that process is +3.0 J, so application 

of the first law of thermodynamics for that process immediately yields Qab = +8.0 J. 

(b) The net work (+1.2 J) is the same as the net heat (Qab + Qbc + Qca), and we are told 

that Qca = +2.5 J.  Thus we readily find Qbc = (1.2 – 8.0 – 2.5) J = −9.3 J. 



49. (a) The change in internal energy ∆Eint is the same for path iaf and path ibf.

According to the first law of thermodynamics, ∆Eint = Q – W, where Q is the heat 

absorbed and W is the work done by the system. Along iaf

∆Eint = Q – W = 50 cal – 20 cal = 30 cal. 

Along ibf ,

W = Q – ∆Eint = 36 cal – 30 cal = 6.0 cal. 

(b) Since the curved path is traversed from f to i the change in internal energy is –30 cal 

and Q = ∆Eint + W = –30 cal – 13 cal = – 43 cal. 

(c) Let ∆Eint = Eint, f – Eint, i. Then, Eint, f = ∆Eint + Eint, i = 30 cal + 10 cal = 40 cal. 

(d) The work Wbf for the path bf is zero, so Qbf = Eint, f – Eint, b = 40 cal – 22 cal = 18 cal.

(e) For the path ibf, Q = 36 cal so Qib = Q – Qbf = 36 cal – 18 cal = 18 cal. 



50. Since the process is a complete cycle (beginning and ending in the same 

thermodynamic state) the change in the internal energy is zero and the heat absorbed by 

the gas is equal to the work done by the gas: Q = W. In terms of the contributions of the 

individual parts of the cycle QAB + QBC + QCA = W and

QCA = W – QAB – QBC = +15.0 J – 20.0 J – 0 = –5.0 J. 

This means 5.0 J of energy leaves the gas in the form of heat. 



51. The rate of heat flow is given by 

cond ,H CT T
P kA

L

−
=

where k is the thermal conductivity of copper (401 W/m·K), A is the cross-sectional area 

(in a plane perpendicular to the flow), L is the distance along the direction of flow 

between the points where the temperature is TH and TC. Thus, 

( ) ( ) ( )4 2

3

cond

401W/m K 90.0 10 m 125 C 10.0 C
1.66 10 J/s.

0.250m
P

−⋅ × ° − °
= = ×

The thermal conductivity is found in Table 18-6 of the text. Recall that a change in 

Kelvin temperature is numerically equivalent to a change on the Celsius scale. 



( ) ( ) ( ) ( )
44 8 2 4 2 25.67 10 W/m K 0.9 2.0m 300 K 8 10 W.rP AT −= ≈ × ⋅ = ×σε

(b) The energy lost is given by 

( ) ( )2 48 10 W 30s 2 10 J.rE P t∆ = ∆ = × = ×

52. (a) We estimate the surface area of the average human body to be about 2 m
2
 and the 

skin temperature to be about 300 K (somewhat less than the internal temperature of  

310 K). Then from Eq. 18-37 



53. (a) Recalling that a change in Kelvin temperature is numerically equivalent to a 

change on the Celsius scale, we find that the rate of heat conduction is 

( ) ( )( )( )4 2

cond

401W/m K 4.8 10 m 100 C
16 J/s.

1.2m

H CkA T T
P

L

−⋅ × °−
= = =

(b) Using Table 18-4, the rate at which ice melts is 

cond 16J/s
0.048g/s.

333J/gF

dm P

dt L
= = =



54. We refer to the polyurethane foam with subscript p and silver with subscript s. We 

use Eq. 18–32 to find L = kR.

(a) From Table 18-6 we find kp = 0.024 W/m·K so 

( )( )( ) ( )( )( )
22= 0.024 W/m K 30ft F h/Btu 1m/3.281ft 5C / 9F 3600s/h 1Btu/1055J

= 0.13m.

p p pL k R=

⋅ ⋅ ° ⋅ ° °

(b) For silver ks = 428 W/m·K, so 

( )
( )

( ) 3428 30
0.13m 2.3 10 m.

0.024 30

s s
s s s p

p p

k R
L k R L

k R
= = = = ×



( ) ( )
2 44 8 2 4 3

env (5.67 10 W m K )(0.850)(4 ) 0.500m 350.15K 2.28 10 W.aP ATσε π−= = × ⋅ = ×

(c) From Eq. 18-40, we have 

3 3 32.28 10 W 1.23 10 W 1.05 10 W.n a rP P P= − = × − × = ×

55. We use Eqs. 18-38 through 18-40. Note that the surface area of the sphere is given by 

A = 4πr
2
, where r = 0.500 m is the radius. 

(a) The temperature of the sphere is T = (273.15 + 27.00) K = 300.15 K. Thus

( )( )( )( ) ( )
2 44 8 2 4

3

5.67 10 W m K 0.850 4 0.500 m 300.15K

1.23 10 W.

rP ATσε π−= = × ⋅

= ×

(b) Now, Tenv = 273.15 + 77.00 = 350.15 K so 



56. (a) The surface area of the cylinder is given by 

2 2 2 2 2 2 2

1 1 1 12 2 2 (2.5 10 m) 2 (2.5 10 m)(5.0 10 m) 1.18 10 mA r rhπ π π π− − − −= + = × + × × = × ,

its temperature is T1 = 273 + 30 = 303 K, and the temperature of the environment is Tenv = 

273 + 50 = 323 K. From Eq. 18-39 we have 

( ) ( )( )( )4 4 2 2 4 4

1 1 env 0.85 1.18 10 m (323K) (303K) 1.4 W.P A T Tσε −= − = × − =

(b) Let the new height of the cylinder be h2. Since the volume V of the cylinder is fixed, 

we must have 2 2

1 1 2 2V r h r hπ π= = . We solve for h2:

( )
2 2

1
2 1

2

2.5cm
 5.0cm  125cm 1.25m.

0.50cm

r
h h

r
= = = =

The corresponding new surface area A2 of the cylinder is 

2 2 2 2

2 2 22 2 2 m) 2 m)(1.25 m) 3.94 10 m .A r r hπ π π π−2 −2 −
2= + = (0.50×10 + (0.50×10 = ×

Consequently,
2 2

2 2

2 2

1 1

3.94 10 m
3.3.

1.18 10 m

P A

P A

−

−

×
= = =

×



57. We use Pcond = kA∆T/L ∝ A/L. Comparing cases (a) and (b) in Figure 18–44, we have

cond cond cond 4 .b a
b a a

a b

A L
P P P

A L
= =

Consequently, it would take 2.0 min/4 = 0.50 min for the same amount of heat to be 

conducted through the rods welded as shown in Fig. 18-44(b).



to the rate across layer 2 (P2 ).  Using Eq. 18-37 and canceling out the common factor of 

area A, we obtain 

TH - Tc

(L1/k1+ L2/k2 + L3/k3)
 =

∆T2

(L2/k2)

45 C°

(1 + 7/9 + 35/80)
 =

∆T2

(7/9)

which leads to ∆T2 = 15.8 °C.

(b) We expect (and this is supported by the result in the next part) that greater 

conductivity should mean a larger rate of conductive heat transfer. 

(c) Repeating the calculation above with the new value for k2 , we have 

45 C°

(1 + 7/11 + 35/80)
 =

∆T2

(7/11)

which leads to ∆T2 = 13.8 °C.  This is less than our part (a) result which implies that the 

temperature gradients across layers 1 and 3 (the ones where the parameters did not 

change) are greater than in part (a); those larger temperature gradients lead to larger 

conductive heat currents (which is basically a statement of “Ohm’s law as applied to heat 

conduction”).

58. (a) As in Sample Problem 18-6, we take the rate of conductive heat transfer through 

each layer to be the same.  Thus, the rate of heat transfer across the entire wall Pw is equal 



where the sum in the denominator is over the layers. If Lg is the thickness of a glass layer, 

La is the thickness of the air layer, kg is the thermal conductivity of glass, and ka is the 

thermal conductivity of air, then the denominator is 

2 2
.

g g a a ga

g a a g

L L k L kLL

k k k k k

+
= + =

Therefore, the heat conducted per unit area occurs at the following rate: 

( ) ( )( )( )
( )( ) ( )( )

cond

3

2

51.1 C 0.026 W m K 1.0 W m K

2 2 3.0 10 m 0.026 W m K 0.075m 1.0 W m K

18W m .

H C a g

g a a g

T T k kP

A L k L k −

− ° ⋅ ⋅
= =

+ × ⋅ + ⋅

=

59. (a) We use 

cond
H CT T

P kA
L

−
=

with the conductivity of glass given in Table 18-6 as 1.0 W/m·K. We choose to use the 

Celsius scale for the temperature: a temperature difference of 

( )72 F 20 F 92 FH CT T− = ° − − ° = °

is equivalent to 5
9
(92) 51.1C= ° . This, in turn, is equal to 51.1 K since a change in Kelvin 

temperature is entirely equivalent to a Celsius change. Thus,  

( ) 4 2cond

3

51.1 C
1.0 W m K 1.7 10 W m .

3.0 10 m

H CP T T
k

A L −

− °
= = ⋅ = ×

×

(b) The energy now passes in succession through 3 layers, one of air and two of glass. 

The heat transfer rate P is the same in each layer and is given by 

( )
cond

H CA T T
P

L k

−
=



60. The surface area of the ball is 2 2 3 24 4 (0.020 m) 5.03 10  m .A Rπ π −= = = ×  Using Eq. 

18-37 with 35 273 308 KiT = + =  and 47 273 320 KfT = + = , the power required to 

maintain the temperature is 

4 4 8 2 4 3 2 4 4( ) (5.67 10 W/m K )(0.80)(5.03 10  m ) (320 K) (308 K)

0.34 W.

r f iP A T Tσε − −= − ≈ × ⋅ × −

=

Thus, the heat each bee must produce during the 20-minutes interval is  

(0.34 W)(20 min)(60 s/min)
0.81 J

500

rPtQ

N N
= = = .



61. We divide both sides of Eq. 18-32 by area A, which gives us the (uniform) rate of 

heat conduction per unit area: 

cond 1
1 4

1 4

CHP T TT T
k k

A L L

−−
= =

where TH = 30°C, T1 = 25°C and TC = –10°C. We solve for the unknown T.

( )1 4
1

4 1

4.2 C.C H

k L
T T T T

k L
= + − = − °



where we have used /r a π=   (from 2a rπ= ) for the radius of the cylinder. For the 

huddled cylinder, the radius is /r Na π′ =  (since 2Na rπ ′= ), and the total surface area 

is

2 2 2h

Na
A Na r h Na h Na h N aπ π π

π
′= + = + = + .

Since the power radiated is proportional to the surface area, we have  

2 1 2 /

( 2 ) 1 2 /

h h

r r

P A Na h N a h Na

NP NA N a h a h a

π π

π π

+ +
= = =

+ +
.

With 1000N = , 20.34 ma =  and 1.1 m,h =  the ratio is 

2

2

1 2(1.1 m) /(1000 0.34 m )1 2 /
0.16

1 2 / 1 2(1.1 m) /(0.34 m )

h

r

P h Na

NP h a

ππ

π π

+ ⋅+
= = =

+ +
.

(b) The total radiation loss is reduced by 1.00 0.16 0.84− = , or 84%. 

62. (a) For each individual penguin, the surface area that radiates is the sum of the top 

surface area and the sides: 

2 2 2r

a
A a rh a h a h aπ π π

π
= + = + = + ,



63. We assume (although this should be viewed as a “controversial” assumption) that the 

top surface of the ice is at TC = –5.0°C. Less controversial are the assumptions that the 

bottom of the body of water is at TH = 4.0°C and the interface between the ice and the 

water is at TX = 0.0°C. The primary mechanism for the heat transfer through the total 

distance L = 1.4 m is assumed to be conduction, and we use Eq. 18-34: 

( ) ( )
water ice

ice ice ice ice

(0.12) 4.0 0.0 (0.40) 0.0 5.0( ) ( )
    .

1.4

H X X C
A Ak A T T k A T T

L L L L L

° − ° ° + °− −
= =

− −

We cancel the area A and solve for thickness of the ice layer: Lice = 1.1 m. 



64. (a) Using Eq. 18-32, the rate of energy flow through the surface is  

( ) 6 2

cond 4

300 C 100 C
(0.026 W/m K)(4.00 10  m ) 0.208W 0.21 W.

1.0 10  m

s wkA T T
P

L

−

−

− ° − °
= = ⋅ × = ≈

×

(Recall that a change in Celsius temperature is numerically equivalent to a change on the 

Kelvin scale.) 

(b) With cond ( ) ( ),V V VP t L m L V L Ahρ ρ= = =  the drop will last a duration of  

6 3 6 2 3

cond

(2.256 10  J/kg)(1000 kg/m )(4.00 10  m )(1.50 10  m)
65 s

0.208W

VL Ah
t

P

ρ − −× × ×
= = = .



65. Let h be the thickness of the slab and A be its area. Then, the rate of heat flow through 

the slab is  

( )
cond

H CkA T T
P

h

−
=

where k is the thermal conductivity of ice, TH is the temperature of the water (0°C), and 

TC is the temperature of the air above the ice (–10°C). The heat leaving the water freezes 

it, the heat required to freeze mass m of water being Q = LFm, where LF is the heat of 

fusion for water. Differentiate with respect to time and recognize that dQ/dt = Pcond to 

obtain

cond .F

dm
P L

dt
=

Now, the mass of the ice is given by m = ρAh, where ρ is the density of ice and h is the 

thickness of the ice slab, so dm/dt = ρA(dh/dt) and 

cond .F

dh
P L A

dt
ρ=

We equate the two expressions for Pcond and solve for dh/dt:

( )
.

H C

F

k T Tdh

dt L h

−
=

ρ

Since 1 cal = 4.186 J and 1 cm = 1 × 10
–2

m, the thermal conductivity of ice has the SI 

value

k = (0.0040 cal/s·cm·K) (4.186 J/cal)/(1 × 10
–2 

m/cm) = 1.674 W/m·K. 

The density of ice is ρ = 0.92 g/cm
3
 = 0.92 × 10

3
 kg/m

3
. Thus, 

( )( )
( )( )( )

6

3 3 3

1.674 W m K 0 C  10 C
1.1 10 m s 0.40cm h.

333 10 J kg 0.92 10 kg m 0.050m

dh

dt

−⋅ ° + °
= = × =

× ×



With env 32 C 305 KT = ° = , 15 C 288 KT = ° =  and 1ε = , the rate of water mass loss is 

8 2 4 2 2
4 4 4 4

env 6

7

(5.67 10 W/m K )(1.0)(1.53 10  m )
( ) (305 K) (288 K)

2.256 10  J/kg

6.82 10 kg/s 0.68 mg/s.

V

dm A
T T

dt L

σε − −

−

× ⋅ ×
= − = −

×

= × ≈

66. The condition that the energy lost by the beverage can due to evaporation equals the 

energy gained via radiation exchange implies 

4 4

rad env( )V

dm
L P A T T

dt
σε= = − .

The total area of the top and side surfaces of the can is 

2 2 2 22 (0.022 m) 2 (0.022 m)(0.10 m) 1.53 10  mA r rhπ π π π −= + = + = × .



67. We denote the total mass M and the melted mass m. The problem tells us that 

Work/M = p/ρ, and that all the work is assumed to contribute to the phase change Q = 

Lm where L = 150 × 10
3
 J/kg. Thus,

6

3

5.5 10
    

1200 150 10

p M
M Lm m

×
= =

×ρ

which yields m = 0.0306M. Dividing this by 0.30 M (the mass of the fats, which we are 

told is equal to 30% of the total mass), leads to a percentage 0.0306/0.30 = 10%. 



68. As is shown in the textbook for Sample Problem 18-4, we can express the final 

temperature in the following way: 

Tf   =
mAcATA + mBcBTB

mAcA + mBcB
  =  

cATA + cBTB

cA + cB

where the last equality is made possible by the fact that mA = mB .  Thus, in a graph of Tf

versus TA , the “slope” must be cA /(cA + cB), and the “y intercept” is cB /(cA + cB)TB.

From the observation that the “slope” is equal to 2/5 we can determine, then, not only the 

ratio of the heat capacities but also the coefficient of TB in the “y intercept”; that is, 

cB /(cA + cB)TB  = (1 – “slope”)TB .

(a) We observe that the “y intercept” is 150 K, so  

TB = 150/(1 – “slope”) = 150/(3/5) 

which yields TB = 2.5×10
2
 K. 

(b) As noted already, cA /(cA + cB) = 
2

5
, so 5 cA  = 2cA + 2cB , which leads to cB /cA = 

3

2
=1.5.



69. The graph shows that the absolute value of the temperature change is  | ∆T | = 25 °C.

Since a Watt is a Joule per second, we reason that the energy removed is 

|Q| = (2.81 J/s)(20 min)(60 s/min) = 3372 J . 

Thus, with m = 0.30 kg, the absolute value of Eq. 18-14 leads to 

c  =
|Q|

m |∆T|
= 4.5×10

2
 J/kg

.
K . 



70. Let mw = 14 kg, mc = 3.6 kg, mm = 1.8 kg, Ti1 = 180°C, Ti2 = 16.0°C, and Tf = 18.0°C. 

The specific heat cm of the metal then satisfies 

( ) ( ) ( )2 1 0w w c m f i m m f im c m c T T m c T T+ − + − =

which we solve for cm:

( )
( ) ( )

( )( )( )
( ) ( )

2

2 1

14kg 4.18kJ/kg K 16.0 C 18.0 C

(3.6kg) 18.0 C 16.0 C (1.8kg) 18.0 C 180 C

0.41kJ/kg C 0.41kJ/kg K.

w w i f

m

c f i m f i

m c T T
c

m T T m T T

− ⋅ ° − °
= =

° − ° + ° − °− + −

= ⋅ ° = ⋅



71. Its initial volume is 5
3
 = 125 cm

3
, and using Table 18-2, Eq. 18-10 and Eq. 18-11, we 

find 
3 6 3(125m ) (3 23 10 / C ) (50.0 C ) 0.432cm .V −∆ = × × ° ° =



72. (a) We denote TH = 100°C, TC = 0°C, the temperature of the copper-aluminum 

junction by T1. and that of the aluminum-brass junction by T2. Then, 

cond 1 1 2 2( ) ( ) ( ).c a b
H c

k A k A k A
P T T T T T T

L L L
= − = − = −

We solve for T1 and T2 to obtain 

1

0.00 C 100 C
100 C 84.3 C

1 ( ) / 1 401(235 109) /[(235)(109)]

C H
H

c a b a b

T T
T T

k k k k k

− ° − °
= + = ° + = °

+ + + +

(b) and 

2

100 C 0.00 C
0.00 C

1 ( ) / 1 109(235 401) /[(235)(401)]

57.6 C.

H C
c

b c a c a

T T
T T

k k k k k

− ° − °
= + = ° +

+ + + +

= °



(a) Path 2 involves more work than path 1 (note the triangle in the figure of area 
1
2

(4Vi)(pi/2) = piVi). With W2 = 4piVi + piVi = 5piVi, we obtain 

2 2 5 6 11 .b a i i i i i iQ W U U pV pV pV= + − = + =

(b) Path 3 starts at a and ends at b so that ∆U = Ub – Ua = 6piVi.

73. The work (the “area under the curve”) for process 1 is 4piVi, so that

Ub – Ua = Q1 – W1 = 6piVi

by the First Law of Thermodynamics. 



74. We use Pcond = kA(TH – TC)/L. The temperature TH at a depth of 35.0 km is 

( ) ( )3 2 3

cond
54.0 10 W/m 35.0 10 m

10.0 C 766 C.
2.50W/m K

H C

P L
T T

kA

−× ×
= + = + ° = °

⋅



75. The volume of the disk (thought of as a short cylinder) is πr²L where L = 0.50 cm is 

its thickness and r = 8.0 cm is its radius.  Eq. 18-10, Eq. 18-11 and Table 18-2 (which 

gives α = 3.2 ×10
−6

/C°) lead to 

∆V = (πr²L)(3α)(60°C – 10°C) = 4.83 × 10
−2

 cm
3
.



76. We use Q = cm∆T and m = ρV. The volume of water needed is 

( ) ( )

( ) ( ) ( )

6

3

3 3

1.00 10 kcal/day 5days
35.7 m .

1.00 10 kg/m 1.00kcal/kg 50.0 C 22.0 C

m Q
V

C T

×
= = = =

∆ × ° − °ρ ρ



77. We have W = p dV (Eq. 18-24). Therefore, 

( )2 3 3 23 J.
3

f i

a
W a V dV V V= = − =



78. (a) The rate of heat flow is 

( ) ( ) ( ) ( )2

2

cond 2

0.040W/m K 1.8m 33 C 1.0 C
2.3 10 J/s.

1.0 10 m

H CkA T T
P

L −

⋅ ° − °−
= = = ×

×

(b) The new rate of heat flow is 

( ) 3cond
cond

0.60W/m K (230J/s)
3.5 10 J/s,

0.040W/m K

k P
P

k

⋅′
′ = = = ×

⋅

which is about 15 times as fast as the original heat flow. 



its sign (which we identify as negative as a result of the discussion in §18-8). The total 

(or net) heat transfer is Qnet = [(–40) + (–130) + (+400)] J = 230 J. By the First Law of 

Thermodynamics (or, equivalently, conservation of energy), we have 

( )

net net

230 J

0 80 J

a c c b b a

a c

Q W

W W W

W

→ → →

→

=

= + +

= + + −

Therefore, Wa → c = 3.1×10
2
 J. 

79. We note that there is no work done in process c → b, since there is no change of 

volume. We also note that the magnitude of work done in process b → c is given, but not 



80. If the window is L1 high and L2 wide at the lower temperature and L1 + ∆L1 high and 

L2 + ∆L2 wide at the higher temperature then its area changes from A1 = L1L2 to 

( ) ( )2 1 1 2 2 1 2 1 2 2 1A L L L L L L L L L L= + ∆ + ∆ ≈ + ∆ + ∆

where the term ∆L1 ∆L2 has been omitted because it is much smaller than the other terms, 

if the changes in the lengths are small. Consequently, the change in area is 

2 1 1 2 2 1 .A A A L L L L∆ = − = ∆ + ∆

If ∆T is the change in temperature then ∆L1 = αL1 ∆T and ∆L2 = αL2 ∆T, where α is the 

coefficient of linear expansion. Thus 

( )
1 2 1 2 1 2

6

2

( ) 2

2 9 10 / C (30cm) (20cm) (30 C)

0.32cm .

A L L L L T L L T

−

∆ = + ∆ = ∆

= × ° °

=

α α



81. Following the method of Sample Problem 18-4 (particularly its third Key Idea), we 

have

 (900 
J

kg·C°
)(2.50 kg)(Tf  – 92.0°C) + (4190 

J

kg·C°
)(8.00 kg)(Tf  – 5.0°C) = 0 

where Table 18-3 has been used.  Thus we find Tf  = 10.5°C. 



82. We use Q = –λFmice = W + ∆Eint. In this case ∆Eint = 0. Since ∆T = 0 for the ideal gas, 

then the work done on the gas is 

' (333J/g)(100g) 33.3kJ.F iW W m= − = λ = =



    Q  = m [cice(0 C° – (–150 C°)) + LF  + cliquid( Tf  – 0 C°)] 

Thus,

Tf =
Q/m − (cice(150°) + LF )

cliquid
= 79.5°C . 

83. This is similar to Sample Problem 18-3.  An important difference with part (b) of that 

sample problem is that, in this case, the final state of the H2O is all liquid at Tf > 0.  As 

discussed in part (a) of that sample problem, there are three steps to the total process: 



84. We take absolute values of Eq. 18-9 and Eq. 12-25: 

| | | |  and .
F L

L L T E
A L

∆
∆ = ∆ =α

The ultimate strength for steel is (F/A)rupture = Su = 400 × 10
6
 N/m

2
 from Table 12-1. 

Combining the above equations (eliminating the ratio ∆L/L), we find the rod will rupture 

if the temperature change exceeds 

( ) ( )

6 2

9 2 6

400 10 N/m
| | 182 C.

200 10 N/m 11 10 / C

uS
T

Eα −

×
∆ = = = °

× × °

Since we are dealing with a temperature decrease, then, the temperature at which the rod 

will rupture is T = 25.0°C – 182°C = –157°C.  



85. The problem asks for 0.5% of E, where E = Pt with t = 120 s and P given by Eq. 18-

38. Therefore, with A = 4πr
2
 = 5.0 × 10 

–3
 m

2
, we obtain 

( ) ( ) 40.005 0.005 8.6 J.Pt AT tσε= =



86. From the law of cosines, with φ = 59.95º, we have 

L
2

Invar  = L
2

alum  + L
2

steel –  2LalumLsteel cos φ

Plugging in L = L0 (1 + T), dividing by L0 (which is the same for all sides) and 

ignoring terms of order ( T)
2
 or higher, we obtain 

1 + 2 Invar T  =  2 + 2 ( alum + steel) T –  2 (1 + ( alum + steel) T) cos φ  . 

This is rearranged to yield 

T  =
cos φ - ½

(αalum + αsteel) (1 - cos φ) - αInvar
  = 46 C≈ ° ,

so that the final temperature is T = 20.0º + T = 66º C.  Essentially the same argument, 

but arguably more elegant, can be made in terms of the differential of the above cosine 

law expression. 



87. We assume the ice is at 0°C to being with, so that the only heat needed for melting is 

that described by Eq. 18-16 (which requires information from Table 18-4).  Thus,

Q = Lm = (333 J/g)(1.00 g) = 333 J . 



88. Let the initial water temperature be Twi and the initial thermometer temperature be Tti.

Then, the heat absorbed by the thermometer is equal (in magnitude) to the heat lost by the 

water:

( ) ( ).t t f ti w w wi fc m T T c m T T− = −

We solve for the initial temperature of the water: 

( ) ( )( )( )
( )( )

0.0550 kg 0.837 kJ/kg K 44.4 15.0 K
44.4 C

4.18kJ / kg C 0.300 kg

45.5 C.

t t f ti

wi f

w w

c m T T
T T

c m

− ⋅ −
= + = + °

⋅ °

= °



89. For a cylinder of height h, the surface area is Ac = 2πrh, and the area of a sphere is Ao

= 4πR
2
. The net radiative heat transfer is given by Eq. 18-40. 

(a) We estimate the surface area A of the body as that of a cylinder of height 1.8 m and 

radius r = 0.15 m plus that of a sphere of radius R = 0.10 m. Thus, we have A ≈ Ac + Ao = 

1.8 m
2
. The emissivity ε = 0.80 is given in the problem, and the Stefan-Boltzmann 

constant is found in §18-11: σ = 5.67 × 10
–8

 W/m
2
·K

4
. The “environment” temperature is 

Tenv = 303 K, and the skin temperature is T = 5
9

(102 – 32) + 273 = 312 K. Therefore, 

( )4 4

net env 86 W.P A T Tσε= − = −

The corresponding sign convention is discussed in the textbook immediately after Eq. 18-

40. We conclude that heat is being lost by the body at a rate of roughly 90 W. 

(b) Half the body surface area is roughly A = 1.8/2 = 0.9 m
2
. Now, with Tenv = 248 K, we 

find

( )4 4 2

net env| | | | 2.3 10 W.P A T Tσε= − ≈ ×

(c) Finally, with Tenv = 193 K (and still with A = 0.9 m
2
) we obtain |Pnet| = 3.3×10

2
 W. 



90. One method is to simply compute the change in length in each edge (x0 = 0.200 m 

and y0 = 0.300 m) from Eq. 18-9 (∆x = 3.6 × 10 
–5

 m and ∆y = 5.4 × 10 
–5

 m) and then 

compute the area change: 

( ) ( ) 5 2

0 0 0 0 0 2.16 10 m .A A x x y y x y −− = + ∆ + ∆ − = ×

Another (though related) method uses ∆A = 2αA0∆T (valid for 1A A∆ ) which can be 

derived by taking the differential of A = xy and replacing d 's with ∆'s. 



91. (a) Let the number of weight lift repetitions be N. Then Nmgh = Q, or (using Eq. 18-

12 and the discussion preceding it) 

( )( )
( ) ( ) ( )

4

2

3500Cal 4186J/Cal
1.87 10 .

80.0kg 9.80m/s 1.00m

Q
N

mgh
= = ≈ ×

(b) The time required is 

( ) ( )
1.00h

18700 2.00s 10.4 h.
3600s

t = =



92. The heat needed is 

12

1
(10%) (200,000 metric tons) (1000 kg / metric ton) (333kJ/kg)

10

6.7 10 J.

FQ mL= =

= ×



( )3 310 Pa 40 Pa
Work 1.0m 1.0m 0

2

+
= − =

(a) and (b) Thus, the total work during the BC cycle is (75 – 30) J = 45 J. During the BA

cycle, the “tilted” part is the same as before, and the main difference is that the horizontal 

portion is at higher pressure, with Work = (40 Pa)(–3.0 m
3
) = –120 J. Therefore, the total 

work during the BA cycle is (75 – 120) J = – 45 J. 

93. The net work may be computed as a sum of works (for the individual processes 

involved) or as the “area” (with appropriate ± sign) inside the figure (representing the 

cycle). In this solution, we take the former approach (sum over the processes) and will 

need the following fact related to processes represented in pV diagrams: 

for straight line Work
2

i fp p
V

+
= ∆

which is easily verified using the definition Eq. 18-25. The cycle represented by the 

“triangle” BC consists of three processes: 

• “tilted” straight line from (1.0 m
3
, 40 Pa) to (4.0 m

3
, 10 Pa), with 

( )3 340 Pa  10 Pa
Work 4.0m 1.0m 75J

2

+
= − =

• horizontal line from (4.0 m
3
, 10 Pa) to (1.0 m

3
, 10 Pa), with 

( ) ( )3 3Work 10 Pa 1.0m 4.0m 30J= − = −

• vertical line from (1.0 m
3
, 10 Pa) to (1.0 m

3
, 40 Pa), with 



94. For isotropic materials, the coefficient of linear expansion α is related to that for 

volume expansion by 1
3

=α β  (Eq. 18-11). The radius of Earth may be found in the 

Appendix. With these assumptions, the radius of the Earth should have increased by 

approximately 

( ) ( )3 5 21
6.4 10 km 3.0 10 / K  (3000K 300K) 1.7 10 km.

3
E ER R Tα −∆ = ∆ = × × − = ×



95. (a) Regarding part (a), it is important to recognize that the problem is asking for the 

total work done during the two-step “path”: a → b followed by b → c. During the latter 

part of this “path” there is no volume change and consequently no work done. Thus, the 

answer to part (b) is also the answer to part (a). Since ∆U for process c → a is –160 J, 

then Uc – Ua = 160 J. Therefore, using the First Law of Thermodynamics, we have 

160

40 0 200

c b b a

b c b c a b a b

a b

U U U U

Q W Q W

W

→ → → →

→

= − + −

= − + −

= − + −

Therefore, Wa → b→ c = Wa → b = 80 J. 

(b) Wa → b = 80 J. 



96. Since the combination “p1V1” appears frequently in this derivation we denote it as “x.

Thus for process 1, the heat transferred is Q1 = 5x = ∆Eint 1 + W1 , and for path 2 (which 

consists of two steps, one at constant volume followed by an expansion accompanied by 

a linear pressure decrease) it is Q2 = 5.5x = ∆Eint 2 + W2.  If we subtract these two 

expressions and make use of the fact that internal energy is state function (and thus has 

the same value for path 1 as for path 2) then we have   

5.5x – 5x  = W2  –  W1   =  “area” inside the triangle = 
1

2
 (2 V1 )( p2 – p1) . 

Thus, dividing both sides by x (= p1V1), we find 

0.5 =
p2

p1
  – 1 

which leads immediately to the result:  p2 /p1 = 1.5 .



97. The cube has six faces, each of which has an area of (6.0 × 10
–6

 m)
2
. Using Kelvin 

temperatures and Eq. 18-40, we obtain 

( ) ( )

4 4

net env

8 10 2 4 4

2 4

9

( )

W
5.67 10 (0.75) 2.16 10 m (123.15 K)   (173.15 K)

m K

6.1 10 W.

P A T T

− −

−

= −

= × × −
⋅

= − ×

σε



98. We denote the density of the liquid as ρ, the rate of liquid flowing in the calorimeter 

as µ, the specific heat of the liquid as c, the rate of heat flow as P, and the temperature 

change as ∆T. Consider a time duration dt, during this time interval, the amount of liquid 

being heated is dm = µρdt. The energy required for the heating is

dQ = Pdt = c(dm) ∆T = cµ∆Tdt.

Thus,

( )( )( )6 3 3 3

3 3

250 W

8.0 10 m / s 0.85 10 kg/m 15 C

2.5 10 J/kg C 2.5 10 J/kg K.

P
c

Tρµ −
= =

∆ × × °

= × ⋅ ° = × ⋅



99. Consider the object of mass m1 falling through a distance h. The loss of its 

mechanical energy is ∆E = m1gh. This amount of energy is then used to heat up the 

temperature of water of mass m2: ∆E = m1gh = Q = m2c∆T. Thus, the maximum possible 

rise in water temperature is 

( )( )( )
( )( )

2

1

2

6.00 kg 9.8m/s 50.0 m
1.17 C.

0.600 kg 4190 J/kg C

m gh
T

m c
∆ = = = °

⋅ °



Chapter 19 
 



1. (a) Eq. 19-3 yields n = Msam/M = 2.5/197 = 0.0127 mol. 

(b) The number of atoms is found from Eq. 19-2:  

N = nNA = (0.0127)(6.02 × 10
23

) = 7.64 × 10
21

.
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2. Each atom has a mass of m = M/NA, where M is the molar mass and NA is the 

Avogadro constant. The molar mass of arsenic is 74.9 g/mol or 74.9 × 10
–3

 kg/mol. 

Therefore, 7.50 × 10
24

 arsenic atoms have a total mass of  

(7.50 × 10
24

) (74.9 × 10
–3

 kg/mol)/(6.02 × 10
23

 mol
–1

) = 0.933 kg. 



3. With V = 1.0 × 10
–6

 m
3
, p = 1.01 × 10

–13
 Pa, and T = 293 K, the ideal gas law gives 

( ) ( )
( )( )

13 6 3

23
1.01 10  Pa 1.0 10  m

4.1 10 mole.
8.31 J/mol K 293 K

pV
n

RT

− −

−
× ×

= = = ×
⋅

Consequently, Eq. 19-2 yields N = nNA = 25 molecules. We can express this as a ratio 

(with V now written as 1 cm
3
) N/V = 25 molecules/cm

3
.



4. (a) We solve the ideal gas law pV = nRT for n:

( )( )
( )( )

6 3

8
100Pa 1.0 10 m

5.47 10 mol.
8.31J/mol K 220 K

pV
n

RT

−

−
×

= = = ×
⋅

(b) Using Eq. 19-2, the number of molecules N is 

( ) ( )6 23 1 16

A 5.47 10 mol 6.02 10 mol 3.29 10 molecules.N nN − −= = × × = ×



( )
2 3

2 3

1.64 10 m 300 K
266 kPa 287 kPa

1.67 10 m 273K

fi
f i

f i

TV
p p

V T

−

−

×
= = =

×
.

Expressed as a gauge pressure, we subtract 101 kPa and obtain 186 kPa. 

5. Since (standard) air pressure is 101 kPa, then the initial (absolute) pressure of the air is 

pi = 266 kPa. Setting up the gas law in ratio form (where ni = nf and thus cancels out — 

see Sample Problem 19-1), we have 

f f f

i i i

p V T

pV T
=

which yields



6. (a) With T = 283 K, we obtain 

( )( )
( )( )

3 3100 10 Pa 2.50m
106mol.

8.31J/mol K 283K

pV
n

RT

×
= = =

(b) We can use the answer to part (a) with the new values of pressure and temperature, 

and solve the ideal gas law for the new volume, or we could set up the gas law in ratio 

form as in Sample Problem 19-1 (where ni = nf and thus cancels out): 

f f f

i i i

p V T

pV T
=

which yields a final volume of  

( )3 3100kPa 303K
2.50m 0.892 m

300kPa 283K

fi
f i

f i

Tp
V V

p T
= = = .



7. (a) In solving pV = nRT for n, we first convert the temperature to the Kelvin scale: 

(40.0 273.15) K 313.15 KT = + = . And we convert the volume to SI units: 1000 cm
3
 = 

1000 × 10
–6

 m
3
. Now, according to the ideal gas law, 

( )( )
( )( )

5 6 3

2
1.01 10 Pa 1000 10 m

3.88 10 mol.
8.31J/mol K 313.15K

pV
n

RT

−

−
× ×

= = = ×
⋅

(b) The ideal gas law pV = nRT leads to 

( )( )
( )( )

5 6 3

2

1.06 10 Pa 1500 10 m
493K.

3.88 10 mol 8.31J/mol K

pV
T

nR

−

−

× ×
= = =

× ⋅

We note that the final temperature may be expressed in degrees Celsius as 220°C. 



The fraction of P due to the second gas is then 

( )( )
2 2 2

1 2 1 2

/ 0.5
0.2.

/ 2 0.5

p n RT V n

p n n RT V n n
= = = =

+ + +

8. The pressure p1 due to the first gas is p1 = n1RT/V, and the pressure p2 due to the 

second gas is p2 = n2RT/V. So the total pressure on the container wall is 

( )1 2
1 2 1 2 .

n RT n RT RT
p p p n n

V V V
= + = + = +



9. (a)  Eq. 19-45 (which gives 0) implies Q = W.  Then Eq. 19-14, with T = (273 + 

30.0)K leads to gives Q = –3.14 × 10
3
 J, or | Q | = 3.14 × 10

3
 J. 

(b) That negative sign in the result of part (a) implies the transfer of heat is from the gas.



10. The initial and final temperatures are 5.00 C 278 KiT = ° =  and 75.0 C 348 KfT = ° = ,

respectively. Using ideal-gas law with 
i fV V= , we find the final pressure to be

( )
348K

1.00 atm 1.25 atm
278K

f f f f

f i

i i i i

p V T T
p p

pV T T
= = = = .



11. Using Eq. 19-14, we note that since it is an isothermal process (involving an ideal gas) 

then Q = W = nRT ln(Vf /Vi) applies at any point on the graph.  An easy one to read is Q

= 1000 J and Vf  = 0.30 m
3
, and we can also infer from the graph that Vi = 0.20 m

3
.  We 

are told that n = 0.825 mol, so the above relation immediately yields T = 360 K. 



12. Since the pressure is constant the work is given by W = p(V2 – V1). The initial volume 

is 2

1 1 1( )V AT BT p= − , where T1=315 K is the initial temperature, A =24.9 J/K and 

B=0.00662 J/K
2
. The final volume is 2

2 2 2( )V AT BT p= − , where T2=315 K. Thus

2 2

2 1 2 1

2 2 2

( ) ( )

(24.9 J/K)(325 K 315 K) (0.00662 J/K )[(325 K) (315 K) ] 207 J.

W A T T B T T= − − −

= − − − =
.



Since the initial gauge pressure is 1.03 × 10
5
 Pa,

pi = 1.03 × 10
5
 Pa + 1.013 × 10

5
 Pa = 2.04 × 10

5
 Pa. 

The final pressure is atmospheric pressure:  pf = 1.013 × 10
5
 Pa. Thus 

( )( )
5

5 3 4

5

2.04 10 Pa
2.04 10 Pa 0.14 m ln 2.00 10 J.

1.013 10 Pa
W

×
= × = ×

×

During the constant pressure portion of the process the work done by the gas is W = 

pf(Vi – Vf). The gas starts in a state with pressure pf, so this is the pressure throughout this 

portion of the process. We also note that the volume decreases from Vf to Vi. Now Vf = 

piVi/pf, so 

( ) ( )( )5 5 3

4

1.013 10 Pa 2.04 10 Pa 0.14m

1.44 10 J.

i i
f i f i i

f

pV
W p V p p V

p
= = = × ×

= ×

The total work done by the gas over the entire process is

W = 2.00 × 10
4
 J – 1.44 × 10

4
 J = 5.60 × 10

3
 J. 

13. Suppose the gas expands from volume Vi to volume Vf during the isothermal portion 

of the process. The work it does is 

ln ,
f f

i i

V V
f

V V
i

VdV
W p dV nRT nRT

V V
= = =

where the ideal gas law pV = nRT was used to replace p with nRT/V. Now Vi = nRT/pi

and Vf = nRT/pf, so Vf/Vi = pi/pf. Also replace nRT with piVi to obtain 

ln .i
i i

f

p
W pV

p
=



( )( )
( ) ( )

5 3

3
(8.95 atm) 1.01 10 Pa/atm 11.44m

5.10 10 mol
8.31 J/mol K 243K

p V
n

RT

×∆
= = = ×

⋅
.

Thus, in order for the submarine to maintain the original air volume in the chamber, 
35.10 10 mol×  of air must be released. 

14. (a) At the surface, the air volume is 

2 3 3

1 (1.00 m) (4.00 m) 12.57 m 12.6 mV Ah π= = = ≈ .

(b) The temperature and pressure of the air inside the submarine at the surface are 

1 20 C 293 KT = ° =  and 1 0 1.00 atmp p= = . On the other hand, at depth 80 m,h =  we 

have 2 30 C 243 KT = − ° =  and 

3 2

2 0 5

1.00 atm
1.00 atm (1024 kg/m )(9.80 m/s )(80.0 m)

1.01 10  Pa

1.00 atm 7.95 atm 8.95 atm .

p p ghρ= + = +
×

= + =

Therefore, using ideal-gas law, pV NkT= , the air volume at this depth would be 

( )3 31 1 1 1 2
2 1

2 2 2 2 1

1.00 atm 243K
12.57 m 1.16 m

8.95 atm 293K

p V T p T
V V

p V T p T
= = = = .

(c) The decrease in volume is 3

1 2 11.44 mV V V∆ = − = . Using Eq. 19-5, the amount of air 

this volume corresponds to is  



15. (a) At point a, we know enough information to compute n:

( )( )
( ) ( )

32500 Pa 1.0 m
1.5mol.

8.31 J/mol K 200 K

pV
n

RT
= = =

⋅

(b) We can use the answer to part (a) with the new values of pressure and volume, and 

solve the ideal gas law for the new temperature, or we could set up the gas law as in 

Sample Problem 19-1 in terms of ratios (note: na = nb and cancels out): 

( )
3

3

7.5kPa 3.0 m
200 K

2.5kPa 1.0 m

b b b
b

a a a

p V T
T

p V T
= =

which yields an absolute temperature at b of Tb = 1.8×10
3
 K. 

(c) As in the previous part, we choose to approach this using the gas law in ratio form 

(see Sample Problem 19-1): 

( )
3

3

2.5kPa 3.0m
200 K

2.5kPa 1.0 m

c c c
c

a a a

p V T
T

p V T
= =

which yields an absolute temperature at c of Tc = 6.0×10
2
 K. 

(d) The net energy added to the gas (as heat) is equal to the net work that is done as it 

progresses through the cycle (represented as a right triangle in the pV diagram shown in 

Fig. 19-21). This, in turn, is related to ± “area” inside that triangle (with 
1
2

area = (base)(height) ), where we choose the plus sign because the volume change at 

the largest pressure is an increase. Thus, 

( ) ( )3 3 3

net net

1
2.0m 5.0 10 Pa 5.0 10 J.

2
Q W= = × = ×



n = p1V1/RT1 = (p0 + ρgd)V1/RT1,

where V1 is the volume of the bubble at the bottom of the lake and T1 is the temperature 

there. At the surface of the lake the pressure is p0 and the volume of the bubble is V2 = 

nRT2/p0. We substitute for n to obtain 

( )( )( )
( )

02
2 1

1 0

5 3 3 2

3

5

2 3

1.013 10 Pa + 0.998 10 kg/m 9.8m/s 40m293K
20cm

277 K 1.013 10 Pa

1.0 10 cm .

p gdT
V V

T p

ρ+
=

× ×
=

×

= ×

16. We assume that the pressure of the air in the bubble is essentially the same as the 

pressure in the surrounding water. If d is the depth of the lake and ρ is the density of 

water, then the pressure at the bottom of the lake is p1 = p0 + ρgd, where p0 is 

atmospheric pressure. Since p1V1 = nRT1, the number of moles of gas in the bubble is  



17. When the valve is closed the number of moles of the gas in container A is nA = 

pAVA/RTA and that in container B is nB = 4pBVA/RTB. The total number of moles in both 

containers is then 

4
const.A A B

A B

A B

V p p
n n n

R T T
= + = + =

After the valve is opened the pressure in container A is p′A = Rn′ATA/VA and that in 

container B is p′B = Rn′BTB/4VA. Equating p′A and p′B, we obtain Rn′ATA/VA = Rn′BTB/4VA,

or n′B = (4TA/TB)n′A. Thus, 

4 4
1 .A A A B

A B A A B

B A B

T V p p
n n n n n n

T R T T
′ ′ ′= + = + = + = +

We solve the above equation for n′A:

( )

( )

4
.

1 4

A A B B

A

A B

p T p TV
n

R T T

+
=

+

Substituting this expression for n′A into p′VA = n′ARTA, we obtain the final pressure: 

54 /
2.0 10 Pa.

1 4 /

A A A B A B

A A B

n RT p p T T
p

V T T

′ +
′ = = = ×

+



18. Appendix F gives M = 4.00 × 10
–3

 kg/mol (Table 19-1 gives this to fewer significant 

figures). Using Eq. 19-22, we obtain 

( ) ( ) 3

rms 3

3 8.31 J/mol K 1000K3
2.50 10 m/s.

4.00 10 kg/mol

RT
v

M
= = = ×

×



19. According to kinetic theory, the rms speed is 

rms

3RT
v

M
=

where T is the temperature and M is the molar mass. See Eq. 19-34. According to Table 

19-1, the molar mass of molecular hydrogen is 2.02 g/mol = 2.02 × 10
–3

 kg/mol, so 

( )( ) 2

rms 3

3 8.31J/mol K 2.7 K
1.8 10 m/s.

2.02 10 kg/mol
v

−

⋅
= = ×

×



20. The molar mass of argon is 39.95 g/mol. Eq. 19–22 gives 

( )( )
rms 3

3 8.31J/mol K 313K3
442m/s.

39.95 10 kg/mol

RT
v

M −

⋅
= = =

×



21. Table 19-1 gives M = 28.0 g/mol for nitrogen. This value can be used in Eq. 19-22 

with T in Kelvins to obtain the results. A variation on this approach is to set up ratios, 

using the fact that Table 19-1 also gives the rms speed for nitrogen gas at 300 K (the 

value is 517 m/s). Here we illustrate the latter approach, using v for vrms:

22 2

1 11

3 /
.

3 /

RT Mv T

v TRT M
= =

(a) With T2 = (20.0 + 273.15) K ≈ 293 K, we obtain 

( )2

293K
517 m/s 511m/s.

300 K
v = =

(b) In this case, we set 1
3 22

v v=  and solve 3 2 3 2/ /v v T T=  for T3:

( )
2 2

3
3 2

2

1
293K 73.0K

2

v
T T

v
= = =

which we write as 73.0 – 273 = – 200°C. 

(c) Now we have v4 = 2v2 and obtain 

( )( )
2

34
4 2

2

293K 4 1.17 10 K
v

T T
v

= = = ×

which is equivalent to 899°C. 



22. First we rewrite Eq. 19-22 using Eq. 19-4 and Eq. 19-7: 

( )
( )

A

rms

A

33 3
.

kN TRT kT
v

M mN M
= = =

The mass of the electron is given in the problem, and k = 1.38 × 10
–23

 J/K is given in the 

textbook. With T = 2.00 × 10
6
 K, the above expression gives vrms = 9.53 × 10

6
 m/s. The 

pressure value given in the problem is not used in the solution. 



23. In the reflection process, only the normal component of the momentum changes, so 

for one molecule the change in momentum is 2mv cosθ, where m is the mass of the 

molecule, v is its speed, and θ is the angle between its velocity and the normal to the wall. 

If N molecules collide with the wall, then the change in their total momentum is 2Nmv

cos θ, and if the total time taken for the collisions is ∆t, then the average rate of change of 

the total momentum is 2(N/∆t)mv cosθ. This is the average force exerted by the N

molecules on the wall, and the pressure is the average force per unit area: 

( )( )( )23 1 27 3

4 2

3

2
 cos

2
1.0 10 s 3.3 10 kg 1.0 10 m/s cos55

2.0 10 m

1.9 10 Pa.

N
p mv

A t
θ

− −

−

=
∆

= × × × °
×

= ×

We note that the value given for the mass was converted to kg and the value given for the 

area was converted to m
2
.



(a) We convert to SI units: ρ = 1.24 × 10
–2

 kg/m
3
 and p = 1.01 × 10

3
 Pa. The rms speed is 

3(1010) / 0.0124 494 m/s.=

(b) We find M from ρ = pM/RT with T = 273 K. 

( )3

3

(0.0124kg/m ) 8.31J/mol K (273K)
0.0279 kg/mol 27.9 g/mol.

1.01 10 Pa

RT
M

p
= = = =

×

(c) From Table 19.1, we identify the gas to be N2.

24. We can express the ideal gas law in terms of density using n = Msam/M:

sam .
M RT pM

pV
M RT

ρ= =

We can also use this to write the rms speed formula in terms of density: 

rms

3 3( / ) 3
.

RT pM p
v

M M

ρ

ρ
= = =



25. (a) Eq. 19-24 gives ( )23 21

avg

3
1.38 10 J/K (273K) 5.65 10 J .

2
K − −= × = ×

(b) For 373 K,T =  the average translational kinetic energy is 21

avg 7.72 10 J .K −= ×

(c) The unit mole may be thought of as a (large) collection: 6.02 × 10
23

 molecules of 

ideal gas, in this case. Each molecule has energy specified in part (a), so the large 

collection has a total kinetic energy equal to 

23 21 3

mole A avg (6.02 10 )(5.65 10 J) 3.40 10 J.K N K −= = × × = ×

(d) Similarly, the result from part (b) leads to 

23 21 3 

mole (6.02 10 )(7.72 10 J) 4.65 10 J.K −= × × = ×



26. The average translational kinetic energy is given by 3
avg 2

K kT= , where k is the 

Boltzmann constant (1.38 × 10
–23

 J/K) and T is the temperature on the Kelvin scale. Thus 

23 20

avg

3
(1.38 10 J/K) (1600K) = 3.31 10 J .

2
K − −= × ×



23 21

avg

3 3
(1.38 10 J/K)[(32.0+ 273.15) K] = 6.32 10 J.

2 2
K kT − −= = × ×

The ratio ε/Kavg is (6.76 × 10
–20

 J)/(6.32 × 10
–21

 J) = 10.7. 

27. (a) We use ε = LV/N, where LV is the heat of vaporization and N is the number of 

molecules per gram. The molar mass of atomic hydrogen is 1 g/mol and the molar mass 

of atomic oxygen is 16 g/mol so the molar mass of H2O is (1.0 + 1.0 + 16) = 18 g/mol. 

There are NA = 6.02 × 10
23

 molecules in a mole so the number of molecules in a gram of 

water is (6.02 × 10
23

 mol
–1

)/(18 g/mol) = 3.34 × 10
22

 molecules/g. Thus  

ε = (539 cal/g)/(3.34 × 10
22

/g) = 1.61 × 10
–20

 cal = 6.76 × 10
–20

 J. 

(b) The average translational kinetic energy is 



28. We solve Eq. 19-25 for d:

5 19 3

1 1

2 ( / ) (0.80 10 cm) 2 (2.7 10 / cm )
d

N V
= =

λπ × π ×

which yields d = 3.2 × 10
–8

 cm, or 0.32 nm. 



29. (a) According to Eq. 19-25, the mean free path for molecules in a gas is given by 

2

1
,

2 /d N V
λ =

π

where d is the diameter of a molecule and N is the number of molecules in volume V.

Substitute d = 2.0 × 10
–10

 m and N/V = 1 × 10
6
 molecules/m

3
 to obtain 

12

10 2 6 3

1
6 10 m.

2 (2.0 10 m) (1 10 m )− −
λ = = ×

π × ×

(b) At this altitude most of the gas particles are in orbit around Earth and do not suffer 

randomizing collisions. The mean free path has little physical significance. 



30. Using v = f λ with v = 331 m/s (see Table 17-1) with Eq. 19-2 and Eq. 19-25 leads to 

( ) ( )

10 2 A

2

3 3 5
7 7

9

(331m/s) 2 (3.0 10 m)
1

2 ( / )

m m 1.01 10 Pa
8.0 10 8.0 10

s mol s mol 8.31 J/mol K 273.15K

3.5 10 Hz.

nNv
f

V

d N V

n

V

−= = π ×

π

×
= × = ×

⋅ ⋅ ⋅

= ×

where we have used the ideal gas law and substituted n/V = p/RT. If we instead use v = 

343 m/s (the “default value” for speed of sound in air, used repeatedly in Ch. 17), then 

the answer is 3.7 × 10
9
 Hz. 



The substitutions N = nNA and k = R/NA were made. Since 1 cm of mercury = 1333 Pa, 

the pressure is p = (10
–7

)(1333 Pa) = 1.333 × 10
–4

 Pa. Thus, 

4
16 3 10 3

23

1.333 10 Pa
3.27 10 molecules/m 3.27 10 molecules/cm .

(1.38 10 J/K) (295K)

N p

V kT

−

−

×
= = = × = ×

×

(b) The molecular diameter is d = 2.00 × 10
–10

 m, so, according to Eq. 19-25, the mean 

free path is 

2 10 2 16 3

1 1
172 m.

2 / 2 (2.00 10 m) (3.27 10 m )d N V − −
λ = = =

π π × ×

31. (a) We use the ideal gas law pV = nRT = NkT, where p is the pressure, V is the 

volume, T is the temperature, n is the number of moles, and N is the number of molecules. 



32. (a) We set up a ratio using Eq. 19-25: 

( )( )
( )( )

2

2 2

22
NArAr

2
N ArN

1/ 2 /
.

1/ 2 /

dd N V

dd N V

πλ
= =

λ π

Therefore, we obtain 

2

2

6
NAr

6

N Ar

27.5 10  cm
1.7.

9.9 10  cm

d

d

−

−

λ ×
= = =

λ ×

(b) Using Eq. 19-2 and the ideal gas law, we substitute N/V = NAn/V = NAp/RT into Eq. 

19–25 and find 

2

A

.
2

RT

d pN
λ =

π

Comparing (for the same species of molecule) at two different pressures and 

temperatures, this leads to  

2 2 1

1 1 2

.
T p

T p

λ
=

λ

With λ1 = 9.9 × 10
–6

 cm, T1 = 293 K (the same as T2 in this part), p1 = 750 torr and p2 = 

150 torr, we find λ2 = 5.0 × 10
–5

 cm. 

(c) The ratio set up in part (b), using the same values for quantities with subscript 1, leads 

to λ2 = 7.9 × 10
–6

 cm for T2 = 233 K and p2 = 750 torr. 



(b) The rms speed is 

2 2 2 2

rms

1

1 1
[4(200 m/s) 2(500 m/s) 4(600 m/s) ] 458 m/s

10

N

i

i

v v
N =

= = + + =

(c) Yes, vrms > vavg.

33. (a) The average speed is 

avg

1

1 1
[4(200 m/s) 2(500 m/s) 4(600 m/s)] 420 m/s.

10

N

i

i

v v
N =

= = + + =



34. (a) The average speed is 

avg

[2(1.0) 4(2.0) 6(3.0) 8(4.0) 2(5.0)] cm/s
3.2cm/s.

2 4 6 8 2

i i

i

n v
v

n

+ + + +
= = =

+ + + +

(b) From 
2

rms /i i iv n v n=  we get 

2 2 2 2 2

rms

2(1.0) 4(2.0) 6(3.0) 8(4.0) 2(5.0)
cm/s 3.4cm/s.

2 4 6 8 2
v

+ + + +
= =

+ + + +

(c) There are eight particles at v = 4.0 cm/s, more than the number of particles at any 

other single speed. So 4.0 cm/s is the most probable speed. 



35. (a) The average speed is ,
v

v
N

=  where the sum is over the speeds of the particles 

and N is the number of particles. Thus 

(2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0) km/s
6.5km/s.

10
v

+ + + + + + + + +
= =

(b) The rms speed is given by 

2

rms  .
v

v
N

=  Now 

2 2 2 2 2 2

2 2 2 2 2 2 2 2 2

 [(2.0) (3.0) (4.0) (5.0) (6.0)

(7.0) (8.0) (9.0) (10.0) (11.0) ] km / s 505 km / s

v = + + + +

+ + + + + =

so
2 2

rms

505 km / s
7.1 km/s.

10
v = =



36. (a) From the graph we see that vp = 400 m/s.  Using the fact that M = 28 g/mol = 

0.028 kg/mol for nitrogen (N2 )  gas, Eq. 19-35 can then be used to determine the absolute 

temperature.  We obtain T = 
1

2
Mvp

2
/R = 2.7×10

2
 K. 

(b) Comparing with Eq. 19-34, we conclude vrms = 3/2 vp = 4.9×10
2
 m/s. 



( ) ( ) ( ) ( )
( )

2 6 3

3
2 0.16 9.8m s 1.74 10 m 32.0 10 kg mol

7.0 10 K.
3 8.31J mol K

T

−× ×
= = ×

⋅

(e) The temperature high in Earth's atmosphere is great enough for a significant number 

of hydrogen atoms in the tail of the Maxwellian distribution to escape. As a result the 

atmosphere is depleted of hydrogen.  

(f) On the other hand, very few oxygen atoms escape. So there should be much oxygen 

high in Earth’s upper atmosphere. 

37. The rms speed of molecules in a gas is given by 3rmsv RT M= , where T is the 

temperature and M is the molar mass of the gas. See Eq. 19-34. The speed required for 

escape from Earth's gravitational pull is 2 ev gr= , where g is the acceleration due to 

gravity at Earth's surface and re (= 6.37 × 10
6
 m) is the radius of Earth. To derive this 

expression, take the zero of gravitational potential energy to be at infinity. Then, the 

gravitational potential energy of a particle with mass m at Earth's surface is 

2

ee
U GMm r mgr= − = − ,

where 2

eg GM r=  was used. If v is the speed of the particle, then its total energy is 
21

2eE mgr mv= − + . If the particle is just able to travel far away, its kinetic energy must 

tend toward zero as its distance from Earth becomes large without bound. This means E = 

0 and 2 ev gr= . We equate the expressions for the speeds to obtain 3 2 eRT M gr= .

The solution for T is T = 2greM /3R.

(a) The molar mass of hydrogen is 2.02 × 10
–3

 kg/mol, so for that gas 

( ) ( ) ( )
( )

2 6 3

4
2 9.8m s 6.37 10 m 2.02 10 kg mol

1.0 10 K.
3 8.31J mol K

T

−× ×
= = ×

⋅

(b) The molar mass of oxygen is 32.0 × 10
–3

 kg/mol, so for that gas 

( ) ( ) ( )
( )

2 6 3

5
2 9.8m s 6.37 10 m 32.0 10 kg mol

1.6 10 K.
3 8.31J mol K

T

−× ×
= = ×

⋅

(c) Now, T = 2gmrmM / 3R, where rm = 1.74 × 10
6
 m is the radius of the Moon and gm = 

0.16g is the acceleration due to gravity at the Moon's surface. For hydrogen, the 

temperature is  

( ) ( ) ( ) ( )
( )

2 6 3

2
2 0.16 9.8m s 1.74 10 m 2.02 10 kg mol

4.4 10 K.
3 8.31J mol K

T

−× ×
= = ×

⋅

(d) For oxygen, the temperature is  



38. We divide Eq. 19-31 by Eq. 19-22: 

avg2 2 1

rms1 21

8 8

33

v RT M M

v MRT M

π
= =

π

which, for avg2 rms12 ,v v=  leads to 

2

avg21 1

2 2 rms1

3 3
4.7 .

8 2

vm M

m M v

π π
= = = =



39. (a) The root-mean-square speed is given by rms 3v RT M= . See Eq. 19-34. The 

molar mass of hydrogen is 2.02 × 10
–3

 kg/mol, so 

( ) ( ) 3

rms 3

3 8.31J mol K 4000K
7.0 10 m s.

2.02 10 kg mol
v

−

⋅
= = ×

×

(b) When the surfaces of the spheres that represent an H2 molecule and an Ar atom are 

touching, the distance between their centers is the sum of their radii:  

d =  r1 + r2 = 0.5 × 10
–8

 cm + 1.5 × 10
–8

cm = 2.0 × 10
–8

 cm. 

(c) The argon atoms are essentially at rest so in time t the hydrogen atom collides with all 

the argon atoms in a cylinder of radius d and length vt, where v is its speed. That is, the 

number of collisions is πd
2
vtN/V, where, N/V is the concentration of argon atoms. The 

number of collisions per unit time is 

( ) ( ) ( )
2

2
10 3 25 3 102.0 10 m 7.0 10 m s 4.0 10 m 3.5 10 collisions s.

d vN

V

− −π
= π × × × = ×



2 2

rms 11

2 2

33

P
RT Mv T

v TRT M
= =

which, for rms ,Pv v=   leads to 
2

2

1 rms

3 3

2 2

PT v

T v
= = .

40. We divide Eq. 19-35 by Eq. 19-22: 



( )0

0

2
2 3 3 3 2

0 0 0 0

7 14
8 .

3 3 9

v

v

a a
a v dv v v v v= − = =

Thus,

2 2 rms
rms 0 0 0

0

1 14
1.31   1.31 .

6 9

v
v v v v

v
= + = =

41. (a) The distribution function gives the fraction of particles with speeds between v and 

v + dv, so its integral over all speeds is unity: P(v) dv = 1. Evaluate the integral by 

calculating the area under the curve in Fig. 19-24. The area of the triangular portion is 

half the product of the base and altitude, or 1
02

av . The area of the rectangular portion is 

the product of the sides, or av0. Thus,

0 0 0

1 3
( )

2 2
P v dv av av av= + = ,

so 3
02

1av =  and av0 = 2/3=0.67. 

(b) The average speed is given by ( )avg .v vP v dv=  For the triangular portion of the 

distribution P(v) = av/v0, and the contribution of this portion is 

0
2

2 3 0
0 0

0
0 0

2
,

3 3 9

v ava a
v dv v v

v v
= = =

where 2/3v0 was substituted for a. P(v) = a in the rectangular portion, and the 

contribution of this portion is 

( )0

0

2
2 2 2

0 0 0 0

3
4 .

2 2

v

v

a a
a v dv v v v v= − = =

Therefore,

avg

avg 0 0 0

0

2
1.22    1.22

9

v
v v v v

v
= + = = .

(c) The mean-square speed is given by ( )2 2

rms .v v P v dv=  The contribution of the 

triangular section is 

0 3 4 2

0 0
0

0 0

1
.

4 6

va a
v dv v v

v v
= =

The contribution of the rectangular portion is 



(d) The number of particles with speeds between 1.5v0 and 2v0 is given by 
0

0

2

1.5
( )

v

v
N P v dv .

The integral is easy to evaluate since P(v) = a throughout the range of integration. Thus 

the number of particles with speeds in the given range is  

Na(2.0v0 – 1.5v0) = 0.5N av0 = N/3,

where 2/3v0 was substituted for a. In other words, the fraction of particles in this range is 

1/3 or 0.33. 



42. The internal energy is 

( )( )( ) 3

int

3 3
1.0mol 8.31 J/mol K 273K 3.4 10 J.

2 2
E nRT= = ⋅ = ×



43.  (a) The work is zero in this process since volume is kept fixed. 

(b) Since CV = 
3

2
R for an ideal monatomic gas, then Eq. 19-39 gives Q = +374 J. 

(c) ∆Eint = Q – W = +374 J. 

(d) Two moles are equivalent to N = 12 x 10
23

 particles.  Dividing the result of part (c) by 

N gives the average translational kinetic energy change per atom: 3.11 × 10
−22

J.



44. (a) Since the process is a constant-pressure expansion,

( )( )( )2.02 mol 8.31 J/mol K 15K 249 J.W p V nR T= ∆ = ∆ = ⋅ =

(b) Now, Cp = 
5

2
R in this case, so Q = nCp∆T =  +623 J by Eq. 19-46.

(c) The change in the internal energy is ∆Eint = Q – W = +374 J.

(d) The change in the average kinetic energy per atom is  

∆Kavg = ∆Eint/N = +3.11 × 10
−22

J.



45. When the temperature changes by ∆T the internal energy of the first gas changes by 

n1C1 ∆T, the internal energy of the second gas changes by n2C2 ∆T, and the internal 

energy of the third gas changes by n3C3 ∆T. The change in the internal energy of the 

composite gas is  

∆Eint = (n1 C1 + n2 C2 + n3 C3) ∆T.

This must be (n1 + n2 + n3) CV ∆T, where CV is the molar specific heat of the mixture. 

Thus,

1 1 2 2 3 3

1 2 3

.V

n C n C n C
C

n n n

+ +
=

+ +

With n1=2.40 mol, CV1=12.0 J/mol·K for gas 1, n2=1.50 mol, CV2=12.8 J/mol·K for gas 2, 

and n3=3.20 mol, CV3=20.0 J/mol·K for gas 3, we obtain CV =15.8 J/mol·K for the mixture. 



3 3 3

diag int diag ( 5.0 10 7.0 10 ) J 2.0 10 J.Q E W= ∆ + = − × + × = ×

(c) The fact that ∆Eint only depends on the initial and final states, and not on the details of 

the “path” between them, means we can write 3

int int int 5.0 10 Jc aE E E∆ = − = − ×  for the 

indirect path, too. In this case, the work done consists of that done during the constant 

pressure part (the horizontal line in the graph) plus that done during the constant volume 

part (the vertical line): 

( )( )3 3 4

indirect 5.0 10 Pa 2.0 m 0 1.0 10 J.W = × + = ×

Now, the first law of thermodynamics leads to 

3 4 3

indirect int indirect ( 5.0 10 1.0 10 ) J 5.0 10 J.Q E W= ∆ + = − × + × = ×

46. Two formulas (other than the first law of thermodynamics) will be of use to us. It is 

straightforward to show, from Eq. 19-11, that for any process that is depicted as a 

straight line on the pV diagram — the work is 

straight
2

i fp p
W V

+
= ∆

which includes, as special cases, W = p∆V for constant-pressure processes and W = 0 for 

constant-volume processes. Further, Eq. 19-44 with Eq. 19-51 gives 

int
2 2

f f
E n RT pV= =

where we have used the ideal gas law in the last step. We emphasize that, in order to 

obtain work and energy in Joules, pressure should be in Pascals (N / m
2
) and volume 

should be in cubic meters. The degrees of freedom for a diatomic gas is f = 5. 

(a) The internal energy change is 

( ) ( )( ) ( )( )( )3 3 3 3

int int 

3

5 5
2.0 10 Pa 4.0 m 5.0 10 Pa 2.0 m

2 2

5.0 10 J.

c a c c a aE E p V p V− = − = × − ×

= − ×

(b) The work done during the process represented by the diagonal path is 

( ) ( )( )3 3

diag =  3.5 10 Pa 2.0m
2

a c
c a

p p
W V V

+
= − ×

which yields Wdiag = 7.0×10
3
 J. Consequently, the first law of thermodynamics gives 



47. Argon is a monatomic gas, so f = 3 in Eq. 19-51, which provides 

( )
3 3 1 cal cal

8.31 J/mol K 2.98
2 2 4.186 J mol C

VC R= = ⋅ =
⋅ °

where we have converted Joules to calories, and taken advantage of the fact that a Celsius 

degree is equivalent to a unit change on the Kelvin scale. Since (for a given substance) M

is effectively a conversion factor between grams and moles, we see that cV (see units 

specified in the problem statement) is related to CV by  V VC c M= where AM mN= , and 

m is the mass of a single atom (see Eq. 19-4). 

(a) From the above discussion, we obtain 

23

23

/ 2.98 / 0.075
6.6 10 g.

6.02 10

V VC cM
m

N N

−

Α Α

= = = = ×
×

(b) The molar mass is found to be M = CV/cV = 2.98/0.075 = 39.7 g/mol which should be 

rounded to 40 g/mol since the given value of cV is specified to only two significant 

figures.



( )
( )( )

( )( )5 6 3

8.31 J/mol K 20.9J
34.4 J mol K.

/ 1.01 10 Pa 50 10 m
p

Q Q R Q
C

n T n p V nR p V −

⋅
= = = = = ⋅

∆ ∆ ∆ × ×

(c) Using Eq. 19-49, CV = Cp – R = 26.1 J/mol·K. 

48. (a) According to the first law of thermodynamics Q = ∆Eint + W. When the pressure is 

a constant W = p ∆V. So 

( )( )
6 3

5 3 3

int 3

1 10 m
20.9 J 1.01 10 Pa 100 cm 50 cm 15.9 J.

1 cm
E Q p V

−×
∆ = − ∆ = − × − =

(b) The molar specific heat at constant pressure is 



49. (a) From Table 19-3, 5
2VC R=  and 7

2pC R= . Thus, Eq. 19-46 yields 

( ) ( ) ( ) 37
3.00 8.31 40.0 3.49 10 J.

2
pQ nC T= ∆ = = ×

(b) Eq. 19-45 leads to 

( ) ( ) ( ) 3

int

5
3.00 8.31 40.0 2.49 10 J.

2
VE nC T∆ = ∆ = = ×

(c) From either W = Q – ∆Eint or W = p∆T = nR∆T, we find W = 997 J. 

(d) Eq. 19-24 is written in more convenient form (for this problem) in Eq. 19-38. Thus, 

the increase in kinetic energy is 

( ) 3

trans avg

3
1.49 10 J.

2
K NK n R T∆ = ∆ = ∆ ≈ ×

Since int trans rotE K K∆ = ∆ + ∆ , the increase in rotational kinetic energy is 

3 3 3

rot int trans 2.49 10  J 1.49 10  J 1.00 10  JK E K∆ = ∆ − ∆ = × − × = × .

Note that had there been no rotation, all the energy would have gone into the translational 

kinetic energy. 



50. Referring to Table 19-3, Eq. 19-45 and Eq. 19-46, we have 

int

5

2

7
 .

2

V

p

E nC T nR T

Q nC T nR T

∆ = ∆ = ∆

= ∆ = ∆

Dividing the equations, we obtain 

int 5
.

7

E

Q

∆
=

Thus, the given value Q = 70 J leads to int 50 J.E∆ =



51. The fact that they rotate but do not oscillate means that the value of f given in Table 

19-3 is relevant. Thus, Eq. 19-46 leads to 

( )
7 7

1
2 2

f

p f i i

i

T
Q nC T n R T T nRT

T
= ∆ = − = −

where Ti = 273 K and n = 1.0 mol. The ratio of absolute temperatures is found from the 

gas law in ratio form (see Sample Problem 19-1). With pf = pi we have 

2.
f f

i i

T V

T V
= =

Therefore, the energy added as heat is 

( )( )( ) ( ) 37
1.0mol 8.31 J/mol K 273K 2 1 8.0 10 J.

2
Q = ⋅ − ≈ ×



52. (a) Using M = 32.0 g/mol from Table 19-1 and Eq. 19-3, we obtain 

sam 12.0 g
0.375 mol.

32.0 g/mol

M
n

M
= = =

(b) This is a constant pressure process with a diatomic gas, so we use Eq. 19-46 and 

Table 19-3. We note that a change of Kelvin temperature is numerically the same as a 

change of Celsius degrees. 

( ) ( )( ) 37 7
0.375 mol 8.31 J/mol K 100K 1.09 10 J.

2 2
pQ nC T n R T= ∆ = ∆ = ⋅ = ×

(c) We could compute a value of ∆Eint from Eq. 19-45 and divide by the result from part 

(b), or perform this manipulation algebraically to show the generality of this answer (that 

is, many factors will be seen to cancel). We illustrate the latter approach: 

( )
( )

5
2int

7
2

5
0.714.

 7

n R TE

Q n R T

∆∆
= = ≈

∆



( ) ( ) ( ) 37 7
4.00mol 8.31J/mol K 60.0 K 6.98 10 J.

2 2
Q nR T= ∆ = ⋅ = ×

(b) The change in the internal energy is given by ∆Eint = nCV ∆T, where CV is the specific 

heat at constant volume. For a diatomic ideal gas 5
2VC R= , so 

( ) ( ) ( ) 3

int

5 5
4.00mol 8.31J/mol.K 60.0 K 4.99 10 J.

2 2
E nR T∆ = ∆ = = ×

(c) According to the first law of thermodynamics, ∆Eint = Q – W, so 

3 3 3

int 6.98 10 J 4.99 10 J = 1.99 10 J.W Q E= − ∆ = × − × ×

(d) The change in the total translational kinetic energy is 

( ) ( ) ( ) 33 3
4.00mol 8.31J/mol K 60.0 K 2.99 10 J.

2 2
K nR T∆ = ∆ = ⋅ = ×

53. (a) Since the process is at constant pressure, energy transferred as heat to the gas is 

given by Q = nCp ∆T, where n is the number of moles in the gas, Cp is the molar specific 

heat at constant pressure, and ∆T is the increase in temperature. For a diatomic ideal gas 
7
2

.pC R=  Thus, 



54. (a) We use Eq. 19-54 with 1
2

/f iV V =  for the gas (assumed to obey the ideal gas law). 

1.3(2.00)
f i

i i f f

i f

p V
pV p V

p V

γ

γ γ= = =

which yields pf = (2.46)(1.0 atm) = 2.46 atm.  

(b) Similarly, Eq. 19-56 leads to 

( ) ( )
1

273K 1.23 336 K.i
f i

f

V
T T

V

−

= = =
γ

(c) We use the gas law in ratio form (see Sample Problem 19-1) and note that when p1 = 

p2 then the ratio of volumes is equal to the ratio of (absolute) temperatures. Consequently, 

with the subscript 1 referring to the situation (of small volume, high pressure, and high 

temperature) the system is in at the end of part (a), we obtain 

2 2

1 1

273K
0.813.

336K

V T

V T
= = =

The volume V1 is half the original volume of one liter, so 

( )2 0.813 0.500L 0.406L.V = =



55. (a) Let pi, Vi, and Ti represent the pressure, volume, and temperature of the initial 

state of the gas. Let pf, Vf, and Tf represent the pressure, volume, and temperature of the 

final state. Since the process is adiabatic i i f fpV p V
γ γ

= , so 

( )
1.4

4.3 L
1.2atm 13.6atm 14 atm.

0.76 L

i
f i

f

V
p p

V

γ

= = = ≈

We note that since Vi and Vf have the same units, their units cancel and pf has the same 

units as pi.

(b) The gas obeys the ideal gas law pV = nRT, so piVi/pfVf = Ti/Tf and 

( )( )
( )( )

( ) 213.6atm 0.76L
310K 6.2 10 K.

1.2atm 4.3L

f f

f i

i i

p V
T T

pV
= = = ×



56. The fact that they rotate but do not oscillate means that the value of f given in Table 

19-3 is relevant. In §19-11, it is noted that γ = Cp/CV so that we find γ = 7/5 in this case. 

In the state described in the problem, the volume is 

( )( )( ) 3

5 2

2.0mol 8.31 J/mol K 300K
0.049 m

1.01 10 N/m

nRT
V

p

⋅
= = =

×
.

Consequently,

( ) ( )
1.4

5 2 3 3 2.21.01 10 N/m 0.049 m 1.5 10 N m .pV = × = × ⋅γ



57. Since ∆Eint does not depend on the type of process, 

( ) ( )int intpath 2 path 1
.E E∆ = ∆

Also, since (for an ideal gas) it only depends on the temperature variable (so ∆Eint = 0 for 

isotherms), then 

( ) ( )int intpath1 adiabat
.E E∆ = ∆

Finally, since Q = 0 for adiabatic processes, then (for path 1) 

( )

( ) ( )

int adiabatic expansion

int adiabatic compression

40 J

25 J 25 J.

E W

E W

∆ = − = −

∆ = − = − − =

Therefore, ( )int path 2
40 J + 25 J = 15 J .E∆ = − −



58. Let 1 1,p V  and 1T  represent the pressure, volume, and temperature of the air at 

1 4267 m.y =  Similarly, let ,p V  and T be the pressure, volume, and temperature of the 

air at 1567 m.y =  Since the process is adiabatic 1 1p V pVγ γ= . Combining with ideal-gas 

law, pV NkT= , we obtain 

1 1 1

1 1( / ) constantpV p T p p T p T p Tγ γ γ γ γ γ γ γ− − −= = = =

With 0

ayp p e−=  and 4 / 3γ =  (which gives (1 ) / 1/ 4γ γ− = − ), the temperature at the end 

of the decent is

1
4

1

11

( ) / 4 (1.16 10 /m)(1567 m 4267 m) / 401
1 1 1

0

(268 K)

(1.08)(268 K) 290 K 17 C

ay
a y y

ay

p ep
T T T e T e

p p e

γγ
γγ −

−−
−

− − − × −

−
= = = =

= = = °



59. The aim of this problem is to emphasize what it means for the internal energy to be a 

state function.  Since path 1 and path 2 start and stop at the same places, then the internal 

energy change along path 1 is equal to that along path 2.  Now, during isothermal 

processes (involving an ideal gas) the internal energy change is zero, so the only step in 

path 1 that we need to examine is step 2.  Eq. 19-28 then immediately yields  –20 J as the 

answer for the internal energy change. 



60. Let pi, Vi, and Ti represent the pressure, volume, and temperature of the initial state of 

the gas, and let pf, Vf, and Tf be the pressure, volume, and temperature of the final state. 

Since the process is adiabatic i i f fpV p V
γ γ

= . Combining with ideal-gas law, pV NkT= ,

we obtain 
1 1 1( / ) constanti i i i i i i i i f fpV p T p p T p T p Tγ γ γ γ γ γ γ γ− − −= = = =

With 4 / 3γ =  which gives (1 ) / 1/ 4γ γ− = − , the temperature at the end of the adiabatic 

expansion is

1
1/ 4

5.00 atm
(278 K) 186 K 87 C

1.00 atm

i
f i

f

p
T T

p

γ

γ

−
−

= = = = − ° .



which can be solved to yield 

( )
( )

( )
( )

ln ln 4.00atm 1.00atm 7
1.4 .

ln 200L 74.3L 5ln

f i

i f

p p

V V
γ = = = =

This implies that the gas is diatomic (see Table 19-3). 

(b) One can now use either Eq. 19-56 (as illustrated in part (a) of Sample Problem 19-9) 

or use the ideal gas law itself.  Here we illustrate the latter approach: 

Pf Vf

 Pi Vi
  =

nRTf

 nRTi
Tf  =  446 K . 

(c) Again using the ideal gas law: n = Pi Vi /RTi = 8.10 moles.  The same result would, of 

course, follow from n = Pf Vf /RTf . 

61. (a) Eq. 19-54, i i f fpV p V
γ γ

= , leads to

( )
200L

4.00 atm 1.00atm
74.3L

i
f i

f

V
p p

V

γ γ

= =



62. Using Eq. 19-53 in Eq. 18-25 gives 

1 1

1

f

i

V f i

i i i i
V

V V
W pV V dV pV

γ γ
γ γ γ

γ

− −

−
−

= =
−

.

Using Eq. 19-54 we can write this as 

1 1/1 ( / )

1

f i

i i

p p
W pV

γ

γ

−−
=

−

In this problem, γ = 7/5 (see Table 19-3) and  Pf /Pi = 2.  Converting the initial pressure 

to Pascals we find Pi Vi = 24240 J.  Plugging in, then, we obtain W = −1.33 × 10
4
J.



3

int 3.74 10 J.E Q∆ = = ×

(c) The work W done by the gas is zero. 

The process 2 → 3 is adiabatic.

(d) The heat added is zero.

(e) The change in the internal energy is 

( )( )( ) 3

int

3 3
1.00mol 8.31J/mol K 455K 600K 1.81 10 J.

2 2
VE nC T nR T∆ = ∆ = ∆ = ⋅ − = − ×

(f) According to the first law of thermodynamics the work done by the gas is 

3

int 1.81 10 J.W Q E= − ∆ = + ×

The process 3 → 1 takes place at constant pressure.

(g) The heat added is 

35 5
(1.00 mol) (8.31J/mol K) (300K 455K) 3.22 10 J. 

2 2
pQ nC T nR T= ∆ = ∆ = ⋅ − = − ×

(h) The change in the internal energy is 

3

int

3 3
(1.00mol) (8.31J/mol K) (300K 455K) 1.93 10 J.

2 2
VE nC T nR T∆ = ∆ = ∆ = ⋅ − = − ×

63. In the following 3
2VC R=  is the molar specific heat at constant volume, 5

2pC R=  is 

the molar specific heat at constant pressure, ∆T is the temperature change, and n is the 

number of moles. 

The process 1 → 2 takes place at constant volume.  

(a) The heat added is 

( )( )( ) 33 3
1.00mol 8.31J/mol K 600K 300K 3.74 10 J.

2 2
VQ nC T nR T= ∆ = ∆ = ⋅ − = ×

(b) Since the process takes place at constant volume the work W done by the gas is zero, 

and the first law of thermodynamics tells us that the change in the internal energy is 



3 30 1.81 10 J 1.29 10 J 520 J.W = + × − × =

(m) We first find the initial volume. Use the ideal gas law p1V1 = nRT1 to obtain 

2 31
1 5

1

(1.00mol) (8.31J / mol K)(300 K)
2.46 10 m .

(1.013 10 Pa)

nRT
V

p

−⋅
= = = ×

×

(n) Since 1 → 2 is a constant volume process V2 = V1 = 2.46 × 10
–2

 m
3
. The pressure for 

state 2 is 

52
2 2 3

2

(1.00 mol) (8.31 J / mol K)(600K)
2.02 10 Pa .

2.46 10 m

nRT
p

V −

⋅
= = = ×

×

This is approximately equal to 2.00 atm.  

(o) 3 → 1 is a constant pressure process. The volume for state 3 is 

2 33
3 5

3

(1.00mol) (8.31J / mol K)(455K)
3.73 10 m .

1.013 10 Pa

nRT
V

p

−⋅
= = = ×

×

(p) The pressure for state 3 is the same as the pressure for state 1: p3 = p1 = 1.013 × 10
5

Pa (1.00 atm) 

(i) According to the first law of thermodynamics the work done by the gas is 

3 3 3

int 3.22 10 J 1.93 10 J 1.29 10 J.W Q E= − ∆ = − × + × = − ×

(j) For the entire process the heat added is 

3 33.74 10 J 0 3.22 10 J 520 J.Q = × + − × =

(k) The change in the internal energy is 

3 3 3

int 3.74 10 J 1.81 10 J 1.93 10 J 0.E∆ = × − × − × =

(l) The work done by the gas is 



64. Using the ideal gas law, one mole occupies a volume equal to 

( )( )( ) 10 3

8

1 8.31 50.0
4.16 10 m .

1.00 10

nRT
V

p −
= = = ×

×

Therefore, the number of molecules per unit volume is 

( ) ( )23

13A

10 3

1 6.02 10 molecules
1.45 10 .

4.16 10 m

nNN

V V

×
= = = ×

×

Using d = 20.0 × 10
–9

 m, Eq. 19-25 yields 

( )2

1
38.8 m.

2 N
V

d
λ = =

π



convert Joules to calories in the ideal gas constant value (Eq. 19-6): R ≈ 2.0 cal/mol·K. 

The first law of thermodynamics Q = ∆Eint + W applies to each process. 

• Constant volume process with ∆T = 50 K and n = 3.0 mol. 

 
(a) Since the change in the internal energy is ∆Eint = (3.0)(6.00)(50) = 900 cal, and the 

work done by the gas is W = 0 for constant volume processes, the first law gives Q = 900 

+ 0 = 900 cal. 

(b) As shown in part (a), W = 0. 

(c) The change in the internal energy is, from part (a), ∆Eint = (3.0)(6.00)(50) = 900 cal. 

(d) The change in the total translational kinetic energy is 

( )3
2

(3.0) (2.0) (50) 450cal.K∆ = =

• Constant pressure process with ∆T = 50 K and n = 3.0 mol. 

(e) W = p∆V for constant pressure processes, so (using the ideal gas law)

W = nR∆T = (3.0)(2.0)(50) = 300 cal. 

The first law gives Q = (900 + 300) cal = 1200 cal. 

(f) From (e), we have W=300 cal. 

 
(g) The change in the internal energy is ∆Eint = (3.0)(6.00)(50) = 900 cal. 

 

(h) The change in the translational kinetic energy is ( )3
2

(3.0) (2.0) (50) 450cal.K∆ = =

• Adiabiatic process with ∆T = 50 K and n = 3.0 mol. 

(i) Q = 0 by definition of “adiabatic.” 

(j) The first law leads to W = Q – Eint = 0 – 900 cal = –900 cal. 

(k) The change in the internal energy is ∆Eint = (3.0)(6.00)(50) = 900 cal. 

 

(l) As in part (d) and (h), ( )3
2

(3.0) (2.0) (50) 450cal.K∆ = =

65. We note that ( )3
2

K n R T∆ = ∆  according to the discussion in §19-5 and §19-9. Also, 

∆Eint = nCV∆T can be used for each of these processes (since we are told this is an ideal 

gas). Finally, we note that Eq. 19-49 leads to Cp = CV + R ≈ 8.0 cal/mol·K after we 



2 2

rms rms

2 2

/ 2 3

mgh gh Mgh

mv v RT
= =

where we have used Eq. 19-22 in that last step.  With T = 273 K, h = 0.10 m and M = 32 

g/mol = 0.032 kg/mol, we find the ratio equals 9.2 × 10
−6

.

66. The ratio is



67. In this solution we will use non-standard notation: writing ρ for weight-density

(instead of mass-density), where ρc refers to the cool air and ρh refers to the hot air.  Then 

the condition required by the problem is 

                                     Fnet = Fbuoyant –  hot-air-weight  –  balloon-weight

                              2.67 × 10
3
 N  = ρcV – ρhV  – 2.45 × 10

3
 N 

where V = 2.18 × 10
3
 m

3
 and   ρc = 11.9 N/m

3
.  This condition leads to ρh = 9.55 N/m

3
.

Using the ideal gas law to write ρh as PMg/RT where P = 101000 Pascals and M = 0.028 

kg/m
3
 (as suggested in the problem), we conclude that the temperature of the enclosed air 

should be 349 K. 



68. (a) In the free expansion from state 0 to state 1 we have Q = W = 0, so ∆Eint = 0, 

which means that the temperature of the ideal gas has to remain unchanged. Thus the 

final pressure is 

0 0 0 0 1
1 0

1 0 0

1 1
 0.333.

3.00 3.00 3.00

p V p V p
p p

V V p
= = = = =

(b) For the adiabatic process from state 1 to 2 we have p1V1
γ
 =p2V2

γ
, i.e., 

( ) ( )
1

3
0 0 0 0

1
3.00 3.00

3.00
p V p V

γ γ=

which gives γ = 4/3. The gas is therefore polyatomic. 

(c) From T = pV/nR we get 

( )
1/ 32 2 2

1 1 1

3.00 1.44.
K T p

K T p
= = = =



69. (a) By Eq. 19-28, W = –374 J (since the process is an adiabatic compression).   

(b) Q = 0 since the process is adiabatic.

(c) By first law of thermodynamics, the change in internal energy is ∆Eint= Q – W = +374 

J.

(d) The change in the average kinetic energy per atom is  

∆Kavg = ∆Eint/N = +3.11 × 10
−22

J.



70. (a) With work being given by  

W = p∆V = (250)(−0.60) J = −150 J, 

and the heat transfer given as –210 J, then the change in internal energy is found from the 

first law of thermodynamics to be  [–210 – (–150)] J = –60 J. 

(b) Since the pressures (and also the number of moles) don’t change in this process, then 

the volume is simply proportional to the (absolute) temperature.  Thus, the final 

temperature is ¼ of the initial temperature.  The answer is 90 K.  



71. This is very similar to Sample Problem 19-4 (and we use similar notation here) 

except for the use of Eq. 19-31 for vavg  (whereas in that Sample Problem, its value was 

just assumed).  Thus, 

f =
speed

distance
 = 

avgv

λ
  =

p d
2

k

16πR

MT
  . 

Therefore, with p = 2.02 × 10
3
 Pa, d = 290 × 10

−12
m and M = 0.032 kg/mol (see Table 

19-1), we obtain f = 7.03 × 10
9
s

−1
.



72. Eq. 19-25 gives the mean free path: 

λ = 
1

2 d
2

π εo (N/V)
  =

n R T

2 d
2

π εo P N

where we have used the ideal gas law in that last step.  Thus, the change in the mean free 

path is

∆λ =
n R ∆T

2 d
2

π εo P N
  =

R Q

2 d
2

π εo P N Cp

where we have used Eq. 19-46.  The constant pressure molar heat capacity is (7/2)R in 

this situation, so (with N = 9 × 10
23

 and d = 250 ×10
−12

m) we find 

∆λ = 1.52 × 10
− 9

m  = 1.52 nm . 



(c) The gas is monatomic so γ = 5/3.  Eq. 19-54 then yields Pf  = 0.961 atm. 

(d) Using Eq. 19-53 in Eq. 18-25 gives 

1 1

1 1

f

i

V f i f f i i

i i i i
V

V V p V pV
W pV V dV pV

γ γ
γ γ γ

γ γ

− −

−
− −

= = =
− −

where in the last step Eq. 19-54 has been used. Converting “atm” to “Pa”, we obtain 
236 J.W =

73. (a) The volume has increased by a factor of 3, so the pressure must decrease 

accordingly (since the temperature does not change in this process).  Thus, the final 

pressure is one-third of the original 6.00 atm.  The answer is 2.00 atm. 

(b) We note that Eq. 19-14 can be written as PiVi ln(Vf /Vi).  Converting “atm” to “Pa” (a 

Pascal is equivalent to a N/m
2
) we obtain W = 333 J. 



74. (a) With P1 = (20.0)(1.01 × 10
5
 Pa) and V1 = 0.0015 m

3
, the ideal gas law gives 

P1V1 = nRT1 T1 = 121.54 K ≈  122 K. 

(b) From the information in the problem, we deduce that T2 = 3T1 = 365 K. 

(c) We also deduce that T3 = T1 which means ∆T = 0 for this process.  Since this involves 

an ideal gas, this implies the change in internal energy is zero here. 



(e) After the compression, 

( )( )4 53 3
8.31 J/mol K 2.7 10 K 3.4 10 J.

2 2
f fK RT= = ⋅ × = ×

(f) Since 2

rmsv T∝ , we have 

2

rms,

2 4

rms,

273K
0.010.

2.7 10 K

i i

f f

v T

v T
= = =

×

75. (a) We use i i f fpV p V
γ γ

=  to compute γ:

( )
( )

( )
( )

5

3 6

ln 1.0atm 1.0 10 atmln 5
.

3ln ln 1.0 10 L 1.0 10 L

i f

f i

p p

V V
γ

×
= = =

× ×

Therefore the gas is monatomic. 

(b) Using the gas law in ratio form (see Sample Problem 19-1), the final temperature is 

( )
( ) ( )

( ) ( )

5 3

4

6

1.0 10 atm 1.0 10 L
273K 2.7 10 K.

1.0atm 1.0 10 L

f f

f i

i i

p V
T T

pV

× ×
= = = ×

×

(c) The number of moles of gas present is 

( )( )
( )( )

5 3 3

4
1.01 10 Pa 1.0 10 cm

4.5 10 mol.
8.31 J/mol K 273K

i i

i

pV
n

RT

× ×
= = = ×

⋅

(d) The total translational energy per mole before the compression is 

( )( ) 33 3
8.31 J/mol K 273K 3.4 10 J.

2 2
i iK RT= = ⋅ = ×



76. We label the various states of the ideal gas as follows: it starts expanding 

adiabatically from state 1 until it reaches state 2, with V2 = 4 m
3
; then continues on to 

state 3 isothermally, with V3 = 10 m
3
; and eventually getting compressed adiabatically to 

reach state 4, the final state. For the adiabatic process 1 1 2 21 2 p V p Vγ γ→ = , for the 

isothermal process 2 → 3 p2V2 = p3V3, and finally for the adiabatic process 

3 3 4 43 4 p V p Vγ γ→ = . These equations yield 

3 3 32 1 2
4 3 2 1

4 3 4 2 3 4

.
V V VV V V

p p p p
V V V V V V

γ γ γ γ

= = =

We substitute this expression for p4 into the equation p1V1 = p4V4 (since T1 = T4) to obtain 

V1V3 = V2V4. Solving for V4 we obtain 

( )( )3 3

31 3
4 3

2

2.0m 10m
5.0m .

4.0m

VV
V

V
= = =



(d) The final pressure is

( )
5 3

1.0 L
32atm 3.2atm.

4.0 L

i
f i

f

V
p p

V

γ

= = =

(e) The final temperature is 

( )( )( )
( )( )

3.2atm 4.0L 300K
120K 

32atm 1.0L

f f i

f

i i

p V T
T

pV
= = = .

(f) The work done is 

( )

( )( ) ( )( ) ( )( )

int int

5 3 3

3

3 3

2 2

3
3.2atm 4.0 L 32atm 1.0 L 1.01 10 Pa atm 10 m L

2

2.9 10 J .

f f i iW Q E E nR T p V pV

−

= − ∆ = −∆ = − ∆ = − −

= − − ×

= ×

(g) If the gas is diatomic, then γ = 1.4, and the final pressure is 

( )
1.4

1.0 L
32atm 4.6atm

4.0 L

i
f i

f

V
p p

V

γ

= = = .

(h) The final temperature is  

( )( )( )
( )( )

4.6atm 4.0 L 300 K
170 K

32atm 1.0 L

f f i

f

i i

p V T
T

pV
= = = .

77. (a) The final pressure is 

( ) ( )32atm 1.0 L
8.0atm,

4.0 L

i i
f

f

pV
p

V
= = =

(b) For the isothermal process the final temperature of the gas is Tf = Ti = 300 K. 

(c) The work done is 

( )( )( )5 3 3

3

4.0L
ln ln 32atm 1.01 10 Pa atm 1.0 10 m ln

1.0L

4.4 10 J.

f f

i i i

i i

V V
W nRT pV

V V

−= = = × ×

= ×

For the adiabatic process i i f fpV p Vγ γ= . Thus, 



(i) The work done is

( )

( )( ) ( )( ) ( )( )

int

5 3 3

3

5 5

2 2

5
4.6atm 4.0L 32atm 1.0L 1.01 10 Pa atm 10 m L

2

3.4 10 J.

f f i iW Q E nR T p V pV

−

= − ∆ = − ∆ = − −

= − − ×

= ×



78. We write T = 273 K and use Eq. 19-14: 

( ) ( ) ( )
16.8

1.00mol 8.31  J/mol K 273K ln
22.4

W = ⋅

which yields W = –653 J. Recalling the sign conventions for work stated in Chapter 18, 

this means an external agent does 653 J of work on the ideal gas during this process. 



79. (a) We use pV = nRT. The volume of the tank is 

( )( )( )300g

17 g mol 2 3

6

8.31 J/mol K 350K
3.8 10 m 38L.

1.35 10 Pa

nRT
V

p

−
⋅

= = = × =
×

(b) The number of moles of the remaining gas is 

( )( )
( )( )

5 2 38.7 10 Pa 3.8 10 m
13.5mol.

8.31 J/mol K 293K

p V
n

RT

−× ×′
′ = = =

′ ⋅

The mass of the gas that leaked out is then ∆m = 300 g – (13.5 mol)(17 g/mol) = 71 g. 



80. We solve 

helium hydrogen

3 3 (293K)RT R

M M
=

for T. With the molar masses found in Table 19-1, we obtain 

4.0
(293K) 580 K

2.02
T = =

which is equivalent to 307°C. 



81. It is recommended to look over §19-7 before doing this problem. 

(a) We normalize the distribution function as follows: 

( )o

30
o

3
1 .

v

P v dv C
v

= =

(b) The average speed is 

( )o o
2

o30 0
o

3 3
.

4

v v v
vP v dv v dv v

v
= =

(c) The rms speed is the square root of 

( )o o
2

2 2 2

o30 0
o

3 3
.

5

v v v
v P v dv v dv v

v
= =

Therefore, rms 3 5 0.775 .v v v= ≈
o o



82. To model the “uniform rates” described in the problem statement, we have expressed 

the volume and the temperature functions as follows: 

V = Vi  + 
Vf   – Vi

τ f
t           and T  = Ti  + 

Tf  – Ti

τ f
t

where Vi = 0.616 m
3
, Vf  = 0.308 m

3
, τ f  = 7200 s, Ti = 300 K and Tf  = 723 K.

(a) We can take the derivative of V with respect to t and use that to evaluate the 

cumulative work done (from t = 0 until t = τ):

W = p dV  = 
nRT

V

dV

dt
dt = 12.2 τ +  238113 ln(14400 − τ) − 2.28 × 10

6

with SI units understood.  With τ = τ f  our result is W = −77169 J ≈ −77.2 kJ, or |W | ≈
77.2 kJ. 

The graph of cumulative work is shown below. The graph for work done is purely 

negative because the gas is being compressed (work is being done on the gas). 

(b) With CV =
3

2
R (since it’s a monatomic ideal gas) then the (infinitesimal) change in 

internal energy is  nCV dT  = 
3

2
nR

dT

dt
dt  which involves taking the derivative of the 

temperature expression listed above.  Integrating this and adding this to the work done 

gives the cumulative heat absorbed (from t = 0 until t = τ):

Q = 
nRT

V

dV

dt
  +

3

2
nR

dT

dt
dt  = 30.5 τ + 238113 ln(14400 − τ) − 2.28 × 10

6

with SI units understood. With τ = τ f  our result is Qtotal = 54649 J ≈ 5.46×10
4
 J. 



The graph cumulative heat is shown below.  We see that Q > 0 since the gas is absorbing 

heat.

(c) Defining C = 
Qtotal

n(Tf - Ti)
  we obtain C = 5.17 J/mol·K.  We note that this is considerably 

smaller than the constant-volume molar heat CV.

We are now asked to consider this to be a two-step process (time dependence is no longer 

an issue) where the first step is isothermal and the second step occurs at constant volume 

(the ending values of pressure, volume and temperature being the same as before).   

(d) Eq. 19-14 readily yields W = −43222 J ≈ −4.32 ×10
4
 J (or | W | ≈ 4.32 ×10

4
 J ), where 

it is important to keep in mind that no work is done in a process where the volume is held 

constant.

(e) In step 1 the heat is equal to the work (since the internal energy does not change 

during an isothermal ideal gas process), and step 2 the heat is given by Eq. 19-39.  The 

total heat is therefore 88595 ≈ 8.86 ×10
4
 J.

(f) Defining a molar heat capacity in the same manner as we did in part (c), we now 

arrive at C = 8.38 J/ mol·K. 



83. (a) The temperature is 10.0°C → T = 283 K. Then, with n = 3.50 mol and Vf/V0 = 3/4, 

we use Eq. 19-14: 

0

ln 2.37 kJ.
fV

W nRT
V

= = −

(b) The internal energy change ∆Eint vanishes (for an ideal gas) when ∆T = 0 so that the 

First Law of Thermodynamics leads to Q = W = –2.37 kJ. The negative value implies 

that the heat transfer is from the sample to its environment. 



( ) ( )

5
23 25A

A 3J
mol K

1.01 10 Pa molecules
(6.02 10 ) 2.5 10 .

8.31 293K m

N nN p
N

V V RT ⋅

×
= = × = ×

(b) Three-fourths of the 2.5 × 10
25

 value found in part (a) are nitrogen molecules with M

= 28.0 g/mol (using Table 19-1), and one-fourth of that value are oxygen molecules with 

M = 32.0 g/mol. Consequently, we generalize the Msam = NM/NA expression for these two 

species of molecules and write 

25 25 3

23 23

3 28.0 1 32.0
(2.5 10 ) (2.5 10 ) 1.2 10 g.

4 6.02 10 4 6.02 10
× + × = ×

× ×

84. (a) Since n/V = p/RT, the number of molecules per unit volume is 



85. For convenience, the “int” subscript for the internal energy will be omitted in this 

solution. Recalling Eq. 19-28, we note that 
cycle

0E = , which gives 

0.A B B C C D D E E AE E E E E→ → → → →∆ + ∆ + ∆ + ∆ + ∆ =

Since a gas is involved (assumed to be ideal), then the internal energy does not change 

when the temperature does not change, so 

0.A B D EE E→ →∆ = ∆ =

Now, with ∆EE→A = 8.0 J given in the problem statement, we have 

8.0 J 0.B C C DE E→ →∆ + ∆ + =

In an adiabatic process, ∆E = –W, which leads to 5.0  J 8.0 J 0,C DE →− + ∆ + =  and we 

obtain ∆EC→D = –3.0 J. 



3
22

2 1 3

1

1.8m
(300 K) 1.8 10 K.

3.0 m

V
T T

V
= = = ×

It should be noted that this is consistent with the gas being monatomic (that is, if one 

assumes 3
2VC R=  and uses Eq. 19-45, one arrives at this same value for the final 

temperature). 

86. (a) The work done in a constant-pressure process is W = p∆V. Therefore, 

( )2 3 325 N/m (1.8m 3.0m ) 30J.W = − = −

The sign conventions discussed in the textbook for Q indicate that we should write –75 J 

for the energy which leaves the system in the form of heat. Therefore, the first law of 

thermodynamics leads to 

int ( 75 J) ( 30 J) 45 J.E Q W∆ = − = − − − = −

(b) Since the pressure is constant (and the number of moles is presumed constant), the 

ideal gas law in ratio form (see Sample Problem 19-1) leads to 



87. (a) The p-V diagram is shown below. Note

that o obtain the above graph, we have chosen 

n = 0.37 moles for concreteness, in which case 

the horizontal axis (which we note starts not at 

zero but at 1) is to be interpreted in units of 

cubic centimeters, and the vertical axis (the 

absolute pressure) is in kilopascals.  However, 

the constant volume temp-increase process 

described in the third step (see problem 

statement) is difficult to see in this graph since 

it coincides with the pressure axis. 

(b) We note that the change in internal energy is zero for an ideal gas isothermal process, 

so (since the net change in the internal energy must be zero for the entire cycle) the 

increase in internal energy in step 3 must equal (in magnitude) its decease in step 1.  By 

Eq. 19-28, we see this number must be 125 J. 

(c) As implied by Eq. 19-29, this is equivalent to heat being added to the gas.



88. (a) The ideal gas law leads to 

( )( ) ( )
5

1.00 mol 8.31J/mol K 273K

1.01 10 Pa

nRT
V

p

⋅
= =

×

which yields V = 0.0225 m
3
 = 22.5 L. If we use the standard pressure value given in 

Appendix D, 1 atm = 1.013 × 10
5
 Pa, then our answer rounds more properly to 22.4 L. 

(b) From Eq. 19-2, we have N = 6.02 × 10
23

 molecules in the volume found in part (a) 

(which may be expressed as V = 2.24 × 10
4
 cm

3
), so that 

23
19 3

4 3

6.02 10
2.69 10 molecules/cm .

2.24 10 cm

N

V

×
= = ×

×



Chapter 20 
 



1. An isothermal process is one in which Ti = Tf which implies ln(Tf/Ti) = 0. Therefore, 

with Vf/Vi = 2.00, Eq. 20-4 leads to 

( )( ) ( )= ln = 2.50 mol 8.31 J/mol K ln 2.00 = 14.4 J/K.
f

i

V
S nR

V
∆ ⋅
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2. From Eq. 20-2, we obtain 

( ) ( ) 4= = 405 K 46.0 J/K = 1.86 10  J.∆ ×Q T S



3. We use the following relation derived in Sample Problem 20-2: 

= ln .∆
f

i

T
S mc

T

(a) The energy absorbed as heat is given by Eq. 19-14. Using Table 19-3, we find 

( ) ( ) 4J
= = 386 2.00 kg 75 K = 5.79 10  J

kg K
∆ ×

⋅
Q cm T

where we have used the fact that a change in Kelvin temperature is equivalent to a change 

in Celsius degrees. 

(b) With Tf = 373.15 K and Ti = 298.15 K, we obtain 

( )
J 373.15

= 2.00 kg 386 ln = 173 J/K.
kg K 298.15

∆
⋅

S



4. (a) This may be considered a reversible process (as well as isothermal), so we use ∆S = 

Q/T where Q = Lm with L = 333 J/g from Table 19-4. Consequently, 

∆S =
333 12.0

273
= 14.6

 J / g  g

K
 J / K.

a fa f

(b) The situation is similar to that described in part (a), except with L = 2256 J/g, m = 

5.00 g, and T = 373 K. We therefore find ∆S = 30.2 J/K. 



5. (a) Since the gas is ideal, its pressure p is given in terms of the number of moles n, the 

volume V, and the temperature T by p = nRT/V. The work done by the gas during the 

isothermal expansion is 

2 2

1 1

2

1

ln .= = =
V V

V V

dV V
W p dV n RT n RT

V V

We substitute V2 = 2.00V1 to obtain 

( )( )( ) 3= ln2.00 = 4.00 mol 8.31 J/mol K 400 K ln2.00 = 9.22 10  J.W n RT ⋅ ×

(b) Since the expansion is isothermal, the change in entropy is given by 

( )1S T dQ Q T∆ = = ,

where Q is the heat absorbed. According to the first law of thermodynamics, ∆Eint = Q −
W. Now the internal energy of an ideal gas depends only on the temperature and not on 

the pressure and volume. Since the expansion is isothermal, ∆Eint = 0 and Q = W. Thus, 

39.22 10 J
= = = 23.1 J/K.

400 K

×
∆

W
S

T

(c) ∆S = 0 for all reversible adiabatic processes. 



6. An isothermal process is one in which Ti = Tf which implies ln (Tf /Ti) = 0. Therefore, 

Eq. 20-4 leads to 

( ) ( )
22.0

= ln = = 2.75 mol.
8.31 ln 3.4/1.3

∆
f

i

V
S nR n

V



( ) ( )( ) ( ) ( )( )
( )( ) ( )( )

0.200 kg 900 J/kg K 100 C 0.0500 kg 4190 J/kg K 20 C

0.200 kg 900 J/kg K 0.0500 kg 4190 J/kg K

57.0 C 330 K.

fT
⋅ ° + ⋅ °

=
⋅ + ⋅

= ° =

(b) Now temperatures must be given in Kelvins: Tai = 393 K, Twi = 293 K, and Tf = 330 K. 

For the aluminum, dQ = macadT and the change in entropy is 

( )( )
330 K

ln 0.200 kg 900 J/kg K ln
373 K

22.1 J/K.

f

ai

T f

a a a a a
T

ai

TdQ dT
S m c m c

T T T
∆ = = = = ⋅

= −

(c) The entropy change for the water is 

330 K
ln (0.0500 kg) (4190 J kg.K) ln

293K

24.9 J K.

f

wi

T f

w w w w w
T

wi

TdQ dT
S m c m c

T T T
∆ = = = =

= +

(d) The change in the total entropy of the aluminum-water system is  

∆S = ∆Sa + ∆Sw = −22.1 J/K + 24.9 J/K = +2.8 J/K. 

7. (a) The energy that leaves the aluminum as heat has magnitude Q = maca(Tai − Tf),

where ma is the mass of the aluminum, ca is the specific heat of aluminum, Tai is the 

initial temperature of the aluminum, and Tf is the final temperature of the aluminum-

water system. The energy that enters the water as heat has magnitude Q = mwcw(Tf − Twi),

where mw is the mass of the water, cw is the specific heat of water, and Twi is the initial 

temperature of the water. The two energies are the same in magnitude since no energy is 

lost. Thus, 

( ) ( ) +
= = .

+
− − a a ai w w wi

a a ai f w w f wi f

a a w w

m c T m c T
m c T T m c T T T

m c m c

The specific heat of aluminum is 900 J/kg⋅K and the specific heat of water is 4190 J/kg⋅K.

Thus,



8. We follow the method shown in Sample Problem 20-2.  Since 

∆S = 
f

i

T

T

dT
mc

T
 = mc ln(Tf /Ti) , 

then with ∆S = 50 J/K, Tf = 380 K, Ti = 280 K and m = 0.364 kg,  we obtain c = 4.5×10
2

J/kg
.
K.



( ) ( )
300.0 K

= ln = 0.101 kg 386 J/kg K ln = 0.710 J/K.
305.5 K

f

L

iL

T
S mc

T
∆ ⋅ −

(b) Since the temperature of the reservoir is virtually the same as that of the block, which 

gives up the same amount of heat as the reservoir absorbs, the change in entropy LS ′∆ of

the reservoir connected to the left block is the opposite of that of the left block: LS ′∆  = 

−∆SL = +0.710 J/K. 

(c) The entropy change for block R is 

( ) ( )
300.0 K

= ln = 0.101 kg 386 J/kg K ln = +0.723 J/K.
294.5 K

f

R

iR

T
S mc

T
∆ ⋅

(d) Similar to the case in part (b) above, the change in entropy RS ′∆  of the reservoir 

connected to the right block is given by RS ′∆  = −∆SR = −0.723 J/K. 

(e) The change in entropy for the two-block system is  

∆SL + ∆SR = −0.710 J/K + 0.723 J/K = +0.013 J/K. 

(f) The entropy change for the entire system is given by  

∆S = ∆SL + LS ′∆ + ∆SR + RS ′∆  = ∆SL − ∆SL + ∆SR − ∆SR = 0, 

which is expected of a reversible process. 

9. This problem is similar to Sample Problem 20-2. The only difference is that we need to 

find the mass m of each of the blocks. Since the two blocks are identical the final 

temperature Tf is the average of the initial temperatures: 

T T Tf i f=
1

2
+ =

1

2
305.5 + 294.5 = 300.0c h a f K  K  K. 

Thus from Q = mc∆T we find the mass m:

m
Q

c T
= =

215

386 300.0 294.5
= 0.101 .

∆ ⋅ −

J

 J / kg K  K  K
 kga fa f

(a) The change in entropy for block L is



10. We concentrate on the first term of Eq. 20-4 (the second term is zero because the final 

and initial temperatures are the same, and because ln(1) = 0). Thus, the entropy change is 

∆S = nR ln(Vf /Vi)  . 

Noting that ∆S = 0 at  Vf  = 0.40 m
3
, we are able to deduce that Vi = 0.40 m

3
.  We now 

examine the point in the graph where ∆S = 32 J/K and Vf  = 1.2 m
3
; the above expression 

can now be used to solve for the number of moles.  We obtain n = 3.5 mol. 



( )( )( ) ( )( )( )
( )( ) ( )( )

1 1 ,1 2 2 ,2

1 1 2 2

+ 50.0 g 386 J/kg K 400 K + 100 g 128 J/kg K 200 K

+ 50.0 g 386 J/kg K + 100 g 128 J/kg K

320 K.

i i

f

m c T m c T
T

m c m c

⋅ ⋅
= =

⋅ ⋅

=

(b) Since the two-block system in thermally insulated from the environment, the change 

in internal energy of the system is zero. 

(c) The change in entropy is 

( )( ) ( )( )

1 2 1 1 2 2

,1 ,2

= + = ln + ln

320 K 320 K
= 50.0 g 386 J/kg K ln + 100 g 128 J/kg K ln

400 K 200 K

1.72 J K.

f f

i i

T T
S S S m c m c

T T
∆ ∆ ∆

⋅ ⋅

= +

11. (a) We refer to the copper block as block 1 and the lead block as block 2. The 

equilibrium temperature Tf satisfies  

m1c1(Tf − Ti,1) + m2c2(Tf − Ti2) = 0, 

which we solve for Tf :



12. We use Eq. 20-1: 

      
10.0

2 3 3

5.00
(10.0) (5.00) 0.0368 J/K.

3

VnC dT nA
S nA T dT

T
∆ = = = − =  



• process 1 → 2 

(d) The work is given by Eq. 19-14:

W = nRT1 ln (V2/V1) = RT1 ln3 =1.10RT1.

Thus, W/ nRT1= ln3 = 1.10. 

(e) The internal energy change is ∆Eint = 0 since this is an ideal gas process without a 

temperature change (see Eq. 19-45). Thus, the energy absorbed as heat is given by the 

first law of thermodynamics: Q = ∆Eint + W ≈ 1.10RT1, or Q/ nRT1= ln3 = 1.10. 

(f) ∆Eint = 0 or ∆Eint / nRT1=0

(g) The entropy change is ∆S = Q/T1 = 1.10R, or ∆S/R = 1.10. 

• process 2 → 3 

(h) The work is zero since there is no volume change. Therefore, W/nRT1 = 0 

13. The connection between molar heat capacity and the degrees of freedom of a 

diatomic gas is given by setting f = 5 in Eq. 19-51. Thus, 5 / 2, 7 / 2V pC R C R= = , and 

7 / 5γ = . In addition to various equations from Chapter 19, we also make use of Eq. 20-4 

of this chapter. We note that we are asked to use the ideal gas constant as R and not plug 

in its numerical value. We also recall that isothermal means constant-temperature, so T2 = 

T1 for the 1 → 2 process. The statement (at the end of the problem) regarding “per mole” 

may be taken to mean that n may be set identically equal to 1 wherever it appears. 

(a) The gas law in ratio form (see Sample Problem 19-1) is used to obtain 

1 1 2
2 1

2 1

1
= =     0.333

3 3

V p p
p p

V p
= = .

(b) The adiabatic relations Eq. 19-54 and Eq. 19-56 lead to 

31 1
3 1 1.4 1.4

3 1

1
= =   0.215

3 3

pV p
p p

V p

γ

= = .

(c) Similarly, we find  
1

31 1
3 1 0.4 0.4

3 1

1
 0.644.

3 3

TV T
T T

V T

γ −

= = = =



or W /nRT1= −0.889.

(m) Q = 0 in an adiabatic process. 

(n) ∆Eint /nRT1= +0.889.

(o) ∆S/nR=0. 

(i) The internal energy change is 

( ) ( ) int1
int 3 2 1 10.4

1

5
= = 1 0.889   0.889.

2 3
V

ET
E nC T T R T RT

nRT

∆
∆ − − ≈ − ≈ −

This ratio (−0.889) is also the value for Q/nRT1 (by either the first law of 

thermodynamics or by the definition of CV).

(j) ∆Eint /nRT1= −0.889.

(k) For the entropy change, we obtain 

0.4
0.43 3 1

1 1 1

35 5
ln ln (1) ln (1) (1) ln 0 ln (3 ) 1.10 .

2 2

VV C T TS
n n

R V R T T

−∆
= + = + = + ≈ −

• process 3 → 1 

(l) By definition, Q = 0 in an adiabatic process, which also implies an absence of entropy 

change (taking this to be a reversible process). The internal change must be the negative 

of the value obtained for it in the previous process (since all the internal energy changes 

must add up to zero, for an entire cycle, and its change is zero for process 1 → 2), so 

∆Eint = +0.889RT1. By the first law of thermodynamics, then,  

W = Q − ∆Eint = −0.889RT1,



14. (a) It is possible to motivate, starting from Eq. 20-3, the notion that heat may be 

found from the integral (or “area under the curve”) of a curve in a TS diagram, such as 

this one. Either from calculus, or from geometry (area of a trapezoid), it is 

straightforward to find the result for a “straight-line” path in the TS diagram: 

straight

+
=

2
∆

i fT T
Q S

which could, in fact, be directly motivated from Eq. 20-3 (but it is important to bear in 

mind that this is rigorously true only for a process which forms a straight line in a graph 

that plots T versus S). This leads to  

Q = (300 K) (15 J/K) = 4.5×10
3
 J 

for the energy absorbed as heat by the gas. 

(b) Using Table 19-3 and Eq. 19-45, we find 

( )( )( ) 3

int

3
= = 2.0 mol 8.31 J/mol K 200 K 400 K = 5.0 10  J.

2
E n R T∆ ∆ ⋅ − − ×

(c) By the first law of thermodynamics, 

W Q E= = 4.5 5.0 = 9.5 .− ∆ − −int  kJ  kJ  kJa f



Melting is an isothermal process. The energy leaving the ice as heat is mLF, where LF is 

the heat of fusion for ice. Thus,

∆S = Q/T = mLF/T = (0.010 kg)(333 × 10
3
 J/kg)/(273 K) = 12.20 J/K. 

For the warming of the water from the melted ice, the change in entropy is 

= ln ,
f

w

i

T
S mc

T
∆

where cw is the specific heat of water (4190 J/kg ⋅ K). Thus, 

( ) ( )
288 K

= 0.010 kg 4190 J/kg K ln = 2.24 J/K.
273 K

S∆ ⋅

The total change in entropy for the ice and the water it becomes is 

= 0.828 J/K +12.20 J/K + 2.24 J/K = 15.27 J/K.S∆

Since the temperature of the lake does not change significantly when the ice melts, the 

change in its entropy is ∆S = Q/T, where Q is the energy it receives as heat (the negative 

of the energy it supplies the ice) and T is its temperature. When the ice warms to 0°C, 

( ) ( ) ( ) ( )= = 0.010 kg 2220 J/kg  K 10 K = 222 J.I f iQ mc T T− − − ⋅ −

When the ice melts, 

Q mLF= = 0.010 333 10 = 3.33 10 .3 3− − × − × kg  J / kg  Ja fc h

When the water from the ice warms, 

Q mc T Tw f i= = 0.010 4190 15 = 629 .− − − ⋅ −c h a fa fa f kg  J / kg  K  K  J

15. The ice warms to 0°C, then melts, and the resulting water warms to the temperature 

of the lake water, which is 15°C. As the ice warms, the energy it receives as heat when 

the temperature changes by dT is dQ = mcI dT, where m is the mass of the ice and cI is the 

specific heat of ice. If Ti (= 263 K) is the initial temperature and Tf (= 273 K) is the final 

temperature, then the change in its entropy is 

( )( )
273 K

ln 0.010 kg 2220 J/kg K ln = 0.828 J/K.
263 K

f

i

T f

I I
T

i

TdQ dT
S mc mc

T T T
∆ = = = = ⋅



The total energy leaving the lake water is  

Q = −222 J − 3.33 × 10
3
 J − 6.29 × 10

2
 J = −4.18 × 10

3
 J. 

The change in entropy is 
34.18 10  J

= = 14.51 J/K.
288 K

S
×

∆ − −

The change in the entropy of the ice-lake system is ∆S = (15.27 − 14.51) J/K = 0.76 J/K. 



16. (a) Work is done only for the ab portion of the process. This portion is at constant 

pressure, so the work done by the gas is 

0

0

4

0 0 0 0 0 0

0

(4.00 1.00 ) 3.00   3.00
V

V

W
W p dV p V V p V

p V
= = − = =

(b) We use the first law: ∆Eint = Q − W. Since the process is at constant volume, the work 

done by the gas is zero and Eint = Q. The energy Q absorbed by the gas as heat is Q = nCV

∆T, where CV is the molar specific heat at constant volume and ∆T is the change in 

temperature. Since the gas is a monatomic ideal gas, 3 / 2VC R= . Use the ideal gas law to 

find that the initial temperature is  

0 04b b
b

p V p V
T

nR nR
= =

and that the final temperature is  

0 0 0 0(2 )(4 ) 8c c
c

p V p V p V
T

nR nR nR
= = = .

Thus,

0 0 0 0
0 0

8 43
= = 6.00 .

2

p V p V
Q nR p V

nR nR
−

The change in the internal energy is ∆Eint = 6p0V0 or ∆Eint/p0V0=6.00. Since n = 1 mol, 

this can also be written Q = 6.00RT0.

(c) For a complete cycle, ∆Eint = 0 

(d) Since the process is at constant volume, use dQ = nCV dT to obtain 

ln .
c

b

T
c

V V
T

b

TdQ dT
S nC nC

T T T
∆ = = =

Substituting 3
2VC R=  and using the ideal gas law, we write 

0 0

0 0

(2 )(4 )
2.

(4 )

c c c

b b b

T p V p V

T p V p V
= = =

Thus, 3
2

ln 2S nR∆ = . Since n = 1, this is 3
2

ln 2 8.64 J/K.S R∆ = = .

(e) For a complete cycle, ∆Eint = 0 and ∆S = 0. 



17. (a) The final mass of ice is (1773 g + 227 g)/2 = 1000 g. This means 773 g of water 

froze. Energy in the form of heat left the system in the amount mLF, where m is the mass 

of the water that froze and LF is the heat of fusion of water. The process is isothermal, so 

the change in entropy is

∆S = Q/T = –mLF/T = –(0.773 kg)(333 × 10
3
 J/kg)/(273 K) = −943 J/K. 

(b) Now, 773 g of ice is melted. The change in entropy is 

= = = +943 J/K.FQ mL
S

T T
∆

(c) Yes, they are consistent with the second law of thermodynamics. Over the entire cycle, 

the change in entropy of the water-ice system is zero even though part of the cycle is 

irreversible. However, the system is not closed. To consider a closed system, we must 

include whatever exchanges energy with the ice and water. Suppose it is a constant-

temperature heat reservoir during the freezing portion of the cycle and a Bunsen burner 

during the melting portion. During freezing the entropy of the reservoir increases by 943 

J/K. As far as the reservoir-water-ice system is concerned, the process is adiabatic and 

reversible, so its total entropy does not change. The melting process is irreversible, so the 

total entropy of the burner-water-ice system increases. The entropy of the burner either 

increases or else decreases by less than 943 J/K. 



for the phase change experienced by the ice (with To = 273.15 K). The total entropy 

change is (with T in Kelvins) 

system

285.39 273.15 285.39
ln ln ln

293.15 263.15 273.15 273.15

( 11.24 0.66 1.47 9.75)J/K 0.64 J/K.

F i
w w i i i w

L m
S m c m c m c∆ = + + +

= − + + + =

18. In coming to equilibrium, the heat lost by the 100 cm
3
 of liquid water (of mass mw = 

100 g and specific heat capacity cw = 4190 J/kg⋅K) is absorbed by the ice (of mass mi

which melts and reaches Tf > 0 °C). We begin by finding the equilibrium temperature: 

( ) ( )( ) ( )

warm water cools ice melts melted ice warmsice warms to 0

0

+ + + = 0

20 + 0 10 + + 0 = 0w w f i i F i w i f

Q

Q Q Q Q

c m T c m L m c m T

=

− ° ° − − ° − °

which yields, after using LF = 333000 J/kg and values cited in the problem, Tf = 12.24 °
which is equivalent to Tf = 285.39 K. Sample Problem 19-2 shows that 

2
temp change

1

= ln
T

S mc
T

∆

for processes where ∆T = T2 – T1, and Eq. 20-2 gives 

melt

o

= FL m
S

T
∆



19. We consider a three-step reversible process as follows: the supercooled water drop (of 

mass m) starts at state 1 (T1 = 268 K), moves on to state 2 (still in liquid form but at T2 = 

273 K), freezes to state 3 (T3 = T2), and then cools down to state 4 (in solid form, with T4

= T1). The change in entropy for each of the stages is given as follows:

∆S12 = mcw ln (T2/T1),

∆S23 = −mLF/T2,

               ∆S34 = mcI ln (T4/T3) = mcI ln (T1/T2) = −mcI ln (T2/T1).

Thus the net entropy change for the water drop is 

( )

( )( )
( )( )

2
12 23 34

1 2

= + + = ln

1.00 g 333 J/g273 K
= 1.00 g 4.19 J/g K 2.22 J/g K ln

268 K 273 K

= 1.18 J/K.

F
w I

T mL
S S S S m c c

T T
∆ ∆ ∆ ∆ − −

⋅ − ⋅ −

−



(d) Similarly, the cooling of the original-water involves an entropy change of 

339.67

353.15

' 339.67
'ln 21.2 J/K

353.15

cm dT
cm

T
= = −

(e) The net entropy change in this calorimetry experiment is found by summing the 

previous results; we find (by using more precise values than those shown above) Snet = 

4.39 J/K. 

20. (a) We denote the mass of the ice (which turns to water and warms to Tf) as m and the 

mass of original-water (which cools from 80º down to Tf) as m′.  From ΣQ = 0 we have 

LF m + cm (Tf – 0º) + cm′ (Tf  – 80º) = 0 . 

Since LF = 333 × 10
3
 J/kg, c = 4190 J/(kg·Cº), m′ = 0.13 kg and m = 0.012 kg, we find Tf

= 66.5ºC, which is equivalent to 339.67 K. 

(b) Using Eq. 20-2, the process of ice at 0º C turning to water at 0º C involves an entropy 

change of 

Q

T
   =

LF m

273.15 K
   =  14.6 J/K . 

(c) Using Eq. 20-1, the process of m = 0.012 kg of water warming from 0º C to 66.5º C 

involves an entropy change of 

339.67

273.15

339.67
ln 11.0 J/K

273.15

cmdT
cm

T
= = .



(f) The change in entropy may be computed by using Eq. 20-4: 

21 1

1 1

2.00 4.00 3
= ln + ln = ln 2.00 + ln (2.00)

2

= ln 2.00 + 3 ln 2.00 = 4 ln 2.00 = 23.0 J/K.

V

V T
S R C R R

V T

R R R

∆

The second approach consists of an isothermal (constant T) process in which the volume 

halves, followed by an isobaric (constant p) process.  

21. We note that the connection between molar heat capacity and the degrees of freedom 

of a monatomic gas is given by setting f = 3 in Eq. 19-51. Thus, 3 / 2, 5 / 2V pC R C R= = ,

and 5 / 3γ = .

(a) Since this is an ideal gas, Eq. 19-45 holds, which implies ∆Eint = 0 for this process. Eq. 

19-14 also applies, so that by the first law of thermodynamics,  

Q = 0 + W = nRT1 ln V2/V1 = p1V1 ln 2 Q/p1V1= ln2 = 0.693. 

(b) The gas law in ratio form (see Sample Problem 19-1) implies that the pressure 

decreased by a factor of 2 during the isothermal expansion process to V2=2.00V1, so that 

it needs to increase by a factor of 4 in this step in order to reach a final pressure of 

p2=2.00p1. That same ratio form now applied to this constant-volume process, yielding 

4.00 = T2T1 which is used in the following: 

( ) ( )2
2 1 1 1 1 1 1

1

3 3 3 9
1 4 1

2 2 2 2
V

T
Q nC T n R T T nRT p V p V

T
= ∆ = − = − = − =

or 1 1/ 9 / 2 4.50Q p V = = .

(c) The work done during the isothermal expansion process may be obtained by using Eq. 

19-14:

W = nRT1 ln V2/V1= p1V1 ln 2.00 W/p1V1= ln2 = 0.693. 

(d) In step 2 where the volume is kept constant, W = 0. 

(e) The change in internal energy can be calculated by combining the above results and 

applying the first law of thermodynamics: 

( )int total total 1 1 1 1 1 1 1 1

9 9
= = ln 2 + ln 2 + 0 =

2 2
E Q W p V p V p V p V∆ − −

or ∆Eint/p1V1 = 9/2 = 4.50. 



(g) Here the gas law applied to the first (isothermal) step leads to a volume half as big as 

the original. Since ln(1/ 2.00) ln 2.00= − , the reasoning used above leads to

Q = – p1V1 ln 2.00 1 1/ ln 2.00 0.693.Q p V = − = −

(h) To obtain a final volume twice as big as the original, in this step we need to increase 

the volume by a factor of 4.00. Now, the gas law applied to this isobaric portion leads to 

a temperature ratio T2/T1 = 4.00. Thus, 

( ) ( )2
2 1 1 1 1 1 1

1

5 5 5 15
= = = 1 = 4 1 =

2 2 2 2
p

T
Q C T R T T RT p V p V

T
∆ − − −

or Q/p1V1 = 15/2 = 7.50. 

(i) During the isothermal compression process, Eq. 19-14 gives  

W = nRT1 ln V2/V1= p1V1 ln (−1/2.00) = −p1V1 ln 2.00 W/p1V1= −ln2 = −0.693.

(j) The initial value of the volume, for this part of the process, is 1 / 2iV V= , and the final 

volume is Vf = 2V1. The pressure maintained during this process is p′ = 2.00p1. The work 

is given by Eq. 19-16: 

( ) ( )1 1 1 1 1 1 1

1
= = = 2.00 2.00 = 3.00   / = 3.00.

2
f iW p V p V V p V V p V W p V′ ′∆ − −

(k) Using the first law of thermodynamics, the change in internal energy is 

( )int total total 1 1 1 1 1 1 1 1 1 1

15 9
= = ln 2.00 3 ln 2.00 =

2 2
E Q W p V p V p V p V p V∆ − − − −

or ∆Eint/p1V1 = 9/2 = 4.50. The result is the same as that obtained in part (e). 

(l) Similarly, = 4 ln 2.00 = 23.0 J/K.S R∆  the same as that obtained in part (f). 



22. (a) The final pressure is 

( ) ( ) ( ) ( )3 3 31.00 m 2.00 m 1.00 m
= 5.00 kPa = 5.00 kPa 1.84 kPa .

i f

f

V V a
p e e

−−
=

(b) We use the ratio form of the gas law (see Sample Problem 19-1) to find the final 

temperature of the gas: 

( )
3

3

(1.84 kPa)(2.00 m )
600 K 441 K .

(5.00 kPa)(1.00 m )

f f

f i

i i

p V
T T

pV
= = =

For later purposes, we note that this result can be written “exactly” as Tf = Ti (2e
–1

). In 

our solution, we are avoiding using the “one mole” datum since it is not clear how precise 

it is. 

(c) The work done by the gas is 

( ) ( )

( ) ( )( )

/ /

1.00 3 1.00 2.00

(5.00 kPa) 5.00 kPa

5.00 kPa 1.00 m

3.16 kJ .

f f
i i

ii

f V VV V a V a V a

Vi V
W pdV e dV e ae

e e e

− −

− −

= = = ⋅ −

= −

=

(d) Consideration of a two-stage process, as suggested in the hint, brings us simply to Eq. 

20-4. Consequently, with 3
2VC R=  (see Eq. 19-43), we find 

( )1 1

3

3 3 3 3
ln + ln = ln2 + ln 2 ln2 + ln2 + ln

2 2 2 2

(5000 Pa) (1.00 m ) 5 3
ln 2

600 K 2 2

1.94 J K.

f f i i

i i i

V T pV
S nR n R nR e e

V T T

− −∆ = =

= −

=



23. We solve (b) first. 

(b) For a Carnot engine, the efficiency is related to the reservoir temperatures by Eq. 20-

13. Therefore, 

H L
H

75 K
= = = 341 K

0.22

T T
T

ε

−

which is equivalent to 68°C.  

(a) The temperature of the cold reservoir is TL = TH – 75 = 341 K – 75 K = 266 K. 



24. Eq. 20-13 leads to 

L

8

H

373 K
= 1 = 1 = 0.9999995

7 10  K

T

T
ε − −

×

quoting more figures than are significant. As a percentage, this is ε = 99.99995%. 



25. (a) The efficiency is 

H L

H

(235 115) K
0.236 23.6% .

(235+273) K

T T

T
ε

− −
= = = =

We note that a temperature difference has the same value on the Kelvin and Celsius 

scales. Since the temperatures in the equation must be in Kelvins, the temperature in the 

denominator is converted to the Kelvin scale. 

(b) Since the efficiency is given by ε = |W|/|QH|, the work done is given by 

4 4

H 0.236(6.30 10 J) = 1.49 10 J .W Qε= = × ×



26. The answers to this exercise do not depend on the engine being of the Carnot design. 

Any heat engine that intakes energy as heat (from, say, consuming fuel) equal to |QH| = 

52 kJ and exhausts (or discards) energy as heat equal to |QL| = 36 kJ will have these 

values of efficiency ε and net work W.

(a) Eq. 20-12 gives 

L

H

1 0.31 31% .
Q

Q
ε = − = =

(b) Eq. 20-8 gives 

H L 16 kJ .W Q Q= − =



27. With TL = 290 k, we find 

L L
H

H

290 K
= 1 = =

1 1 0.40

T T
T

T
ε

ε
−

− −

which yields the (initial) temperature of the high-temperature reservoir: TH = 483 K. If 

we replace ε = 0.40 in the above calculation with ε = 0.50, we obtain a (final) high 

temperature equal to H 580 KT ′ = . The difference is 

H H = 580 K 483 K = 97 K.T T′ − −



L

H

333 K
= 1 = 1 = 0.107.

373 K

T

T
ε − −

We recall that a Watt is Joule-per-second. Thus, the (net) work done by the cycle per unit 

time is the given value 500 J/s. Therefore, by Eq. 20-11, we obtain the heat input per unit 

time: 

H

0.500 kJ s
4.67 kJ s .

0.107

W

Q
ε = =

(b) Considering Eq. 20-8 on a per unit time basis, we find (4.67 – 0.500) kJ/s = 4.17 kJ/s 

for the rate of heat exhaust. 

28. (a) Eq. 20-13 leads to 



W = Q = 1.47 × 10
3
 J – 5.54 × 10

2
 J = 9.18 × 10

2
 J. 

(d) The efficiency is

ε = W/Qin = (9.18 × 10
2
 J)/(1.47 × 10

3
 J) = 0.624 = 62.4%. 

29. (a) Energy is added as heat during the portion of the process from a to b. This portion 

occurs at constant volume (Vb), so Qin = nCV ∆T. The gas is a monatomic ideal gas, so 

3 / 2VC R=  and the ideal gas law gives

∆T = (1/nR)(pb Vb – pa Va) = (1/nR)(pb – pa) Vb.

Thus, ( )3
in 2 b a bQ p p V= − . Vb and pb are given. We need to find pa. Now pa is the same as 

pc and points c and b are connected by an adiabatic process. Thus, c c b bp V p Vγ γ=  and 

( )
5 3

6 41
= = = 1.013 10  Pa = 3.167 10  Pa.

8.00

b
a c b

c

V
p p p

V

γ

× ×

The energy added as heat is 

( ) ( )6 4 3 3 3

in

3
= 1.013 10  Pa 3.167 10  Pa 1.00 10  m = 1.47 10  J.

2
Q −× − × × ×

(b) Energy leaves the gas as heat during the portion of the process from c to a. This is a 

constant pressure process, so 

( ) ( )

( )( )( )

out

4 3 3 2

5 5
= = =

2 2

5
= 3.167 10  Pa 7.00 1.00 10  m = 5.54 10  J,

2

p a a c c a a cQ nC T p V p V p V V

−

∆ − −

× − × − ×

or 2

out| | 5.54 10  JQ = × . The substitutions Va – Vc = Va – 8.00 Va = – 7.00 Va and 5
2pC R=

were made. 

(c) For a complete cycle, the change in the internal energy is zero and  



30. From Fig. 20-28, we see QH = 4000 J at TH = 325 K.  Combining Eq. 20-11 with Eq. 

20-13, we have

W

 QH
 = 1 – 

TC

 TH
W  = 923 J . 

Now, for HT ′ = 550 K, we have

1         1692 J 1.7 kJC
H

H H

TW
Q

Q T
′= − = ≈

′ ′



1
1 1 0.750 75.0%

4

a

c

T

T
ε = − = − = =

where the gas law in ratio form has been used.  

(e) This is greater than our result in part (c), as expected from the second law of 

thermodynamics. 

31. (a) The net work done is the rectangular “area” enclosed in the pV diagram: 

( )( ) ( )( )0 0 0 0 0 0 0 02 2 .W V V p p V V p p V p= − − = − − =

Inserting the values stated in the problem, we obtain W = 2.27 kJ. 

(b) We compute the energy added as heat during the “heat-intake” portions of the cycle 

using Eq. 19-39, Eq. 19-43, and Eq. 19-46: 

( ) ( )

( ) ( )0 0

0 0

3 5
+ 1 +

2 2

3 5 3 5
1 + 2 1 + 4 2

2 2 2 2

13

2

b c b
abc V b a p c b a a

a a a

b c b
a

a a a

T T T
Q nC T T nC T T n R T n R T

T T T

T T T
nRT p V

T T T

p V

= − − = − −

= − − = − −

=

where, to obtain the last line, the gas law in ratio form has been used (see Sample 

Problem 19-1). Therefore, since W = p0V0, we have Qabc = 13W/2 = 14.8 kJ. 

(c) The efficiency is given by Eq. 20-11: 

H

2
0.154 15.4%.

13

W

Q
ε = = = =

(d) A Carnot engine operating between Tc and Ta has efficiency equal to 



32. (a) Using Eq. 19-54 for process D → A gives 

( )0
0 0 0=         8 =

32
D D A A

p
p V p V V p V

γγ γ γ

which leads to 8 = 32  5 / 3γ γ = . The result (see §19-9 and §19-11) implies the gas is 

monatomic. 

(b) The input heat is that absorbed during process A → B:

( )H 0 0

5 5 5
= = 1 = 2 1 =

2 2 2

B
p A A

A

T
Q nC T n R T nRT p V

T
∆ − −

and the exhaust heat is that liberated during process C → D:

( )L
L 0 0

5 5 1 5
= = 1 = 1 2 =

2 2 4 2
p D D

D

T
Q nC T n R T nRT p V

T
∆ − − −

where in the last step we have used the fact that 1
4D AT T=  (from the gas law in ratio 

form — see Sample Problem 19-1). Therefore, Eq. 20-12 leads to 

L

H

1
1 1 0.75 75%.

4

Q

Q
ε = − = − = =



33. (a) We use HW Qε = . The heat absorbed is H

8.2kJ
33kJ.

0.25

W
Q

ε
= = =

(b) The heat exhausted is then L H 33kJ 8.2 kJ 25kJ.Q Q W= − = − =

(c) Now we have H

8.2kJ
26 kJ.

0.31

W
Q

ε
= = =

(d) Similarly, C H 26 kJ 8.2 kJ = 18kJQ Q W= − = − .



34. All terms are assumed to be positive. The total work done by the two-stage system is 

W1 + W2. The heat-intake (from, say, consuming fuel) of the system is Q1 so we have (by 

Eq. 20-11 and Eq. 20-8) 

( ) ( )1 2 2 3 31 2

1 1 1

1 .
Q Q Q Q QW W

Q Q Q
ε

− + −+
= = = −

Now, Eq. 20-10 leads to 

31 2

1 2 3

= =
QQ Q

T T T

where we assume Q2 is absorbed by the second stage at temperature T2. This implies the 

efficiency can be written 

3 1 3

1 1

= 1 = .
T T T

T T
ε

−
−



(e) The process 4 → 1 is adiabatic, so 4 4 1 1p V p Vγ γ=  and 

4 1

1.30

1 4

1
0.165,

(4.00)

p V

p V

γ

= = =

where we have used V4 = 4.00V1.

(f) The efficiency of the cycle is ε = W/Q12, where W is the total work done by the gas 

during the cycle and Q12 is the energy added as heat during the 1 → 2 portion of the cycle, 

the only portion in which energy is added as heat. The work done during the portion of 

the cycle from 2 to 3 is W23 =  p dV. Substitute 2 2p p V Vγ γ=  to obtain 

( )3

2

1 12 2
23 2 2 2 3 .

1

V

V

p V
W p V V dV V V

γ
γ γ γ γ

γ
− − −= = −

−

35. (a) The pressure at 2 is p2 = 3.00p1, as given in the problem statement. The volume is 

V2 = V1 = nRT1/p1. The temperature is 

2 2 1 1 2
2 1

1

3.00
3.00   3.00.

p V p V T
T T

nR nR T
= = = =

(b) The process 2 → 3 is adiabatic, so 1 1

2 2 3 3T V T Vγ γ− −= . Using the result from part (a), V3 = 

4.00V1, V2 = V1 and γ =1.30, we obtain 

1 0.30

3 3 2

1 2 3

1
3.00 3.00 1.98

/ 3.00 4.00

T T V

T T V

γ −

= = = = .

(c) The process 4 → 1 is adiabatic, so 1 1

4 4 1 1T V TVγ γ− −= . Since V4 = 4.00V1, we have

1 0.30

4 1

1 4

1
0.660.

4.00

T V

T V

γ −

= = =

(d) The process 2 → 3 is adiabatic, so 2 2 3 3p V p Vγ γ=  or ( )3 2 3 2p V V p
γ

= . Substituting V3

= 4.00V1, V2 = V1, p2 = 3.00p1 and γ =1.30, we obtain 

3

1.30

1

3.00
= 0.495.

(4.00)

p

p
=



1

1 1

1

2 1 1 1
1 1 .

1 4 2 4

nRT

nRTγ γ

γ
ε

γ − −

−
= − = −

−

With γ = 1.30, the efficiency is ε = 0.340 or 34.0%. 

Similarly, the work done during the portion of the cycle from 4 to 1 is 

( )1 11 1 1 1 1
41 4 1 1 1

1 1
= = 1 = 1 .

1 1 4 1 4

p V p V nRT
W V V

γ
γ γ

γ γγ γ γ

− −

− −
− − − − −

− − −

No work is done during the 1 → 2 and 3 → 4 portions, so the total work done by the gas 

during the cycle is 

1
23 41 1

2 1
= + = 1 .

1 4

nRT
W W W

γγ −
−

−

The energy added as heat is

Q12 = nCV (T2 – T1) = nCV (3T1 – T1) = 2nCVT1,

where CV is the molar specific heat at constant volume. Now  

γ = Cp/CV = (CV + R)/CV = 1 + (R/CV),

so CV = R/(γ – 1). Here Cp is the molar specific heat at constant pressure, which for an 

ideal gas is Cp = CV + R. Thus, Q12 = 2nRT1/(γ – 1). The efficiency is 

Substitute V2 = V1, V3 = 4.00V1, and p3 = 3.00p1 to obtain 

1 1 1
23 1 1

3 1 3 1
= 1 = 1 .

1 4 1 4

p V nRT
W

γ γγ γ− −
− −

− −



36. Eq. 20-10 still holds (particularly due to its use of absolute values), and energy 

conservation implies |W| + QL = QH. Therefore, with TL = 268.15 K and TH = 290.15 K, 

we find 

( )H
H L H

L

290.15

268.15

T
Q Q Q W

T
= = −

which (with |W| = 1.0 J) leads to H

1
13J.

1 268.15 / 290.15
Q W= =

−



37. A Carnot refrigerator working between a hot reservoir at temperature TH and a cold 

reservoir at temperature TL has a coefficient of performance K that is given by

L

H L

T
K

T T
=

−
.

For the refrigerator of this problem, TH = 96° F = 309 K and TL = 70° F = 294 K, so

K = (294 K)/(309 K – 294 K) = 19.6. 

The coefficient of performance is the energy QL drawn from the cold reservoir as heat 

divided by the work done: K = |QL|/|W|. Thus,

|QL| = K|W| = (19.6)(1.0 J) = 20 J. 



38. (a) Eq. 20-15 provides 

L

H L

H L

1 C
C

C

Q K
K Q Q

Q Q K

+
= =

−

which yields |QH| = 49 kJ when KC = 5.7 and |QL| = 42 kJ. 

(b) From §20-5 we obtain 

H L 49.4 kJ 42.0 kJ 7.4 kJW Q Q= − = − =

if we take the initial 42 kJ datum to be accurate to three figures. The given temperatures 

are not used in the calculation; in fact, it is possible that the given room temperature 

value is not meant to be the high temperature for the (reversed) Carnot cycle — since it 

does not lead to the given KC using Eq. 20-16. 



39. The coefficient of performance for a refrigerator is given by K = |QL|/|W|, where QL is 

the energy absorbed from the cold reservoir as heat and W is the work done during the 

refrigeration cycle, a negative value. The first law of thermodynamics yields QH + QL – 

W = 0 for an integer number of cycles. Here QH is the energy ejected to the hot reservoir 

as heat. Thus, QL = W – QH. QH is negative and greater in magnitude than W, so |QL| = 

|QH| – |W|. Thus, 

H
.

Q W
K

W

−
=

The solution for |W| is |W| = |QH|/(K + 1). In one hour, 

7.54MJ
1.57 MJ.

3.8 1
W = =

+

The rate at which work is done is (1.57 × 10
6
 J)/(3600 s) = 440 W. 



40. (a) Using Eq. 20-14 and Eq. 20-16, we obtain 

( )L 300 K 280 K
1.0 J 0.071J.

280 KC

Q
W

K

−
= = =

(b) A similar calculation (being sure to use absolute temperature) leads to 0.50 J in this 

case.

(c) With TL = 100 K, we obtain |W| = 2.0 J. 

(d) Finally, with the low temperature reservoir at 50 K, an amount of work equal to |W| = 

5.0 J is required. 



The work done by the engine is used to drive the refrigerator, so W is the same for the 

two. Solve the engine equation for W and substitute the resulting expression into the 

refrigerator equation. The engine equation yields W = (T1 – T2)Q1/T1 and the substitution 

yields

( )
3 3 14

3 4 1 1 2

= 1 = 1.
Q Q TT

T T W Q T T
− −

− −

Solving for Q3/Q1, we obtain 

( )
( )

2 13 34 1 2 1 2

1 3 4 1 3 4 1 4 3

1
1 .

1

T TQ TT T T T T

Q T T T T T T T T

−− −
= + = =

− − −

With T1 = 400 K, T2 = 150 K, T3 = 325 K, and T4 = 225 K, the ratio becomes Q3/Q1=2.03.

41. The efficiency of the engine is defined by ε = W/Q1 and is shown in the text to be

1 2 1 2

1 1 1

T T T TW

T Q T
ε

− −
= = .

The coefficient of performance of the refrigerator is defined by K = Q4/W and is shown in 

the text to be  

4 4 4

3 4 3 4

T Q T
K

T T W T T
= =

− −
.

Now Q4 = Q3 – W, so

(Q3 – W)/W = T4/(T3 – T4).



42. (a) Eq. 20-13 gives the Carnot efficiency as 1 – TL /TH .  This gives 0.222 in this case.  

Using this value with Eq. 20-11 leads to  

W = (0.222)(750 J) = 167 J. 

(b) Now, Eq. 20-16 gives KC = 3.5.  Then, Eq. 20-14 yields |W| = 1200/3.5 = 343 J.



43. We are told K = 0.27KC where 

L

H L

294 K
= = = 23

307 K 294 K
C

T
K

T T− −

where the Fahrenheit temperatures have been converted to Kelvins. Expressed on a per 

unit time basis, Eq. 20-14 leads to 

( )( )
L| | / 4000 Btu h

643 Btu h.
0.27 23

W Q t

t K
= = =

Appendix D indicates 1 But/h = 0.0003929 hp, so our result may be expressed as |W|/t = 

0.25 hp. 



44. The work done by the motor in t = 10.0 min is |W| = Pt = (200 W)(10.0 min)(60 s/min) 

= 1.20 × 10
5
 J. The heat extracted is then 

( ) ( )5

L 6

L

H L

270K 1.20 10 J
1.08 10 J.

300K 270K

T W
Q K W

T T

×
= = = = ×

− −



45. We need nine labels: 

Label Number of molecules on side 1 Number of molecules on side 2 

I 8 0 

II 7 1 

III 6 2 

IV 5 3 

V 4 4 

VI 3 5 

VII 2 6 

VIII 1 7 

IX 0 8 

The multiplicity W is computing using Eq. 20-20. For example, the multiplicity for label 

IV is 

( ) ( ) ( ) ( )
8! 40320

= = = 56
5! 3! 120 6

W

and the corresponding entropy is (using Eq. 20-21) 

( ) ( )23 23= ln = 1.38 10 J/K ln 56 = 5.6 10 J/K.S k W − −× ×

In this way, we generate the following table: 

Label W S

I 1 0 

II 8 2.9 × 10
–23

 J/K 

III 28 4.6 × 10
–23

 J/K 

IV 56 5.6 × 10
–23

 J/K 

V 70 5.9 × 10
–23

 J/K 

VI 56 5.6 × 10
–23

 J/K 

VII 28 4.6 × 10
–23

 J/K 

VIII 8 2.9 × 10
–23

 J/K 

IX 1 0 



total = 2 2 2 2 = 2 .NN × × × ×

With N  = 50, we obtain Ntotal = 2
50

=1.13 × 10
15

.

(c) The percentage of time in question is equal to the probability for the system to be in 

the central configuration: 

( )
( ) 14

50 15

25;50 1.26 10
25;50 11.1%.

2 1.13 10

W
p

×
= = =

×

With N = 100, we obtain

(d) W(N/2, N) = N!/[(N/2)!]
2
 = 1.01 × 10

29
,

(e) Ntotal = 2
N
 =1.27 × 1030,

(f) and p(N/2;N) = W(N/2, N)/ Ntotal = 8.0%. 

Similarly, for N = 200, we obtain

(g) W(N/2, N) = 9.25 × 10
58

,

(h) Ntotal =1.61 × 10 60
,

(i) and p(N/2; N) = 5.7%. 

(j) As N increases the number of available microscopic states increase as 2
N
, so there are 

more states to be occupied, leaving the probability less for the system to remain in its 

central configuration. Thus, the time spent in there decreases with an increase in N.

46. (a) We denote the configuration with n heads out of N trials as (n; N). We use Eq. 20-

20:

( )
( ) ( )

1450!
25;50 = = 1.26 10 .

25! 50 25 !
W ×

−

(b) There are 2 possible choices for each molecule: it can either be in side 1 or in side 2 

of the box. If there are a total of N independent molecules, the total number of available 

states of the N-particle system is 



( ) ( )
!

= .
2 ! 2 !

B

N
W

N N

If one-third of the molecules are in each third of the box, then the multiplicity is 

( ) ( ) ( )
!

= .
3 ! 3 ! 3 !

A

N
W

N N N

The ratio is 

( ) ( )
( ) ( ) ( )

2 ! 2 !
= .

3 ! 3 ! 3 !

A

B

N NW

W N N N

(c) For N = 100, 

1650!50!
= = 4.2 10 .

33!33!34!

A

B

W

W
×

47. (a) Suppose there are nL molecules in the left third of the box, nC molecules in the 

center third, and nR molecules in the right third. There are N! arrangements of the N

molecules, but nL! are simply rearrangements of the nL molecules in the right third, nC!

are rearrangements of the nC molecules in the center third, and nR! are rearrangements of 

the nR molecules in the right third. These rearrangements do not produce a new 

configuration. Thus, the multiplicity is 

!
= .

! ! !L C R

N
W

n n n

(b) If half the molecules are in the right half of the box and the other half are in the left 

half of the box, then the multiplicity is 



48. Using Hooke’s law, we find the spring constant to be 

1.50 N
42.86 N/m

0.0350 m

s

s

F
k

x
= = = .

To find the rate of change of entropy with a small additional stretch, we use Eq. 20-7 (see 

also Sample Problem 20-3) and obtain 

3| | (42.86 N/m)(0.0170 m)
2.65 10  J/K m

275 K

dS k x

dx T

−= = = × ⋅ .



49. Using Eq. 19-34 and Eq. 19-35, we arrive at 

∆v = ( 3 − 2 ) RT/M

(a) We find, with M = 28 g/mol = 0.028 kg/mol (see Table 19-1), ∆vi=87 m/s at 250 K, 

(b) and ∆vf =122 ≈1.2 10
2
 m/s at 500 K. 

(c) The expression above for ∆v implies  

T  =
M

R( 3 − 2 )
2 (∆v)

2

which we can plug into Eq. 20-4 to yield

∆S = nR ln(Vf /Vi) + nCV ln(Tf /Ti) = 0 + nCV ln[(∆vf)
2
/(∆vi)

2
] = 2nCV ln(∆vf /∆vi).

Using Table 19-3 to get CV = 5R/2 (see also Table 19-2) we then find, for n = 1.5 mol, ∆S

= 22 J/K. 



50. The net work is figured from the (positive) isothermal expansion (Eq. 19-14) and the 

(negative) constant-pressure compression (Eq. 19-48).  Thus, 

Wnet = nRTH ln(Vmax/Vmin) + nR(TL – TH)

where n = 3.4, TH = 500 K, TL = 200 K and Vmax/Vmin = 5/2  (same as the ratio TH /TL ).

Therefore, Wnet = 4468 J.  Now, we identify the “input heat” as that transferred in steps 1 

and 2:

Qin = Q1 + Q2 = nCV (TH – TL)  + nRTH ln(Vmax/Vmin)

where CV  = 5R/2 (see Table 19-3).  Consequently, Qin = 34135 J.  Dividing these results 

gives the efficiency:  Wnet /Qin = 0.131 (or about 13.1%). 



Therefore,

( )
L

H L

1
= .

f i F

dm PT

dt T T c T T L− − +

Now, P = 100 × 10
6
 W, TL = 0 + 273 = 273 K, TH = 800 + 273 = 1073 K, Ti = –40 + 273 

= 233 K, Tf = 0 + 273 = 273 K, c = 2220 J/kg·K, and LF = 333 × 10
3
 J/kg, so 

( )( )

( )( )

6

3

100 10  J/s 273 K 1
=

1073 K 273 K 2220 J/kg K 273 K 233 K + 333 10  J/kg

82kg/s.

dm

dt

×

− ⋅ − ×

=

We note that the engine is now operated between 0°C and 800°C. 

51. (a) If TH is the temperature of the high-temperature reservoir and TL is the 

temperature of the low-temperature reservoir, then the maximum efficiency of the engine 

is

( )
( )

H L

H

800 + 40  K
= = = 0.78  or  78%.

800 + 273  K

T T

T
ε

−

(b) The efficiency is defined by ε = |W|/|QH|, where W is the work done by the engine and 

QH is the heat input. W is positive. Over a complete cycle, QH = W + |QL|, where QL is the 

heat output, so ε = W/(W + |QL|) and |QL| = W[(1/ε) – 1]. Now ε = (TH – TL)/TH, where TH

is the temperature of the high-temperature heat reservoir and TL is the temperature of the 

low-temperature reservoir. Thus, 

L L
L

H L H L

1
1 and .

T WT
Q

T T T Tε
− = =

− −

The heat output is used to melt ice at temperature Ti = – 40°C. The ice must be brought to 

0°C, then melted, so  

|QL| = mc(Tf – Ti) + mLF,

where m is the mass of ice melted, Tf is the melting temperature (0°C), c is the specific 

heat of ice, and LF is the heat of fusion of ice. Thus,

WTL/(TH – TL) = mc(Tf – Ti) + mLF.

We differentiate with respect to time and replace dW/dt with P, the power output of the 

engine, and obtain

PTL/(TH – TL) = (dm/dt)[c(Tf – Ti) + LF].



52. (a) Combining Eq. 20-11 with Eq. 20-13, we obtain 

( )L
H

H

260 K
1 500 J 1 93.8J.

320 K

T
W Q

T
= − = − =

(b) Combining Eq. 20-14 with Eq. 20-16, we find 

( ) ( )L

H L

L

260K
320K 260K

1000 J
231 J.

T

T T

Q
W

−−

= = =



(d) The net result for the system is (30.5 – 27.1) J/K = 3.4 J/K. (Note: these calculations 

are fairly sensitive to round-off errors. To arrive at this final answer, the value 273.15 

was used to convert to Kelvins, and all intermediate steps were retained to full calculator 

accuracy.) 

53. (a) Starting from 0Q =  (for calorimetry problems) we can derive (when no phase 

changes are involved) 

1 1 1 2 2 2

1 1 2 2

+
= = 40.9 C,

+
f

c m T c m T
T

c m c m
°

which is equivalent to 314 K. 

(b) From Eq. 20-1, we have 

( )( )
314

copper
353

314
= = 386 0.600 ln = 27.1 J/K.

353

cm dT
S

T
∆ −

(c) For water, the change in entropy is 

( )( )
314

water
283

314
= = 4190 0.0700 ln = 30.5 J/K.

283

cm dT
S

T
∆



54. For an isothermal ideal gas process, we have Q = W = nRT ln(Vf /Vi ).  Thus,

∆S = Q/T = W/T = nR ln(Vf /Vi )

(a) Vf /Vi = (0.800)/(0.200) = 4.00, ∆S = (0.55)(8.31)ln(4.00) = 6.34 J/K. 

(b) Vf /Vi = (0.800)/(0.200) = 4.00, ∆S = (0.55)(8.31)ln(4.00) = 6.34 J/K. 

(c) Vf /Vi = (1.20)/(0.300) = 4.00, ∆S = (0.55)(8.31)ln(4.00) = 6.34 J/K. 

(d) Vf /Vi = (1.20)/(0.300) = 4.00, ∆S = (0.55)(8.31)ln(4.00) = 6.34 J/K. 



55. Except for the phase change (which just uses Eq. 20-2), this has some similarities 

with Sample Problem 20-2.  Using constants available in the Chapter 19 tables, we 

compute 

∆S = m[cice ln(273/253) + 
Lf

273
  + cwater ln(313/273)] =  1.18 × 10

3
 J/K. 



56. Eq. 20-4 yields

∆S = nR ln(Vf /Vi)  + nCV ln(Tf /Ti)  =  0 + nCV ln(425/380) 

where n = 3.20 and CV =
3

2
R  (Eq. 19-43). This gives 4.46 J/K. 



57. (a) It is a reversible set of processes returning the system to its initial state; clearly, 

∆Snet = 0. 

(b) Process 1 is adiabatic and reversible (as opposed to, say, a free expansion) so that Eq. 

20-1 applies with dQ = 0 and yields ∆S1 = 0. 

(c) Since the working substance is an ideal gas, then an isothermal process implies Q = W,

which further implies (regarding Eq. 20-1) dQ = p dV. Therefore, 

( )pV

nR

dQ p dV dV
nR

T V
= =

which leads to 3 ln(1/ 2) 23.0 J K.S nR∆ = = −

(d) By part (a), ∆S1 + ∆S2 + ∆S3 = 0. Then, part (b) implies ∆S2 = −∆S3. Therefore, ∆S2 = 

23.0 J/K. 



58. (a) The most obvious input-heat step is the constant-volume process. Since the gas is 

monatomic, we know from Chapter 19 that 
3

2
VC R= . Therefore, 

( ) ( )
3 J

1.0 mol 8.31 600 K 300 K 3740 J.
2  mol K

V VQ nC T= ∆ = − =
⋅

Since the heat transfer during the isothermal step is positive, we may consider it also to 

be an input-heat step. The isothermal Q is equal to the isothermal work (calculated in the 

next part) because ∆Eint = 0 for an ideal gas isothermal process (see Eq. 19-45). 

Borrowing from the part (b) computation, we have 

( ) ( )isotherm H

J
= ln2 = 1 mol 8.31 600 K ln2 = 3456 J.

 mol K
Q nRT

⋅

Therefore, QH = QV + Qisotherm = 7.2 × 10
3
 J. 

(b) We consider the sum of works done during the processes (noting that no work is done 

during the constant-volume step). Using Eq. 19-14 and Eq. 19-16, we have 

W nRT
V

V
p V V= +H

max

min

min min maxln
F
HG
I
KJ −b g

where (by the gas law in ratio form, as illustrated in Sample Problem 19-1) the volume 

ratio is 
V

V

T

T

max

min

H

L

K

 K
= =

600

300
= 2. 

Thus, the net work is 

( ) ( )

( ) ( ) ( )( )

max
H min min H L H L

min

2

= ln2 + 1 = ln2 + 1 2 = ln2

J
= 1 mol 8.31 600 K ln2 300 K

 mol  K

= 9.6 10  J.

V
W nRT p V nRT nRT nR T T

V
− − −

−
⋅

×

(c) Eq. 20-11 gives 

H

0.134 13%.
W

Q
ε = = ≈



59. (a) Processes 1 and 2 both require the input of heat, which is denoted QH. Noting that 

rotational degrees of freedom are not involved, then, from the discussion in Chapter 19, 

3 / 2, 5 / 2V pC R C R= = , and 5 / 3γ = . We further note that since the working substance 

is an ideal gas, process 2 (being isothermal) implies Q2 = W2. Finally, we note that the 

volume ratio in process 2 is simply 8/3. Therefore, 

( )H 1 2

8
= + = ' + 'ln

3
VQ Q Q nC T T nRT−

which yields (for T = 300 K and T' = 800 K) the result QH = 25.5 × 10
3
 J. 

(b) The net work is the net heat (Q1 + Q2 + Q3). We find Q3 from nCp (T − T') = −20.8 ×

10
3
 J. Thus, W = 4.73 × 10

3
 J. 

(c) Using Eq. 20-11, we find that the efficiency is 

3

3

H

4.73 10
0.185 or 18.5%.

25.5 10

W

Q
ε

×
= = =

×



60. (a) Starting from 0Q =   (for calorimetry problems) we can derive (when no phase 

changes are involved) 

1 1 1 2 2 2

1 1 2 2

+
= = 44.2 C,

+
f

c m T c m T
T

c m c m
− °

which is equivalent to 229 K. 

(b) From Eq. 20-1, we have 

( ) ( )
229

tungsten
303

229
= = 134 0.045 ln = 1.69 J/K.

303

cm dT
S

T
∆ −

(c) Also, 

( )( )
229

silver
153

229
= = 236 0.0250 ln = 2.38 J/K.

153

cm dT
S

T
∆

(d) The net result for the system is (2.38 – 1.69) J/K = 0.69 J/K. (Note: these calculations 

are fairly sensitive to round-off errors. To arrive at this final answer, the value 273.15 

was used to convert to Kelvins, and all intermediate steps were retained to full calculator 

accuracy.) 



which yields H = 90.7 J/s.  Using Eq. 20-2, this is associated with an entropy rate-of-

decrease of the high temperature reservoir (at 573 K) equal to

S/t = –90.7/573 = –0.158 (J/K)/s. 

And it is associated with an entropy rate-of-increase of the low temperature reservoir (at 

303 K) equal to

S/t = +90.7/303 = 0.299 (J/K)/s. 

The net result is (0.299 – 0.158) (J/K)/s = 0.141 (J/K)/s. 

61. From the formula for heat conduction, Eq. 19-32, using Table 19-6, we have 

H  = kA
TH - TC

L
  = (401) ( )π(0.02)

2
 270/1.50



62. (a) Eq. 20-14 gives K = 560/150 = 3.73. 

(b) Energy conservation requires the exhaust heat to be 560 + 150 = 710 J. 



63. (a) Eq. 20-15 can be written as |QH| = |QL|(1 + 1/KC ) = (35)(1 + 
1

4.6
) = 42.6 kJ. 

(b) Similarly, Eq. 20-14 leads to |W| = |QL|/K = 35/4.6 = 7.61 kJ. 



64. (a) A good way to (mathematically) think of this is: consider the terms when you 

expand

(1 + x)
4
 = 1 + 4x + 6x

2
 + 4x

3
 + x

4
.

The coefficients correspond to the multiplicities.  Thus, the smallest coefficient is 1. 

(b) The largest coefficient is 6. 

(c) Since the logarithm of 1 is zero, then Eq. 20-21 gives S = 0 for the least case. 

(d) S = k ln(6) = 2.47 × 10
−23

J/K.



65. (a)  Eq. 20-2 gives the entropy change for each reservoir (each of which, by definition, 

is able to maintain constant temperature conditions within itself).  The net entropy change 

is therefore 

∆S   =
+|Q|

273 + 24
  + 

−|Q|

273 + 130
  = 4.45 J/K 

where we set |Q| = 5030 J.   

(b) We have assumed that the conductive heat flow in the rod is “steady-state”; that is, 

the situation described by the problem has existed and will exist for “long times.”  Thus 

there are no entropy change terms included in the calculation for elements of the rod 

itself. 



66. Eq. 20-10 gives 

to to

from from

300K
75.

4.0K

Q T

Q T
= = =



67. We adapt the discussion of §20-7 to 3 and 5 particles (as opposed to the 6 particle 

situation treated in that section). 

(a) The least multiplicity configuration is when all the particles are in the same half of the 

box. In this case, using Eq. 20-20, we have 

3!
= = 1.

3!0!
W

(b) Similarly for box B, W = 5!/(5!0!) = 1 in the “least” case. 

(c) The most likely configuration in the 3 particle case is to have 2 on one side and 1 on 

the other. Thus, 

3!
= = 3.

2!1!
W

(d) The most likely configuration in the 5 particle case is to have 3 on one side and 2 on 

the other. Thus, 

5!
= = 10.

3!2!
W

(e) We use Eq. 20-21 with our result in part (c) to obtain 

( )23 23= ln = 1.38 10 ln3 = 1.5 10  J/K.S k W − −× ×

(f) Similarly for the 5 particle case (using the result from part (d)), we find  

S = k ln 10 = 3.2 × 10
−23

 J/K. 



68. A metric ton is 1000 kg, so that the heat generated by burning 380 metric tons during 

one hour is ( ) ( ) 6380000 kg 28 MJ kg = 10.6 10  MJ.×  The work done in one hour is 

( ) ( ) 6= 750 MJ s 3600 s = 2.7 10  MJW ×

where we use the fact that a Watt is a Joule-per-second. By Eq. 20-11, the efficiency is 

6

6

2.7 10 MJ
0.253 25%.

10.6 10 MJ
ε

×
= = =

×



69. Since the volume of the monatomic ideal gas is kept constant it does not do any work 

in the heating process. Therefore the heat Q it absorbs is equal to the change in its inertial 

energy: int

3

2
dQ dE n R dT= = . Thus, 

( )
( )

3 2 3 3 J 400 K
ln 1.00 mol 8.31 ln

2 2  mol K 300 K

3.59 J/K.

f

i

T f

T
i

TnR dTdQ
S nR

T T T
∆ = = = =

⋅

=



70. With the pressure kept constant, 

( )
3 5

= = + = + = ,
2 2

p VdQ nC dT n C R dT nR nR dT nRdT

so we need to replace the factor 3/2 in the last problem by 5/2. The rest is the same. Thus 

the answer now is 

( )
5 5 J 400 K

= ln = 1.00 mol 8.31 ln = 5.98 J/K.
2 2  mol  K 300 K

f

i

T
S nR

T
∆

⋅



71. The change in entropy in transferring a certain amount of heat Q from a heat reservoir 

at T1 to another one at T2 is ∆S = ∆S1 + ∆S2 = Q(1/T2 − 1/T1).

(a) ∆S = (260 J)(1/100 K – 1/400 K) = 1.95 J/K. 

(b) ∆S = (260 J)(1/200 K – 1/400 K) = 0.650 J/K. 

(c) ∆S = (260 J)(1/300 K – 1/400 K) = 0.217 J/K. 

(d) ∆S = (260 J)(1/360 K – 1/400 K) = 0.072 J/K. 

(e) We see that as the temperature difference between the two reservoirs decreases, so 

does the change in entropy. 



72. The Carnot efficiency (Eq. 20-13) depends linearly on TL so that we can take a 

derivative

L

H L H

1
= 1 =

T d

T dT T

ε
ε − −

and quickly get to the result. With 0.100dε ε→ ∆ =  and TH = 400 K, we find dTL → ∆TL

= −40 K. 



( ) ( ) ( ) ( )
14! 50!

= = = 1.26 10 .
2 ! 2 ! 25! 25!

A

N
W

N N
×

(b) For configuration B

( ) ( )
13! 50!

= = = 4.71 10 .
0.6 ! 0.4 ! [0.6(50)]![0.4(50)]!

B

N
W

N N
×

(c) Since all microstates are equally probable, 

1265
= = 0.37.

3393

B

A

W
f

W
≈

We use these formulas for N = 100. The results are 

(d)
( ) ( ) ( )( )

29! 100!
= = = 1.01 10 .

2 ! 2 ! 50! 50!
A

N
W

N N
×

(e)
( ) ( )

28! 100!
= = = 1.37 10 .

0.6 ! 0.4 ! [0.6(100)]![0.4(100)]!
B

N
W

N N
×

(f) and f WB/WA ≈ 0.14. 

Similarly, using the same formulas for N = 200, we obtain 

(g) WA = 9.05 × 10
58

,

(h) WB = 1.64 × 10
57

,

(i) and f = 0.018. 

(j) We see from the calculation above that f decreases as N increases, as expected. 

73. (a) We use Eq. 20-16. For configuration A



Qnet =
1

2
 (2.00)(50) = 50 J  . 

(d) Since we are dealing with an ideal gas (so that Eint = 0 in an isothermal process), 

then

W1 2  = Q1 2  = 700 J   . 

(e) Using Eq. 19-14 for the isothermal work, we have 

W1 2 = nRT ln
V2

V1
   . 

where T = 350 K.  Thus, if V1 = 0.200 m
3
, then we obtain 

V2 = V1 exp (W/nRT)  = (0.200) e
0.12

  = 0.226 m
3
   . 

(f) Process 2  3 is adiabatic; Eq. 19-56 applies with  = 5/3 (since only translational 

degrees of freedom are relevant, here). 

T2V2
-1

 = T3V3
-1

This yields V3 = 0.284 m
3
.

(g) As remarked in part (d), Eint = 0 for process 1  2. 

(h) We find the change in internal energy from Eq. 19-45 (with CV = 3
2
R):

Eint  = nCV (T3 – T2) = –1.25 × 10
3
 J   . 

(i) Clearly, the net change of internal energy for the entire cycle is zero.  This feature of a 

closed cycle is as true for a T-S diagram as for a p-V diagram. 

(j) For the adiabatic (2  3) process, we have W = − Eint.  Therefore, W = 1.25 × 10
3
 J.  

Its positive value indicates an expansion.  

74. (a) From Eq. 20-1, we infer Q = T dS, which corresponds to the “area under the 

curve” in a T-S diagram.  Thus, since the area of a rectangle is (height)×(width), we have 

Q1 2 = (350)(2.00) = 700J. 

(b) With no “area under the curve” for process 2  3, we conclude Q2 3 = 0. 

(c) For the cycle, the (net) heat should be the “area inside the figure,” so using the fact 

that the area of a triangle is ½ (base) × (height), we find 



75. Since the inventor’s claim implies that less heat (typically from burning fuel) is 

needed to operate his engine than, say, a Carnot engine (for the same magnitude of net 

work), then QH′ < QH (See Fig. 20-35(a)) which implies that the Carnot (ideal refrigerator) 

unit is delivering more heat to the high temperature reservoir than engine X draws from it.  

This (using also energy conservation) immediately implies Fig. 20-35(b) which violates 

the second law. 




